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Computational modeling of biological systems is challenging because of the mul-
titude of spatial and temporal scales involved. Replacing atomistic detail with
lower resolution, coarse grained (CG), beads has opened the way to simulate
large-scale biomolecular processes on time scales inaccessible to all-atom mod-
els. We provide an overview of some of the more popular CG models used in
biomolecular applications to date, focusing on models that retain chemical speci-
ficity. A few state-of-the-art examples of protein folding, membrane protein gating
and self-assembly, DNA hybridization, and modeling of carbohydrate fibers are
used to illustrate the power and diversity of current CG modeling. C© 2013 John Wiley
& Sons, Ltd.
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INTRODUCTION

T o unveil the driving forces governing biomolec-
ular processes, computer simulations have

become an remarkable tool, in particular, the molec-
ular dynamics (MD) simulation technique. In this ap-
proach, the time evolution of a system of interact-
ing particles is computed mainly based on pairwise
forces between the atoms. MD simulations have ad-
vanced to such a level that nowadays one can talk
about ‘computational microscopy’ as an added tool
to experimental microscopy methods.1,2 Traditional
all-atom models are inadequate to simulate the large
spatiotemporal scales involved in cellular processes.
Coarse grained (CG) models have gained a lot of pop-
ularity lately as by neglecting some of the atomistic
degrees of freedom (DOFs) they allow for a signifi-
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cant increase over both the spatial and temporal lim-
itations of all-atom models.3,4

One of the current challenges in the field of
biomolecular modeling is to develop accurate and
transferable CG force fields (FFs). Essentially, two dif-
ferent routes are followed. In bottom-up approaches
(structure-based coarse graining), effective CG inter-
actions are extracted from reference atomistic sim-
ulations. This can be done in a systematic way by
using inverse Monte Carlo (IMC),5 iterative Boltz-
mann inversion (IBI),6 force matching (FM),7,8 or re-
lated methods (see Box 1). In top-down approaches
(thermodynamic-based coarse graining), the focus
is on reproducing key experimental data, especially
thermodynamic properties. Typically, simple analyti-
cal interaction potentials are used and the parameters
are optimized in an iterative procedure. Although the
bottom-up approaches are capable of capturing more
of the fine details of the interaction, the top-down
approach usually provides potentials that are more
easily transferable. In practice, many CG FFs rely on
a combination of these two routes. For a recent re-
view on different approaches to coarse graining, see
Brini et al.9

Provided that one respects the limitations of the
CG model at hand, CG modeling has five powerful
advantages, namely: (1) enabling efficient simulations
of huge system sizes, with simulation volumes up to
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BOX 1: STRUCTURE-BASED COARSE
GRAINING

In structure-based coarse graining, CG potentials are con-
structed in such a way that predefined target functions,
which structurally characterize the system, are reproduced
in the CG simulation. The target functions are mostly ob-
tained from higher resolution atomistic simulations, but
in more knowledge-based approaches, experimentally de-
rived structural data can also be used.

In the commonly used IBI method,6 radial distribu-
tion functions, gref(r), are the target reference functions.
Through the simple Boltzmann inversion

VPMF(r ) = kBT ln[gref(r )], (1)

where kB denotes the Boltzmann constant and T the tem-
perature, the potential of mean force (PMF) VPMF between
pairs of CG particles as a function of their distance r can
be obtained. Unfortunately, this PMF cannot be directly
used as a pair potential in a CG model because it encloses
multibody contributions from all the particles in the system.
Therefore, an iterative procedure should be used to extract
the intermolecular CG potential VCG:

VCG
i+1(r ) = VCG

i (r ) + kBT ln
[

gi (r )
gref(r )

]
(2)

The procedure is initiated with VPMF extracted from the
simple Boltzmann inversion. The subscript i denotes the
iteration number. According to the Henderson theorem,13

the IBI method guarantees the theoretical uniqueness of
the two-body CG interaction potential for the given gref(r).

FM7, 8 is another popular technique for constructing CG
potentials. FM does not rely on pair correlation functions,
that is, pair potentials of mean force, but instead matches
forces on the CG interaction sites as closely as possible with
the forces at the atomistic level. Thus, it aims at reproducing
the multibody PMF with a set of CG interaction functions. In
order to determine FM CG potentials, first reference forces
Fi

ref on CG beads are calculated as a sum of the associated
atomistic forces fγ

F ref
i =

∑
γ

fγ (3)

Next, a model is constructed in which the CG FF depends
linearly on a number of fitting parameters, the coefficients
of cubic splines used to tabulate the CG forces. Subse-
quently, a fitting procedure is performed, which in essence
involves a solution to the following set of N × L equations,

F CG
il (g1 . . . gm) = F ref

il , i = 1, . . . , N; l = 1, . . . , L
(4)

where g1 . . . gm are the fitting parameters, N is the number
of CG beads, and L is the number of reference frames
used for the coarse graining. L should be large enough to

make the set of equations overdetermined. The calculation
is usually repeated for a number of smaller parts of the
trajectory and the final result is constructed as an average
over the set of solutions.

A number of other structure-based methods exist, for
example, IMC,5 minimization of relative entropy,14 or con-
ditional reversible work,15 but so far IBI and FM have
been most widely used in the development of effective CG
potentials for biomolecular simulations. For an excellent
overview, see the work of Noid.16

It is important to realize that there is no unique method to
construct CG potentials from higher resolution data. A full
representation of higher order correlations requires multi-
body potentials, which are impractical and computationally
expensive thereby defeating the purpose of coarse graining.
Even when the pair correlations are well described, other
system properties such as the pressure or energy cannot
be matched at the same time. The art of coarse graining is
in the compromise of assessing which level of detail needs
to be included. In the end, the most suitable CG method
depends on the type of questions asked.

100 × 100 × 100 nm3 containing millions of particles;
(2) allowing for the simulation of slow processes re-
quiring time scales in the micro- to millisecond range;
(3) enabling high-throughput studies, systematically
exploring state conditions in thousands of parallel
runs; (4) showing where details matter and where not
when compared with higher resolution methods, thus
providing insights into the physical nature of the fun-
damental driving forces; and (5) providing a com-
putationally inexpensive testing ground for exploring
novel generic biophysical pathways. Compared with
all-atom models, CG models are easily two to three
orders of magnitude faster, as a result of fewer DOFs
combined with larger integration time steps and faster
sampling due to a smoothened energy landscape (see
Box 2).

Here, we review some of the more successful
methods that have been developed for large-scale sim-
ulation of biomolecular systems, as well as highlight
some novel and promising approaches. To narrow
the scope, we restrict ourselves to particle-based
simulation methods and only describe models that
retain chemical specificity. These models present the
advantage of providing an easy access to full atomistic
details using resolution transformation methods.10–12

This review is organized as follows. First we give
a survey of CG models grouped according to class
of biomolecule. We then provide a number of

226  2013 John Wiley & Sons, Ltd. Volume 4, May/June 2014



WIREs Computational Molecular Science The power of coarse graining in biomolecular simulations

BOX 2: WHY ARE CG MODELS SO FAST?

The major incentive to use CG models is the fast sam-
pling they provide. There are four reasons for this
speedup:

1. Reduced number of DOFs. For CG models that
retain chemical specificity, the typical reduction
factor in the number of particles, n, is between 3
and 5 with respect to united atom FFs, or around
10 compared with fully atomistic FFs that in-
clude explicit hydrogens. For models that map
multiple water molecules into a single CG bead,
the solvent DOFs are also greatly reduced. Fewer
particles to compute and fewer neighbors to con-
sider cause a speedup of the order of n2. Taking
the Martini model as an example, with n = 4
for most molecules compared to a united atom
model and n = 12 for water, a speedup of 16–144
is obtained depending on overall water content.
In models where the solvent is omitted entirely,
the speedup is orders of magnitude larger.

