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A B S T R A C T   

Efficient information processing facilitates cognition and may be disrupted in a number of neurodevelopmental 
conditions. And yet, the role of inefficient information processing and its neural underpinnings remains poorly 
understood. In the current study, we examined the cognitive and behavioral correlates of the aperiodic exponent 
of the electroencephalogram (EEG) power spectrum, a putative marker of disrupted, inefficient neural 
communication, in a sample of adolescents with and without ADHD (n = 184 nADHD = 87; Mage = 13.95 years, SD 
= 1.36). Exponents were calculated via FOOOF (Donoghue et al., 2020a) from EEG data recorded during an 8- 
minute baseline episode. Reaction time speed and variability, as well as drift diffusion parameters (including the 
drift rate parameter, a cognitive parameter directly related to inefficient information processing) were calcu-
lated. Adolescents with ADHD had smaller aperiodic exponents (a “flattened” EEG power spectrum) relative to 
their typically-developing peers. After controlling for ADHD, aperiodic exponents were related to reaction time 
variability and the drift rate parameter, but not in the expected direction. Our findings lend support for the 
aperiodic exponent as a neural correlate of disrupted information processing, and provide insight into the role of 
cortical excitation/inhibition imbalance in the pathophysiology of ADHD.   

1. Introduction 

Attention deficit/hyperactivity disorder (ADHD) is a neuro-
developmental disorder that is associated with cognitive control im-
pairments (Huang-Pollock et al., 2012; Kofler et al., 2013; Willcutt et al., 
2005). Although there is heterogeneity in the ADHD population (Fair 
et al., 2012; Nigg, 2005), at the group level, consistent impairments have 
been found in attention, working memory, and response inhibition 
(Huang-Pollock et al., 2012; Kofler et al., 2013; Martinussen et al., 2005; 
Nikolas and Nigg, 2013; Willcutt et al., 2005). Mounting evidence also 
points to intraindividual variability—indexed by greater reaction time 
variability (RTV)—as a core cognitive dysfunction for some individuals 
with ADHD. RTV is of particular interest in ADHD because it yields one 
of the largest group differences of any cognitive measure (Kofler et al., 
2013) and may mediate other cognitive impairment in the disorder 
(Karalunas and Huang-Pollock, 2013). 

Although increased RTV in ADHD is well-documented, there is not 
yet agreement on its neural correlates or mechanisms (e.g., Karalunas 

et al., 2014; Killeen et al., 2013; Kofler et al., 2013; Sonuga-Barke, and 
Castellanos, 2007). One problem in narrowing these mechanisms is that 
commonly used measures of reaction time—mean (RT) and standard 
deviation (SDRT)—are influenced by multiple processes (e.g., 
speed-accuracy trade-offs). Each of these has been implicated in cogni-
tive theories of ADHD. Perhaps for this reason, RTV correlates broadly 
with deficits in networks associated with attentional control (e.g., 
Bellgrove et al., 2004; Simmonds et al., 2007) but also with regions 
related to response selection and motor output (Kanai and Rees, 2011). 

Recently, progress in clarifying cognitive mechanisms underlying 
RTV has been made using computational approaches to separately 
model the multiple processes affecting the decision process. Within 
ADHD, the emphasis has been on well-validated variants of sequential 
sampling models (SSMs) (Ratcliff and Rouder, 1998). SSMs assume that 
information about a stimulus is accumulated via an information accu-
mulation process (drift rate) until a decision criterion (boundary separa-
tion) is met, at which point a response is initiated. Processes that are not 
related to the response decision (e.g., motor preparation) are also 
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modeled (non-decision time). The evidence accumulation process is 
described as “noisy” because random neural activity unrelated to the 
decision process is thought to influence the efficiency with which a 
person is able to accumulate decision-relevant information. 

SSMs have helped clarify the nature of cognitive impairments in 
ADHD (Karalunas and Huang-Pollock, 2013; Karalunas et al., 2012a; 
Weigard et al., 2016). Children with ADHD show a reduced drift rate 
relative to their peers without ADHD, with inconsistent differences in 
other parameters (Karalunas et al., 2014; Weigard et al., 2018). This 
inefficient information processing is thought to reflect weaker 
signal-to-noise in the underlying neural circuits (Ratcliff, 2006; Ratcliff 
and Rouder, 1998), but has not been directly demonstrated in ADHD. 

Disruptions to the excitatory (E) to inhibitory (I) balance may 
contribute to impairment in specific psychiatric populations (Voytek 
and Knight, 2015), with a speculative link that a shift away from cortical 
inhibition may be related to disrupted information processing. This 
suggestion is consistent with prior studies that have linked reduced 
GABAergic and increased glutamatergic activity with ADHD (Edden 
et al., 2012; Hammerness et al., 2012; Zimmerman et al., 2015), 
signaling a possible E/I imbalance. Prior studies have also shown dis-
rupted neural communication in ADHD and related neurodevelopmental 
disorders (Groom et al., 2010; Dinstein et al., 2012; Milne, 2011) using 
single-trial electroencephalogram (EEG) and canonical measures of EEG 
signal variability (McLoughlin et al., 2014), lending support to neural 
theories of information processing deficits in ADHD. 