2. Short range interactions. Most CG models only
compute short-range interactions, typically cut-
off at a distance around 1 nm. No expensive PME
methods are needed as the electrostatic interac-
tions are effectively captured in the short-range
potentials. Furthermore, many CG models shift
the potentials to zero at the cutoff, allowing for
less-frequent pairlist updates. Compared with a
typical setup for atomistic simulations with full
treatment of long-range electrostatics, an order
of magnitude speedup is easily obtained.

3. Faster dynamics. Because of the loss of atomistic
DOFs, the potential energy surface is smoothed
out leading to reduced friction. In the same sim-
ulation time, a CG system can therefore sample
more of the phase space. The speedup factor
is difficult to generalize because the amount of
friction removed depends quite sensitively on the
nature of the mapping. H-bonds, for instance, are
likely to contribute much more to the friction than
methylene groups do.

4. Larger integration time steps. The overall
smoother energy surface permits the use of
larger integration time steps. Typical time steps
used are tens of femtoseconds for MD, and
>100 femtoseconds for dissipative particle dy-
namics (DPD), compared with 1–4 femtoseconds
employed in all-atom MD simulations. However,
CG models that used more detailed potentials
obtained through IBI or FM, for instance, are lim-
ited to shorter time steps.

All together, the combined speedup factors are between
2 and 5 orders of magnitude for most of the CG models
considered in this review. There is however no universal rule
to predict the particular speedup of a CG model from the
approximations and strategies it is based on. Consequently,
the interpretation of time is problematic in CG models. The
time scale is best calibrated by directly comparing with
experimental data or dynamics from atomistic simulations
for the system at hand.

state-of-the-art examples to illustrate the power of
CG simulations. We conclude with a short outlook.

CG MODELS

In this section, we discuss the most widely used CG
models as well as some promising recent methods.
For each model, a brief characterization is given
of the main features and limitations. The models
are grouped according to the class of biomolecule,
starting with water, followed by lipids, proteins, nu-
cleotides, and carbohydrates. We do not claim, nor
aim, to be exhaustive and we apologize if we have
overlooked important contributions.

CG Water Models
Water is present as solvent in all biological systems
and as such it is an important molecule to consider
when developing biomolecular FFs. In spite of wa-
ter’s simple molecular structure, it shows in many
aspects very complex collective behavior, making it
a challenging molecule to model on a CG level. As a
result, CG models have employed widely differing ap-
proaches to map (Figure 1) and parameterize water.
The water models are divided into three categories:
implicit, explicit, and polarizable models. As the cur-
rent work deals with biomolecules, we focus on water
models that have been used with or are suitable to be
used in combination with a CG biomolecular FF.

Implicit Models
Roughly two main strategies have been used to model
the aqueous phase implicitly. In a conceptually simple
strategy, the hydrophobic effect and charge screening
are accounted for by adjusting the nonbonded inter-
actions between nonsolvent molecules. This strategy
was applied by top-down (lipid) models,23 protein
folding FFs such as UNRESS,24 the DNA model by
Ouldridge et al.,25 and the carbohydrate model by
Srinivas et al.26 In a more sophisticated strategy, the
hydrophobic effect is modeled by a FF term depending
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FIGURE 1 Mapping strategies for CG water models: (a) regular
Martini water,17 (b) GROMOS CG water,18 (c) Martini compatible
polarizable water (PW),19 (d) big multipole water (BMW),20 (e) ELBA21

induced point dipole water, and (f) Wat Four (WT4).22

on solute size and charges are explicitly screened
using either Debye–Hückel theory or Generalized-
Born models. Because of the emphasis on electro-
statics, these methods have been popular in DNA
models.27,28 Note that although most of the implicit
solvent models use an implicit representation for ions,
some models combine implicit solvent with explicit
ions.29 Analogous to the screening of charges, some
FFs scale the van der Waals (vdW) interactions using
a term based on solvent accessible surface area.30

Explicit Models
An excellent overview of explicit CG water models is
given in recent reviews by Hadley and McCabe31 and
Darré et al.32 Explicit water models can be divided
into models that have been parameterized using either
structure or thermodynamics-based methods.

Structure-based models are constructed from
atomistic simulations of water using methods such
as IBI or FM (see Box 1). Several systematic studies
looking at the properties and transferability of these
water models are available.33–35 As these methods
rely on atomistic simulation trajectories, they have
traditionally mapped one water molecule to one CG
bead to avoid the challenging issue of grouping water
molecules. This 1:1 mapping has limited the speedup
of these models but allowed quite accurate CG wa-

ter models to be conceived. The grouping issue has
recently been circumvented by assembling together
water molecules in the atomistic trajectory using a
K-means algorithm35 or the CUMULUS method.36

Thermodynamics-based models are parameter-
ized by fitting to experimental solvent properties such
as density, water–air surface tension, diffusion rates,
or solvation free energies. These models use analytical
potentials, most commonly Morse, Lennard-Jones
(LJ), or Mie ones, and apply different mappings
(Figure 1). He et al.37 performed a systematic study
of the properties of different potentials. A popular
example of a thermodynamic-based water model
is the water model associated with the Martini
FF17 (Figure 1a). The model represents four water
molecules by a single CG bead (4:1 mapping) using a
shifted LJ potential for the nonbonded interactions.
It has been parameterized based on the density of
pure water and the solubility of water in apolar
solvents. An alternative water model compatible
with the Martini FF uses a Morse potential for
the nonbonded interactions.38 The M3B model,39

developed in connection with carbohydrates, is based
on a 1:1 mapping and also uses a Morse potential. It
was parameterized against the experimental density,
intermolecular energy, and the diffusion coefficient
of water. The thermodynamic-based water models
used by Shelley et al.40 and later by Shinoda et al.41

use a 3:1 mapping and a 6–4 or 12–4 Mie potential,
respectively. The first one was parameterized against
water density, whereas the latter used density,
compressibility, and air–water surface tension. The
monoatomic water (mW) model by Molinero et al.42

uses a nonbonded potential with two and three body
terms mapping one water to one bead. This model
reproduces the tetrahedral organization of water
molecules in addition to a range of other properties
such as density and phase transition temperatures.

The lack of charges in these explicit water
models prevents them from screening electrostatics.
Charge–charge interactions are either ignored or im-
plicit screening is used.42,43 For instance, the Martini
model uses an implicit dielectric constant ε = 15.
Ions, however, are typically included explicitly, and
several of the CG water models have specific parame-
ters available for ions.22,43,44 The models applying a
coarser mapping (e.g., Martini and WT4—see below)
represent an ion together with its first solvation shell
in one bead.

Polarizable Models
To alleviate the lack of proper electrostatic screening
in the explicit water models discussed above, a num-
ber of polarizable CG water models have recently
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been developed. Different methods have been used to
mimic the electrostatic screening of water molecules,
which arises in large part from their orientational
polarizability. The most common approach is the
introduction of extra particles carrying a charge.
Two recent water models specifically aimed to be
compatible with the Martini FF have been developed.
Yesylevskyy et al.19 proposed a model with two
additional particles carrying a charge and bound
to the LJ interaction site (Figure 1c). The relative
rotation of the particles within a molecule—their
polarization—is controlled by an angle potential and
their interactions with the environment. Wu et al.20

introduced the big multipole water (BMW) model
(Figure 1d), in which water consists of three sites
connected in a rigid V-shape. All three sites carry
a partial charge, whereas only the central site is
involved in vdW interactions—via a modified Born–
Mayer–Huggins potential—with other water beads.

Several CG FFs model the polarizability of water
using an induced point dipole. Examples are the ELBA
FF parameterized by Orsi and Essex21 (Figure 1e) and
the polarizable pseudo-particle (PPP) model obtained
by Ha-Duong et al.,47 based on a (roughly) 1:1 map-
ping. For the PPP model, the induced dipoles are only
susceptible to charges on other nonwater molecules.
Quite different in topology is the Wat Four (WT4)
model22 (Figure 1f) that consists of four vdW spheres
in a tetrahedral geometry that together map 11 water
molecules. The beads interact via harmonic bonds and
all four carry a charge. In addition to the original use
in combination with a CG DNA model,22 WT4 has
also been used in multiscale simulations.48 Other ex-
amples of CG water directed at multiscale simulations
are the GROMOS CG water model18 (Figure 1b), to
be combined with the atomistic GROMOS FFs, and
the PPP model in combination with the atomistic po-
larizable TCPEp FF.49

CG Lipid Models
Lipid bilayer structure and function has been exten-
sively studied using all scales of molecular simula-
tions. Although a typical lipid is rather small, around
a hundred atoms, the bulk material properties of a
lipid bilayer depend on the collective behavior of
hundreds, if not hundreds of thousands, of lipids—
rendering atomistic lipid bilayer simulations compu-
tationally costly. The large time and length scales re-
quired to study many of the interesting membrane-
associated processes, such as lipid domain formation,
sorting and clustering of membrane proteins, vesicle
fusion and fission, and so on, have spurred the de-
velopment of a large number of CG lipid FFs. The

ba c

FIGURE 2 Mapping strategies for CG lipid models illustrated for
a dimyristoylphosphatidylcholine (DMPC) lipid. (a) Shelley et al.40 and
(b) Martini17, 43, 45 models are overlaid on the atomistic structure. (c)
The one bead per lipid aggressively CG model of Ayton and Voth46

showing the analytical Gay-Berne ellipsoid particle model combined
with an in-plane potential systematically derived from atomistic
simulations.

first CG lipid model dates back to 1990, by Smit
et al.50 Today, CG lipid models range all the way
from continuum or semi-continuum models to atom-
istic or united atom models. Here, we focus on mod-
els that retain chemical specificity and are therefore
able to distinguish specific lipid types. These kinds of
models usually group 3–6 heavy atoms per CG bead,
reducing a typical lipid to around 8–14 beads. This
CG lipid mapping (Figure 2) is quite common and
gives a good reduction in the number of particles and
still allows enough flexibility for chemical specificity.
Because of the large number of relevant CG methods
available here, we only discuss recent models; for ad-
ditional information please see recent reviews on CG
lipid simulations.23,51–54

Klein Models
Klein and coworkers are one of the pioneers in
exploring CG lipid models. In Shelley et al.,40 they
demonstrated the feasibility of constructing a specific
CG lipid FF directly from atomistic simulation data
using dimyristoylphosphatidylcholine (DMPC) as an
example. Each DMPC lipid is represented by 13 CG
beads (Figure 2a) linked together using harmonic
bond and quartic angle potentials, each one fitted to
the underlying atomistic simulation. The nonbonded
interactions were based on the radial distribution
functions of the corresponding atomistic groups and
refined using IBI. The resulting CG model reproduced
the structural details of the atomistic simulations
quite accurately but has limited transferability. There
have been quite a few refinements to this model
and other CG models have also been introduced,
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including a promising new lipid model by Shinoda
et al.55 This new model uses the same atomistic to CG
mapping scheme but CG particles representing the
same atomistic group in different molecules are fitted
jointly based on thermodynamic properties and mul-
tiple atomistic simulations. This strategy—combining
bottom-up and top-down parameterization—resulted
in improved transferability of the FF, both for differ-
ent molecular structures and environmental condi-
tions. Recent applications of this new model include
studies of the phase behavior of lipid monolayers55

and membrane partitioning of fullerenes.56

The Martini Model
The Martini FF was originally developed for
lipids.17,43,45 The philosophy behind Martini was not
to capture every detail of a given atomistic simulation,
but rather to present an extendable CG model based
on simple modular building blocks, using few param-
eters and standard interaction potentials to maximize
applicability and transferability. Martini uses an ap-
proximate 4:1 mapping (Figure 2b) and in version
2.0,43 18 bead types were defined to represent differ-
ent levels of polarity as well as charged groups. The
CG beads have a fixed size and interact using an inter-
action map with 10 different strengths. Both vdW and
electrostatic interactions are described using shifted
potentials and the electrostatics is screened with a rel-
ative dielectric constant ε = 15 using the standard
Martini water or ε = 2.5 using the polarizable water
model, see water section. Bonds and bond angles are
described with harmonic potentials. Parameters were
tuned to match thermodynamic and structural data
from experimental as well as atomistic simulations of
a number of systems. Because of the modularity of
Martini, a large set of different lipid types has been
parameterized (e.g., Refs 43,45,57, and 58) with ap-
plications ranging from vesicle self-assembly45 to for-
mation of raft domains59 and membrane tethers60 to
name only a few.

The ELBA Model
The ELBA (electrostatics-based) CG lipid FF devel-
oped by Orsi and coworkers,21,61 focuses on mod-
eling lipid–water interactions and capturing impor-
tant electrostatic contributions. The model represents
each water molecule individually using soft sticky
dipole potentials and incorporates electrostatics in the
CG lipid beads as point charges or point dipoles—
allowing for a relative dielectric constant ε = 1. A
few lipid types have been parameterized21 by match-
ing lipid properties, such as volume and area per
lipid, average segmental tail order parameter, sponta-
neous curvature, and dipole potential. Additionally,

the ELBA FF was constructed with possible multiscale
applications in mind.62 Applications of the ELBA FF
have thus far been focused on lipid phase behavior21

and permeation of drugs and other compounds across
bilayers.62

Voth Models
Voth and coworkers have developed numerous CG
lipid models, for example, Refs 63–65 that, like the
Klein model,40 build the FFs directly from atomistic
simulations, but instead of matching average struc-
tural properties, they target the underlying forces at
the atomistic scale (FM, see Box 1). A typical atom-
istic lipid is mapped onto 13–15 CG beads, similar
to the other models discussed in this section. De-
pending on the model, electrostatic interactions are
treated explicitly or implicitly—by combining them
with the short-range nonbonded potentials. Differ-
ent models also represent water differently: explicitly
incorporate each water molecule in one CG bead63

or implicitly include the water contribution in the
nonbonded potentials.65 These methods have been
demonstrated on a number of lipids, for example,
DMPC,63 cholesterol,64 dioleoylphosphatidylcholine
(DOPC), and dioleoylphosphatidylethanolamine.65

By essence, this approach builds potentials that
are difficult to transfer from one system to
another.

Smit’s DPD Model
Kranenburg et al.66 studied CG lipid models using soft
interaction potentials in DPD simulations. They mod-
eled DMPC on two different CG scales: a fine (close
to united atom scale) with a CG bead volume of 30 Å3

and a 1:1 mapping for water and a coarser scale (13
beads for a DMPC lipid) with a CG bead volume of
90 Å3 and a 3:1 mapping for water. In both models,
the CG beads are connected with harmonic bonds and
the bending potentials adjusted to fit distributions ob-
tained from atomistic simulations. The DPD repulsion
parameter set was determined by testing parameter
combinations from various related DPD studies. The
coarser model is quite fast even compared with other
CG lipid models because of the very soft nature of the
DPD potentials. The model has been improved upon
a number of times and has been shown to describe
the phase behavior for a variety of phospholipids and
cholesterol quite accurately.52,67–69

Other Promising Models
A number of other models should be men-
tioned, in particular, recent attempts to parameter-
ize solvent-free lipid models that retain chemical de-
tail. Implicit solvent models gain considerably on
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computation cost but do need to incorporate the ex-
cluded hydrophilic–hydrophobic interactions into the
effective potentials between the CG beads. The mod-
els of Lyubartsev,70 Wang and Deserno,71 Sodt and
Head-Gordon,72 and Curtis and Hall73 use similar
number of CG beads per lipid (10–15) and derive
their CG potentials from representative atomistic sim-
ulations. Wang and Deserno71 and Sodt and Head-
Gordon72 add long-range attractive interactions on
the lipid tails to mimic the hydrophobic effect, which
they tune to fit experimental data. Curtis and Hall73

in their LIME (Lipid Intermediate resolution ModEl)
FF use hard-sphere and square-well potentials in or-
der to use discontinuous molecular dynamics and gain
even greater speedup.