The EEG is comprised of periodic (oscillations) and aperiodic (offset, 
exponent) signals (Donoghue et al., 2020a). The aperiodic exponent 
reflects power across frequencies of the power spectral density (PSD). 
This neural marker is characterized by the χ parameter of a 1/ fχ func-
tion, and has been linked to the E/I balance in cortical circuits (Gao 
et al., 2017). A shift away from cortical inhibition is reflected as a 
smaller exponent (flatter PSD). EEG studies on ADHD are potentially 
consistent with a flattening of the power spectrum (e.g., Barry et al., 
2009; Loo et al., 2013), but have been interpreted in terms of ratios 
between canonical frequency bands. This may be problematic: recent 
findings indicate that band ratio measures (e.g., theta/beta ratio) are 
conflated by the aperiodic signal (Donoghue et al., 2020b). 

Emerging evidence suggests that ADHD may be linked to difference 
in aperiodic activity. Robertson et al. (2019) found that young children 
with ADHD who were stimulant medication-naïve had steeper PSDs 
relative to their typically-developing peers and children with ADHD who 
were prescribed stimulant medication. In a pioneering but small study 
(N = 61, nADHD = 29), Pertermann and colleagues (2019) found that 
children with ADHD had flatter PSDs relative to their peers when 
engaged in response inhibition. This effect disappeared after methyl-
phenidate treatment, indicating a potential role of dopamine in 
normalizing the relative contributions of E/I. Thus, findings suggest that 
differences in the exponent may associate with cognitive impairments in 
ADHD, although the direction of effect remains unclear. Findings 
require replication in larger samples and extension to other 
ADHD-related cognitive deficits. 

In this study, we examined relationships between the aperiodic 
exponent and measures of RTV among adolescents with and without 
ADHD. We pre-registered an analysis plan (osf.io/vwtqn) that quantified 
the PSD using the power spectrum slope; however, during the time the 
manuscript was under review a parameterization method that disen-
tangled aperiodic from periodic activity became available (Donoghue 
et al., 2020a). Thus, we report our primary result using this newer 
method; results using the other method are reported in the Supplement. 
Other details of our analytic plan (e.g., hypotheses, sample selection) 
follow the pre-registration. We hypothesized that adolescents with 
ADHD would have smaller exponents relative to their peers. Recog-
nizing cognitive heterogeneity in ADHD, we predicted that slower RT 
and higher RTV would be associated with a smaller exponent in ado-
lescents with and without ADHD. Finally, we predicted that a smaller 
exponent would be related to slower drift rate, a cognitive indicator of 

inefficient information processing, but not boundary separation or 
non-decision time. 

2. Materials and methods 

2.1. Participants 

Two-hundred and thirty-seven individuals between the ages of 
11–17 years were recruited as part of an ongoing longitudinal study. 
Participants were initially recruited between the ages of 7–11 years 
using a community-based strategy based on public advertising and 
outreach. A parent/legal guardian provided written informed consent 
for themselves and their child. Adolescents provided written assent. 
Ethics approval was obtained from the Institutional Review Board at 
Oregon Health & Science University. 

2.1.1. Baseline diagnostic assessment 
At enrollment, a parent/guardian and teacher completed a research 

diagnostic evaluation including standardized behavior rating scales 
(ADHD Rating Scale, Conners’-3, Strengths & Difficulties Questionnaire) 
and a semi-structured clinical interview (Kiddie Schedule for Affective 
Disorders and Schizophrenia; parent only). Children completed 
behavior ratings (Multidimensional Anxiety Scale for Children and 
Children’s Depression Inventory) and IQ and academic achievement 
screening (Wechsler Intelligence Scale for Children, 4th Ed., Vocabu-
lary, Block Design, and Information and Wechsler Individual Achieve-
ment Test, 2nd Ed. Word Reading and Math Reasoning). Using all 
available information, baseline diagnoses were made by a clinical 
diagnostic team that included a board-certified child psychiatrist with 
over 25 years of experience and a licensed child neuropsychologist with 
over 10 years of experience. Blind to one another’s ratings, they formed 
a diagnostic opinion based on all available information. Their agreement 
rate was excellent (ADHD diagnosis kappa = .88). Disagreements were 
conferenced and consensus reached. Cases where consensus was not 
readily achieved were excluded from the longitudinal study. Additional 
information about recruitment procedure and enrollment criteria can be 
found elsewhere (see Karalunas et al., 2014; Alperin et al., 2017). 