Additionally, the Voth group introduced two
supraresolution solvent-free methods: the Ayton and
Voth46 hybrid analytic-systematic (HAS) approach
and the Srivastava and Voth74 hybrid CG (HCG)
models. These methods are aimed at even larger time
and length scales, with applications such as model-
ing of large liposomes consisting of tens of thousands
of lipids. The HAS approach was demonstrated for
a model with one bead per lipid (Figure 2c) and the
HCG with 3–4 beads per lipid. The neat feature of
these models is that analytical potentials describing
the generic behavior of the lipids are combined with
detailed FM potentials that give the model chemical
specificity.

CG Protein Models
CG models for proteins have a long history, with
the pioneering models for protein folding intro-
duced in the mid 70s75 and 80s.76 The motivation
for such simple models was, as for most biolog-
ical molecules, to address the issue of conforma-
tional sampling. Structure-based models have con-
tributed to our understanding of the physicochem-
ical forces governing the protein folding process77

and protein–protein interactions.78 However, these
models often lack a proper description of the chem-
ical specificity of amino-acid side chains (SCs) and
are therefore not described here. Readers are re-
ferred to earlier reviews on such models.79,80 CG
protein models that retain chemical specificity are
diverse with respect to the level of representation
(Figure 3) and complexity of the associated interac-
tion potentials, which are closely tied to the problem
of interest. In particular, a detailed backbone (BB)
is compulsory for exploring secondary structure for-
mation while SCs are more important for protein–
protein interactions. These two sets of interactions

may thus be parameterized separately and may dif-
fer in the level of mapping, varying from one to
five CG sites per residue for both the BB and the
SCs. Most protein CG models use a combination
of physics-based and knowledge-based potentials for
which transferability is probably the most challenging
aspect. Some models have been quite successful and
contributed to the popularization of CG approaches
as an alternative to atomistic models.

Bereau and Deserno Model
The protein CG FF developed by Bereau and
Deserno81 uses an intermediate level of description
emphasizing on structure. The model has a quite
detailed three-bead protein BB and one-bead SCs
(Figure 3a). The bonded terms were derived from
existing geometric parameters and given an approx-
imate 5% flexibility around their reference values
to account for thermal fluctuations. The BB phi/psi
dihedral angles were used as parameters during the
fitting and as an indicator of local structure and
flexibility. The SC nonbonded interactions were
based on the knowledge-based potential derived by
Miyazawa and Jernigan85 from a statistical analysis
of SC contacts in a protein structure database.
Bereau and Deserno converted this energy scale into
a two-body distance-dependent potential. Note that
the model does not account explicitly for electrostatic
interactions but they are implicitly accounted for in
several terms. The BB beads interact through a more
complex combination of terms that have previously
been identified as secondary structure determinants.
These include local excluded volume, an explicit
geometric H-bonding function, and a dipole–dipole
interaction of neighboring residues. These terms
were tuned to reproduce local protein structure (Ra-
machandran plot or dihedral BB distribution of GGG
and GAG tripeptides) and global folding properties
(folding of a three helix bundle). The FF showed
promising results in folding α-helical proteins86 but
fine-tuning is needed to stabilize β-sheet structures
and proteins with a mixture of α-helices and β-sheets.

The OPEP Model
The OPEP (Optimized Potential for Efficient Protein
structure prediction) CG model developed by Der-
reumaux and coworkers82,83 is a generic CG model.
It has a detailed BB close to a full atomistic model
(N, HN, Cα, C, and O atoms are represented) and
uses a single CG bead for each SC, with the exception
of the proline SC, which has three beads (Figure 3b).
The position of the SC is defined by the BB confor-
mation using an off-lattice (discrete) representation.
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FIGURE 3 Mapping strategies for CG protein models illustrated for an AlaArgPheAla peptide. (a) In the model from Bereau and Deserno,81

the CG particle for the side chain is located on Cβ but the effective vdW radius is for the entire side chain. (b) In the OPEP82, 83 model the backbone
H-atom are represented explicitly. (c) In the Martini84 model the backbone bead is at the center of mass of the non-H atoms and its type is secondary
structure specific. (d) In the UNRES24 model the Cα is a virtual site, the interaction sites are the peptide-bond and the side chain ellipsoids.

The most recent OPEP potential (version 4.0) is a
combination of generic-bonded terms (derived from
the all-atom AMBER FF) and nonbonded interactions
consisting of vdW and H-bonding terms. The vdW
interactions are knowledge based and combine BB–
BB, BB–SC terms with 210 SC pair interactions. The
H-bond potential combines a two-body geometry-
dependent term with a four-body term to account for
H-bond cooperativity. The effects of solvent are taken
into account implicitly within the nonbonded terms.
The OPEP potential was parameterized to maximize
the energy gap between native and nonnative struc-
tures and to enforce stability of native structures in
MD simulations. OPEP was used successfully for pro-
tein folding,87 structure prediction88 and aggregation
studies.89,90 Potential drawbacks of OPEP models are
the lack of SC specificity crucial for accurate descrip-
tion of protein–protein interactions and the need of a
1.5 femtoseconds integration time (due to the detailed
BB and H-bonds) in MD simulations, which reduces
the amount of conformational sampling as compared
with other CG models.

The Martini Model
As an extension to the Martini lipid FF (see above),
the protein version84 has inherited the general 4:1
mapping used to define chemical groups as beads and
the broad experience in using partitioning data for
parameterization. Each amino acid is represented by
one bead for the BB and from zero (Gly and Ala) to
four (Trp) beads for the SC (Figure 3c). The bonded
terms were extracted from a set of protein structures
with the BB bead placed on the center of mass (COM)
of the BB84. An elastic network model (based on the
Cα positions) was parameterized in conjunction with
Martini to improve structural stability.91 Partition-
ing behavior of SC analogues between water and oil
phases and at the water interface of a DOPC bilayer
was originally used to parameterize the nonbonded
interactions. Recently, a thorough examination of the
binding of Wimley−White pentapeptide to a palmi-
toyloleoylphosphatidylcholine bilayer92 and SC ana-
logue (self and cross) dimerization free energies93

were used to refine the nonbonded parameters.94

Notably, an explicit polarization term was added
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to polar SCs such as glutamine and asparagine.
Coulomb interactions for charged SCs use the stan-
dard shift function used in Martini with a rela-
tive dielectric constant ε = 15 or ε = 2.5 when
combined with the regular and polarizable water,
respectively. The Martini FF does not allow dy-
namic secondary structure conformational flexibil-
ity and thus precludes folding studies. However, it
has been successful in describing protein tertiary
conformational changes,95 protein supramolecular
organization,96–98 and their relation with the mem-
brane environment.99,100

The UNRES Model
The UNRES (UNited RESidue) CG model devel-
oped by Liwo et al.24 models the BB by two CG
beads—an interacting peptide-group (P) and nonin-
teracting (CA) group—and the SC as a single ellip-
soidal bead (Figure 3d). This FF has gone through
numerous refinements101 to come close to a pure
physics-based version in contrast with its first appear-
ance two decades ago as a strongly knowledge-based
potential.102 The UNRES potential is a free energy
function where all the DOFs (including that of the sol-
vent) are averaged out into effective potentials, except
for the ones describing the protein conformation. The
bonded interactions include bonds, angles, and dihe-
drals for the BB and a rotational potential defines the
SC rotamer. The nonbonded interactions (vdW and
Coulomb) include terms between SC–SC, SC–P, and
P–P beads. All the nonbonded terms are derived from
ab initio or semi-empirical calculations of small model
systems and PMFs extracted from all-atom MD sim-
ulations of SC analogue pairs. Notably, the UNRES
potential incorporates temperature-dependent corre-
lation terms. UNRES now stands as a prototype for
purely physics-based approaches to coarse graining
and it has been successful and widely used over the
last two decades to study protein folding,103 structure
prediction,104 protein–protein binding,105 and mech-
anisms of protein fibrillation.106 However, there are
a couple of caveats. First, in contrast to other CG
models, the conversion from UNRES to an all-atom
representation is not straightforward and may thus
be inappropriate for multiscale approaches. Second,
because of its emphasis on accurate description of
protein interactions, it will be difficult to extend UN-
RES to other biomolecules such as nucleic acids and
lipids.

The SCORPION Model
The SCORPION protein CG FF107 was initially devel-
oped as a scoring function for protein–protein recog-
nition using one bead to model the BB and one or

two beads for the SCs. The bead self- and cross-
interactions were extracted by (1) fitting vdW SC pair
interactions extracted from PMFs of SC association
determined at an atomistic resolution and vanishing
charges and (2) determining a set of point charges to
reproduce the electrostatic potential, the total charge,
and the permanent dipole as described by an atom-
istic model of the full protein. The parameterization
was done in vacuum to allow, in principle, mixing
with any solvent. In a recent study,108 the authors
combined the protein potential with a compatible
water model, which was validated against solvation
free energies of peptides. The use of the combined
protein and water model showed great promise for
studying protein–protein recognition.108 The noto-
rious and challenging barnase/barstar complex and
two others were successfully predicted. The current
main drawbacks of the model are the lack of bonded
terms (an elastic network is used instead) and the use
of a high temperature in the simulations, which af-
fects the balance between the enthalpic and entropic
contributions.

Other Promising Models
The PaLaCe model recently introduced by Lavery
and coworkers109 to study the mechanics of proteins
uses a two-tier representation of amino acids: one for
bonded and another one for nonbonded interactions.
The FF consists of physics-based bonded and non-
bonded terms combined with an implicit treatment of
the solvent and a BB H-bonding potential (allowing
secondary structures changes). These terms were col-
lectively and iteratively parameterized against a large
database of protein structures and MD simulations
of their native state. The PaLaCe model was able to
reproduce force-induced conformational changes for
the immunoglobulin-like domain of the giant protein
titin, originally observed by single-molecule experi-
mental results and all-atom simulations.

The PRIMO model proposed by Feig and
coworkers110 represents the protein BB using three
CG beads and one to five sites for the SCs. The
mapping was carefully optimized to allow a high-
resolution reconstruction of all-atom protein
models111 aiming for multiscale approaches. The
interaction scheme is typical of a molecular me-
chanics potential with bonded and nonbonded terms
optimized against a diverse set of peptides and
proteins described by the all-atom CHARMM FF.
The model also includes an explicit treatment of BB
H-bonds and an implicit solvent. The PRIMO FF
was validated against the conformational sampling
of alanine-based polypeptides and folding of small
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peptides as observed in atomistic MD simulations
and experimental data.

In the AWSEM (Associative memory, Water me-
diated, Structure, and Energy Model) FF, developed
by Papoian and coworkers,112 the position and ori-
entation of each amino acid residue is dictated by the
positions of its Cα, Cβ, and O atoms. AWSEM com-
bines a large number of physical interactions, from
BB terms to direct and water-mediated interactions
and H-bonding, with structural biases that are local
in sequence, based on the alignments of fragments
of nine residues or less of the target protein to the
local segments found in a protein database. It has
been successfully used to predict protein structures
both de novo and using homology models,112 as well
as dimeric protein interfaces.113 The dynamic prop-
erties of the model have yet to be characterized in
detail.

CG Nucleic Acid Models
Nucleic acids (DNA and RNA) seem more tractable
for modeling than proteins due to the smaller num-
ber of building blocks involved. Nevertheless, perhaps
because of scarcer structural data, tight packing, and
higher charge density, the development of CG nucleic
acid models has progressed more slowly than with
many other biomolecules.

Despite the similarities between DNA and RNA,
the challenges in modeling them differ greatly. DNA
exists primarily as double-stranded structures (ds-
DNA) with only a limited number of well-defined
conformations but forms extremely large-scale as-
semblies. For RNA, the challenge is to predict how
the single-stranded RNAs (ssRNAs) fold into their
functional form. These differences have led the CG
models for DNA and RNA to use disparate strate-
gies in order to reach their objectives. Most CG RNA
models are aimed at predicting structures (see a re-
cent review114) and use structure-based potentials.

Only a few CG RNA models can be used in MD
simulations,115,116 in contrast to the numerous DNA
CG models available—which span several orders of
magnitude in the length scales they describe. Large-
scale mechanical properties of DNA structures have
been studied using very coarse models since the early
90s.117,118 The development of more detailed CG
models that are able to describe for example DNA
melting started later.119 We focus here on CG models
that are detailed enough to describe sequence speci-
ficity. For an overview of coarser models, we refer the
reader to previous reviews.120–122

3SPN Models
de Pablo and coworkers27 proposed a CG model for
DNA, coined 3SPN.0, where phosphate, sugar, and
base are described using one bead each (Figure 4a).
Bonded interactions were derived from a canonical
structure of B-DNA. Base stacking was implemented
using intrastrand Gō-potentials that act between the
first and second neighbors. H-bonds were modeled
using a potential that acts between complementary
bases and an excluded volume term is used between
all other beads. Electrostatics is described using a
Debye–Hückel approximation. The authors did note
that these choices bias the model toward the B-form
of DNA compared with other forms. The parame-
ters were selected to reproduce experimental melting
curves of DNA at a specific salt concentration, but
the model also performed rather well in other salt
concentrations as well as reproducing the persistence
length of dsDNA and ssDNA and bubble formation in
dsDNA. The authors measured roughly three orders
of magnitude speedup as compared with atomistic
simulations for short dsDNAs. The model has been
refined (3SPN.1)123 to describe DNA hybridization
and to model ions explicitly.124–126 Very recently, the
3SPN.2127 model that does not use Gō-potentials for
stacking was introduced.

a b c

FIGURE 4 Mapping strategies for CG nucleotide models illustrated for cytosine (top) and guanine (bottom) based on (a) 3SPN.0,27 (b)
Ouldridge,25 and (c) Dans28 models.
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Ouldridge Model
Ouldridge et al.25,128 developed a model that repre-
sents the nucleotide as a rigid system of one BB site
aligned with two sites for the base (Figure 4b). Neigh-
boring nucleotides interact with excluded volume and
angle-dependent stacking potentials, whereas the BB
beads are connected with finite extensible nonlinear
elastic bonds. All other beads interact with excluded
volume, cross-stacking, and H-bonding potentials.
The latter two are also angle dependent. All poten-
tials except for H-bonding are identical for different
nucleotide pairs. The model does not include elec-
trostatics but it is parameterized in high salt concen-
tration where they play a smaller role. Furthermore,
solvent effects are included implicitly within the inter-
action potentials. The potential functions are param-
eterized to reproduce experimental properties of base
stacking in ssDNA and dsDNA melting. The param-
eterized model was shown to reproduce mechanical
properties of both ssDNA and dsDNA as well as DNA
hairpin formation. The stacking and H-bonding inter-
actions were further refined129 to introduce sequence
dependence and reproduce experimental melting tem-
peratures of short duplexes. The model was also able
to show sequence-dependent differences in the struc-
ture of ssDNA as well as in the opening of dsDNA
ends.

Dans Model
Dans et al.28 developed a DNA model for the SIRAH
FF that describes each nucleotide with two interac-
tion sites for the BB, one for the sugar, and three for
the base (Figure 4c). This mapping allows for easy
backmapping to atomistic detail. The bonded inter-
actions were parameterized to reproduce the canoni-
cal B-DNA structure. The nonbonded interactions are
described using LJ and Coulomb potentials and were
parameterized to reproduce structural and dynamical
properties of dsDNA as observed in atomistic simula-
tions. A generalized Born model describes the solvent.
The authors found qualitative agreement with exper-
imental melting curves of dsDNA, dsDNA transition
from A to B DNA structures and base pair opening dy-
namics as observed in long atomistic simulations. The
model was roughly 600 times faster than fully atom-
istic simulations for short dsDNAs. The model was
later adjusted to include the explicit solvent model
WT4.22 The modified model reproduced qualitatively
effects such as experimentally observed narrowing of
the minor groove due to cations, but the increased de-
tail rendered it roughly 30% slower than the implicit
model.

Other Promising Models
The recent HiRE-RNA model by Pasquali and
Derreumaux130 is a physics-based model for RNA
folding, similar to the OPEP model for proteins. The
model uses one bead for the phosphate, four beads
for the sugar, and one or two beads for the base. It
employs standard bonded potentials, OPEP type LJ
potentials, and explicit H-bonding potentials. It does
not describe ions or solvent and includes electrostat-
ics only between phosphates. The current model is
an unoptimized proof-of-concept model but shows
promising results in folding small RNAs using replica
exchange MD simulations.

A DNA model by Linak et al.131 has the same
mapping as the 3SPN models but uses directional non-
bonded potentials to describe both the Watson-Crick
and Hoogsteen base pairing and employs no dihedral
potentials. The model shows improved accuracy in
situations where Hoogsteen pairs are known to play
a role but has difficulties with the handedness of ds-
DNA due to the omitted dihedrals.

The model by Morriss-Andrews et al.132 de-
scribes each nucleotide with three beads and uses
orientation-dependent base–base and base–BB poten-
tials as well as an explicit hydrogen bond potential.
Bonded and nonbonded parameters are derived from
atomistic potentials and distributions from atomistic
simulations. The model reproduces the structure and
chirality of dsDNA as well as persistence length of
both ssDNA and dsDNA.

CG Carbohydrate Models
Carbohydrates are ubiquitous biomolecules involved
in many biological processes. Because of their nature,
carbohydrates encompass a huge degree of polymer-
ization making up a virtually infinite number of se-
quences, linkages, and degrees of branching.133 Un-
like proteins, nucleic acids, and lipids, which tend to
predominantly adopt a relative well-defined (native)
conformation under the conditions where they are bi-
ologically functional, carbohydrates typically feature
a high degree of conformational freedom.134–136 As a
result of this structural diversity, carbohydrates repre-
sent a very challenging class of biomolecules in terms
of CG modeling. Consequently, current CG carbo-
hydrate models often aim for the simulation of very
specific systems.

The MB3 Model
Pioneering efforts by Molinero and Goddard39 aimed
at modeling hexopyranose glucose. This model,
coined ‘MB3’, was the first attempt to build a
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FIGURE 5 Mapping strategies for CG carbohydrate models
illustrated for a single cellulose fibril. (a) The MB339 model is based on
the atomistic position of C1, C4, and C6 for every hexopyranose. (b)
The Martini138 model relies on the COM of the atoms enclosed by the
circles. (c) The solvent-free model of Srinivas et al.26 makes use of a
single bead for the representation of every monosaccharide subunit.

robust reductive model for the simulation of carbohy-
drates. The hexopyranose ring is represented by three
particles (Figure 5a) and was directly mapped from
atomistic simulations, with bonded terms including
bond, angle, and dihedral potentials derived using an
IBI approach. A single nonbonded term was used for
all interactions and rigorously parameterized against
density, cohesive energy and structural unit cell pa-
rameters. While the model was successfully applied to
the simulation of disaccharides (maltose) and longer
polysaccharides (amylose), the set of bonded param-
eters is state specific and thus not transferable to al-
ternative glycosidic links. Following the same, topo-
logical descriptors, Liu et al.137 developed a reductive
model for the simulation of carbohydrates, but using
nonbonded terms based on more versatile pretabu-
lated potentials derived from atomistic simulations.
This model can be combined with an explicit water
model. So far, applications of the model have been
restricted to the simulation of glucose and amylose.

The Martini Model
A more extendable and general approach is the one
taken by López et al.138 based on the Martini CG
FF. Each saccharide is mapped using three CG beads
in such a manner that the underlying polar–nonpolar

feature of the ring is preserved (Figure 5b). Follow-
ing the philosophy of the Martini model,43 several
monosaccharides and disaccharides were parameter-
ized combining bottom-up and top-down approaches.
Atomistic trajectories were used to iteratively adjust
the set of bond, angle, and dihedral potentials of
the CG representation. Nonbonded terms were deter-
mined to reproduce experimental partitioning data.
While the parameters are straightforwardly applica-
ble for the simulation of mono-, di-, and polysaccha-
rides in the colloidal state, application to the crys-
talline phase is rather problematic as was shown by
Wohlert and Berglund139 in the case of crystalline cel-
lulose. A potential advantage of the Martini carbohy-
drate model is its compatibility with the ample set
of different biomolecules, illustrated recently by the
parameterization of a Martini FF for glycolipids140

and application to cyclodextrin–cholesterol complex
formation.141

Bellesia Model
Recently, Bellesia et al.142 developed a solvent-free
CG model for the interconversion between cellulose
Iβ to III. Based on a five-bead mapping of the ring,
the model combines LJ terms with harmonic bonded
potentials aimed to reproduce the crystalline phase of
cellulose. The CG representation not only reproduces
the torsional angles between glucose planes, but also
the transitional rotameric states of the hydroxymethyl
groups thus effectively mimicking the changes in both
intracrystalline hydrogen bonds and stacking interac-
tions during the transition from cellulose Iβ to cel-
lulose III. The model has been shown to reproduce
structural as well as thermomechanical properties of
cellulose.

Bathe Model
The solvent-free model of Bathe et al.143 is aimed at
modeling chondroitin (glycan chains forming a major
component of the extracellular matrix). This model
explicitly describes the DOFs associated with the
torsional angle representing the glycosidic linkage.
Each monosaccharide consists of three-bead sites,
plus two additional beads at the centers of charge and
geometry, used to model the nonbonded electrostatic
and steric interactions, respectively. All-atom reso-
lution trajectories of isolated disaccharides are used
to generate pretabulated PMFs for the glycosidic tor-
sions. Electrostatic interactions are included between
nonadjacent monosaccharides using a Debye–Hückel
potential, assuming zero ionic radius. Steric inter-
actions between nonadjacent monosaccharides were
modeled using a LJ potential applied to the center
of geometry. The model was able to reproduce
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the ionic strength-dependent persistent length, pH-
dependent expansion factor, and titration behavior of
chondroitin.

Srinivas Model
Aimed to study the structure and dynamics of cellu-
losic biomass, the model developed by Srinivas et al.26

pursues to study the intrinsic conformation of long
Iβ cellulose macrofibrils. Their simplified representa-
tion makes use of a single bead for every monomeric
glucose subunit (Figure 5c). The glucose COM was
mapped from atomistic simulation trajectories and
every associated bond, angle, and torsion potential
parameter was extracted from the same conforma-
tional ensemble. Nonbonded interactions were opti-
mized using an IBI approach, with the distance distri-
butions between individual monomers as target ob-
servables. The model has been used for studying the
transition between crystalline and amorphous phase
at long time scales, as detailed in the Applications of
CG Models section.

Other Promising Models
Recently, Satelle et al.144 developed an interesting CG
model for the prediction of hydrodynamic properties
of heparin sulfate. The CG model potentials were
carefully adjusted to reproduce the glycosidic linkage
between consecutive monosaccharide subunits and
the internal ring puckering observed in long unbiased
all-atom simulation. The model is not only able
to reproduce relative ring–ring orientations but
also the internal energy landscape of different ring
conformers.

Markutsya et al.145 constructed four different
CG models of cellulose, with potentials derived from
FM either using one, two, three, or four sites per
monomer. They found that the four-site CG model
is most promising, as it is best at reproducing the
glucose–glucose conformations observed in the all-
atom simulation. The model underscores the impor-
tance of decoupling the pyranose ring from the oxy-
gen atom in the glycosidic bond when developing all-
atom to CG mapping schemes for polysaccharides.

APPLICATIONS OF CG MODELS

Applications of CG models range far and wide and
providing an exhaustive coverage is far beyond the
scope of this review. Instead we cherry-picked five
state-of-the-art examples demonstrating successful
and potentially inspiring use of CG models. We show
different types of application with various aims and
include a variety of biomolecule classes as discussed

in the CG Models section. We start by the description
of typical applications of a protein CG FF whose de-
velopment emphasized on getting the native protein
structure, following by larger scales applications us-
ing a model which allows for exploration of protein
conformational changes and assembly in lipid bilay-
ers, ending with coarser models of DNA hybridization
and cellulose fibrils stability.

Protein Folding
In spite of a few recent studies able to simulate the
folding of a number of small proteins,146–148 the cur-
rent state of atomistic protein folding simulations is
mostly limited to small single-chain proteins using
considerable dedicated computer resources. CG mod-
els are thus extremely attractive but capturing the rel-
evant DOFs has shown to be quite challenging.122

In that context, the UNRES24,101 model is unique.
Its development over more than two decades has
gone through many successive but consistent modi-
fications. This laborious parameterization illustrates
the extreme challenging aspect of the development
of a reliable CG FF when it is about capturing a
delicate mixture of complex structural and chemi-
cal contributions. UNRES successfully participated
in the CASP exercise in which success of ab initio
prediction of new protein folds is almost exclusively
reserved to knowledge-based potentials. Two UNRES
predictions are shown in Figure 6a: the target T0215
(a three-helix bundle; PDBX9B) and T0281 (a α/β
fold; PDB:1WHZ) predicted to 0.35 and 0.55 nm
Cα RMSD from the native state.104 The latter repre-
sents one of the first successful predictions of an α/β
structure with a physics-based potential. UNRES also
described the folding pathway of several single- and
multichain proteins. For example, UNRES folded ab
initio (Figure 6b) the 48-residue Lysm domain protein
(PDB:1E0G) to a structure with a 0.39 nm Cα RMSD
from the native structure.149 The folding processed by
the initial formation of an almost all α-helical struc-
ture followed by the unfolding and refolding of the
C- and N- terminal regions into their native antipar-
allel β-sheet structure. Another example of ab ini-
tio folding with UNRES is of a multichain protein
(PDB:1G6U) (Figure 6c). Individual chains folded in-
dependently to their native structures and later assem-
bled into a structure at 0.24 nm Cα RMSD from the
native state.150

Gating of Mechanosensitive Channels
The bacterial mechanosensitive channels of large con-
ductance (MscL) serve as a last resort emergency
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FIGURE 6 CG protein folding. (a) Predicted structures from the UNRES24 CG FF in CASP6 exercise for targets T0215 (left) and T0281 (right).
The native structure is colored red and the predicted structure yellow. (b) Snapshots from an ab initio folding of a 48-residue Lysm domain protein
and (c) a synthetic domain-swapped protein consisting of two 48-residue chains. Figure 6b reproduced with permission from Ref 149. Copyright
2005, PNAS. Figure 6c reproduced with permission from Ref 150. Copyright 2007, American Chemical Society.

release valve, protecting bacteria from lysis upon
acute osmotic downshock. With induced membrane
tension, MscL opens a large (∼3 nS) mostly unselec-
tive pore, releasing ions and small solutes, thereby
relieving the cytoplasm of osmotic tension.151 Be-
cause of the high computational cost of atomistic
simulations, MscL gating from its closed state152 has
not been simulated at the atomistic level without
strong biasing potentials.153–155 It was only recently
that MscL could be gated in an unbiased way and
in tractable computational time using the Martini
CG FF.95,156,157 Those studies confirmed the iris-like
opening mechanism of the channel and provided valu-
able insight into how changes in protein shape in-
fluence its preferred conformational equilibrium. To
gate MscL in CG simulations, the channel was equi-
librated in a solvent/bilayer environment for a few
microseconds after which tension was rapidly ap-

plied. In 10–100 nanoseconds following the appli-
cation of lateral tension and thinning of the bilayer,
the MscL transmembrane helixes tilted, extending the
extracellular cavity of the channel. The channel hy-
drophobic gate takes an additional 0.2–2 microsec-
onds before rapidly expanding and opening the chan-
nel (Figure 7). Such gating of MscL took 5–10 days
on a 12-CPU computer at the CG level; it is not
clear how many years it would take at the atom-
istic level, even using much faster computers. Ongo-
ing work on MscL has shed new light on its gating
mechanism and how changes in bilayer properties can
influence membrane protein gating. Moreover, this
CG model of MscL provides a new tool for study-
ing the mechanism of mechanosensation, the bilayer
regulation of membrane proteins, and the rational
design of future drug delivery systems, for example,
Ref 158.
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FIGURE 7 Reversible gating of MscL using the Martini CG model. A MscL is solvated in a DOPC bilayer and equilibrated for 4 μs (left). Surface
tension is then applied to the bilayer, the channel opens and CG water permeates through the large channel opening (middle). When surface
tension is removed the channel recloses and water flux is almost completely abolished (right).

Membrane Protein Self-Assembly
Biological membranes have a complex and dynamic
supramolecular organization that has recently
emerged as a potential major component in many
fundamental processes. The transient nature of these
processes has made their characterization by conven-
tional experimental and computational approaches
a great challenge. CG MD simulations using the
Martini model have shown promise in elucidating
the forces involved at the molecular level with a
close to atomistic resolution. Notably, a set of recent
studies took advantage of the increased system size
and length scales accessible to reveal a few significant
protein/lipid interplays. First, a lipid membrane re-
sponds to the presence of a protein by an anisotropic
deformation at the protein/bilayer interface in order
to match to the protein’s hydrophobic surface.96 Sec-
ond, the extent of membrane deformation determines
the protein’s propensity to self-organize.96 Third,
the protein surface properties (sequence dependent)
design specific lipid binding sites100 and favor differ-
ent protein/protein interfaces that may drive proteins
to assemble into well-ordered and highly organized
arrays.97 Forth, protein sorting is mediated by lipid
properties in multidomain membrane patches.159 A
typical system used in these studies is pictured in
Figure 8. It consists of 64 visual receptor rhodopsins
embedded in a DOPC membrane bilayer at 1/100 pro-

FIGURE 8 Membrane protein self-assembly. Snapshot of 64
visual receptor rhodopsins in a DOPC bilayer. The receptors were
initially placed on a 8 × 8 grid and left free to self-assemble for a
period of 100 μs. The receptor’s transmembrane helices are shown as
orange tube and the backbone trace in brown. The lipid head groups
are shown in light blue, the glycerol moieties in white, and the tails in
gray.

tein/lipid molar ratio.97 The 100 microseconds time
scale reached in these simulations will soon become a
standard and the millisecond time scale is not far off.

DNA Hybridization
DNA hybridization is the assembly process of comple-
mentary ssDNAs forming dsDNA that is ubiquitous
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FIGURE 9 DNA hybridization process. Starting with two separate strands, they first associate and form a nucleation site.127 Bases make
complementary pairs leading to a fully hybridized dsDNA. The data for the figures are produced with the recent 3SPN.2 model. Figure kindly
provided by Dan Hinckley and Juan de Pablo.

in, for example, transcription. Also a large number
of systems and protocols in molecular biology and
biotechnology rely on DNA hybridization. Therefore,
the understanding of the sensitivity of this process to
the sequence of the ssDNA strands, as well as to the
effect of environmental factors like temperature or
the salt concentration, is essential. MD simulations
offer ways to bridge the gap between experimental
observations and theoretical models and elucidate
the whole hybridization process by describing the
hybridization pathways and kinetics. Such studies
are particularly amenable for CG models that are
able to reach system size and time scales relevant to
study such pathways thoroughly. Sambriski et al.160

used the 3SPN.1 CG DNA model123 coupled with
a transition path sampling technique to investigate
the hybridization process of 14–30 base pairs long
ssDNAs. These simulations revealed the presence of
multiple and nonspecific hybridization pathways for
highly repetitive sequences, whereas for random se-
quences, a nucleation site of specific complementary
base pairs is formed to start the hybridization process
(Figure 9). In the latter case, the pathway from initial
nucleation is strongly restricted. In addition, they
could pinpoint short repetitive sequences as the most
probable nucleation sites because of greater number
of possible complementary base pairs. This work
illustrates how CG simulations can be successfully
applied to understand the mechanisms underlying
the experimental observations of a crucial cellular
process.

Cellulose Fibrils
Considerable attention has been focused on the study
of plant biomass, especially concerning the degrada-
tion of cellulose and its application to biofuels. In
that respect, computational modeling has been ap-
plied widely to understand the structure and confor-
mation of cellulose. Natural cellulose microfibrils are
on average several micrometers in length. The large

a
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FIGURE 10 Cellulose microfibril. (a) Representation of the
crystalline Iβ cellulose microfibril according to Srinivas et al.26 model.
(b) Transition of cellulose from its crystalline state to the amorphous
conformation. The structural change is dependent on the tuneable LJ
coupling factor λ. Reproduced with permission from Ref 26. Copyright
2011, American Chemical Society.

degree of polymerization makes it virtually impossible
to obtain reliable conformational data using atom-
istic models. Using a CG model, Srinivas et al.26 stud-
ied the structural differences between cellulose fibrils
and amorphous cellulose. By tuning of the LJ poten-
tial through a λ factor, a discrete transition between
the fully crystalline (λ = 1) to the fully amorphous
(λ = 0) systems was established. In line with exper-
imental evidence, the model suggests that during the
conformational transition, the microfibril denatura-
tion is started by an external uncoating mechanism
that involves the outer cellulose fibrils (Figure 10). Be-
cause of the versatility of the model, different cellulose
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crystal allomorphs can be studied and characterized
at permissible computational effort.

OUTLOOK

Why are CG Models Useful?
During the last decade, we have seen a thriving devel-
opment of a large number of CG biomolecular mod-
els, of which we have only been able to provide a lim-
ited outline above. However, do we actually need any
of these CG models? This may seem like a provoca-
tive question, but considering the continuous increase
in availability of computational power (soon entering
the exascale era), one may argue that most relevant
(bio)materials can be studied at the atomistic level in
the near future. Currently, the largest systems that can
be handled by particle-based simulations are limited
to 107 interacting atoms and time scales up to 1 mi-
crosecond, but we can expect these limits to steadily
increase (according to Moore’s law, computational
performance doubles every 2 years). Could we thus
soon model a complete cell in atomistic resolution?
Not really. Modeling a typical eukaryotic cell, for in-
stance, with a diameter of 10 μm requires about 1014

atoms. Given the relevant time scales on which cel-
lular processes take place, microseconds to seconds
and beyond, it is clear that simulations capturing the
full complexity of a cell in atomistic detail are still far
fetched. Even the kind of CG models described in this
review will have a hard time to cope with this size, but
CG modeling of a bacterial cell with a much smaller
diameter of approximately 0.5 μm, amounting to 109

atoms, becomes tractable in the foreseeable future.
Obviously, many cellular processes can be studied at
smaller length and time scales, but even a simple case
like simulating the undulation spectrum of a planar
lipid bilayer requires CG modeling as soon as one in-
creases the system size above 100 nm. This example
was presented in an eloquent essay by Deserno,161 in
which he argued that the computational effort needed
to increase the system size of a typical membrane
patch of length L scales as L6 due to the much longer
relaxation times involved. Thus, increasing the typical
size of an atomistic membrane patch (around 20 nm)
to 200 nm would require a million times more work to
fully equilibrate the system. Even assuming Moore’s
law continues to proceed apace, we would still need
to wait for about 40 years to accomplish this! Thus,
to simulate collective effects such as the formation of
multimeric membrane protein complexes, membrane
patches of 100 nm size and beyond are necessary,
which in the foreseeable future can only be accom-
plished at the CG level.

Current Challenges of CG Model
Development
The current generation of CG models are still under
active development and numerous new models are
continuously emerging. One may wonder, is there not
an optimal CG FF that eventually may replace all cur-
rent models? The answer is no. At a given state point,
the pair potential that reproduces the pair structure
is unique (see Box 1), implying that it is impossi-
ble to simultaneously represent the pair structure and
additional key thermodynamic properties of the sys-
tem with pair potentials. This is known as the repre-
sentability problem.33 In practice, this means that a
different model is required depending on the question
asked. To choose the right model for each problem,
it is necessary to know the limitations of the model.
Therefore, in this review, we have tried to indicate
the underlying assumptions of commonly used CG
models. However, a number of limitations are perti-
nent to most CG models and future efforts should be
directed to improve on those aspects: (1) the model
is too biased, that is, not transferable to other state
conditions, (2) the model is only parameterized for
a specific class of molecules, implying there is a lack
of compatibility, and (3) the model is too coarse to
capture certain behavior.

To improve transferability, systematic frame-
works for obtaining accurate CG potentials from
higher resolution data are being developed. For
instance, CG potentials can be simultaneously
optimized with respect to multiple reference
simulations162 and a variety of experimental data
can be used as additional constraints in the optimiza-
tion strategy,163 essentially combining top-down and
bottom-up approaches. Automated workflows are be-
ing developed to generate large sets of converged in-
teraction potentials.163,164 Methods have been devel-
oped to measure and minimize the information loss
upon coarse graining14 and to optimize the mapping
procedure.165 Additionally, ongoing improvements of
atomistic FFs provide us with more accurate reference
structures and the steady increase in single molecule
experimental data (e.g., force spectroscopy of indi-
vidual biopolymers, single molecule particle tracking)
allow for novel and direct ways to further calibrate
and validate our models.

The issue of limited compatibility is related to
the lack of transferability (and to the general rep-
resentability problem), but there is a pressing need
for compatible FFs that can be used for more than
just a single class of biomolecules. Except for the
generic Martini model, none of the CG FFs discussed
above can describe the more complex setting of real
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biosystems, let alone handle the rich and growing di-
versity of bioinspired materials such as biofunction-
alized nanoparticles, DNA–polymer hybrids, peptido-
surfactants, and so on. Triggered by the development
of more transferable models, we expect an increase in
the number of compatible CG FFs in the near future.

The problem of a model being too coarse is
touching upon the very limits of coarse graining. No
matter how hard we try, not every problem can be
tackled with a CG model. Some atomistic details are
notoriously hard to mimic at a CG level, for ex-
ample, the directionality of H-bonding, and some-
times fine grain resolution is required. In that respect,
the active field of multiscaling166–171 shows a lot of
promise. Multiscale methods treat part of the sys-
tem, the region of interest, at high resolution and the
surrounding at a lower level of resolution, thereby
combining the advantages of atomistic and CG mod-
els. Multiscale methods can either use a static division
as in QM/MM, or allow particles to change resolu-
tion on the fly. The challenge is to achieve a real-
istic coupling between the atomistic and CG DOFs.
One route is to specifically parameterize the cross-
interactions, as demonstrated in a number of recent
test systems.62,172,173 Although the results are encour-
aging, such methods are not easily transferable. A
more generic approach is the AdResS (Adaptive Res-
olution Simulation) scheme, developed by Kremer and
coworkers.174 In this method, a transition region al-

lows molecules to pass from atomistic to CG resolu-
tion and vice versa as a function of the position of
the molecule in the simulation box. The coupling of
resolutions is achieved through the use of a thermody-
namic force in the transition region that compensates
for the chemical potential difference between the two
resolutions. Another approach is the use of virtual
sites to couple the two levels of resolution.175,176 With
the help of these virtual sites, the interactions between
CG and atomistic molecules are treated the same way
as pure CG–CG interactions, and thus no need for
additional parameters arises. For each of these meth-
ods, however, applications have so far been limited
to simple test systems. The real benefit of multiscale
methods has yet to come.

CONCLUSIONS

This review hopefully has provided the reader with
a perspective on CG modeling of biosystems. Given
the large variety of biomolecular processes, covering
many length and time scales, CG models offer access
to otherwise unreachable dimensions. However, the
universal CG FF does not exist. The real challenge
is to choose the right model for the right problem,
and to know the inherent limitations. Keeping this in
mind, we foresee a bright future for CG modeling,
which will claim its place—bridging the microscopic
and macroscopic worlds.
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FURTHER READING/RESOURCES

For additional information and updates on the models, please see the model or developing groups website. Some sites also
provide help with simulation setup, tutorials, and downloadable FFs.
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de Pablo et al. molecularengineering.uchicago.edu/people/juan-de-pablo
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PaLeCe www.ibcp.fr/_Richard-LAVERY
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