2.1.2. Diagnostic assessment at year of EEG recording 
All children in the longitudinal study were invited to participate in 

an optional EEG visit at a single time point (Year 5, 6, or 8 depending on 
the date of their initial enrollment). Complete diagnostic assessment was 
repeated and was identical to baseline assessment at this visit, including 
parent, teacher, and child standardized behavioral ratings and semi- 
structured clinical interview with parent. Cases were reviewed by the 
same diagnostic team as described for Year 1. In addition, total symptom 
counts were determined by combining parent (K-SADS) and teacher 
(ADHD-RS) report using an “OR” algorithm (Pelham et al., 2005). 
Following the DSM, final diagnostic groups at the year of the EEG visit 
were determined as follows: Individuals with ADHD were required to 
have ≥ 6 hyperactive or ≥ 6 inattention symptoms, as well as parent 
reported impairment on the K-SADS. Individuals in the control group 
were required to have ≤ 3 hyperactive, ≤ 3 inattention symptoms, and ≤
4 total symptoms with no reported impairment. 

Of the 237 children enrolled for the current study, 143 had ADHD at 
baseline and 94 were typically-developing controls. At the year of the 
EEG visit, 86 adolescents from the original ADHD sample continued to 
meet full criteria for ADHD, 19 transitioned to subthreshold (i.e., 5 
symptoms of inattention or hyperactivity-impulsivity), 11 could not be 
readily classified as either ADHD or control based on symptom counts, 
and 17 transitioned from the ADHD to control group. Of the original 
typically-developing sample, 80 remained classified as controls, 1 now 
met criteria for ADHD, and 12 could no longer be classified as controls or 
as having ADHD. Because this is an ongoing longitudinal study, we did 
not have complete diagnostic information on 11 adolescents at the time 
of data analysis. Primary analyses for the present study were based on 
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diagnosis at the year of EEG recording (n = 184; nADHD = 87; males =
117). 

2.2. Measures 

2.2.1. EEG data collection and preprocessing 
Children completed a resting baseline EEG recording as part of a 

longer laboratory protocol. EEG was continuously recorded during an 8- 
minute baseline task, which was divided into four 2-minutes blocks. 
Adolescents were instructed to keep their eyes open (EO) for two of the 
blocks, and closed (EC) for the other two blocks. Blocks alternated be-
tween EC and EO conditions (EC, EO, EC, EO). 

EEG was recorded with 32 Ag-AgCl active electrodes based on the 
international 10–20 system. The EEG signal was amplified with Brain 
Products’ ActiCHamp system and digitally recorded at 500 Hz using 
PyCorder v1.0.9. Impedance levels for each electrode was at or below 
50kΩ during data collection. EEG was referenced online to the central 
midline electrode site (Cz), and was then down sampled to 250 Hz and 
re-referenced to the average of all electrodes offline. EEGLAB and 
ERPLAB (Delorme and Makeig, 2004; Lopez-Calderon and Luck, 2014) 
toolboxes in MATLAB were used to analyze the raw EEG data. We 
applied an infinite impulse response bandpass filter with a 
half-amplitude cutoff of 0.1 Hz and 50 Hz, and a 12 dB/octave roll-off to 
the data. An independent components analysis was used to correct eye 
blink artifacts for correction. 

2.2.2. Aperiodic exponent 
Power spectral density was calculated in 0.5 Hz increments from 1 

Hz to 50 Hz using a Fourier transformation on each artifact-free epoch. 
The “Fitting Oscillations and One-Over-f” (FOOOF) toolbox was used to 
calculate the aperiodic exponent. This spectral parameterization algo-
rithm decomposes the power spectrum into periodic and aperiodic 
components via an iterative process of model fitting (see Donoghue 
et al., 2020a for detailed description). Consistent with prior pediatric 
ADHD research (Robertson et al., 2019), and recommendations for a 
broad fitting range described on the author’s website, we extracted 
aperiodic exponents from the 2–50 Hz frequency range of each power 
spectrum (aperiodic_mode = ‘fixed’, peak_width_limits = [1, 8], max_n_-
peaks = 8, default settings otherwise). We used the ‘fixed’ setting given 
that we did not anticipate a “knee” in the power spectrum, a feature 
observable in broad frequency ranges (e.g., 77 Hz ± 14 Hz; Miller et al., 
2009). This assumption was supported by visual inspection of each PSD 
after spectral parameterization via FOOOF. 

2.2.3. Reaction time and drift-diffusion parameters 
For the evaluation of reaction time speed and variability using the 

diffusion model, we used data from a tracking version of the dual-task 
“Stopping Task” (described in Logan, 1994; Logan et al., 1997; Nigg, 
1999). This is a dual-task experiment in which the child completes a 
series of fast decision trials. The task embeds a choice reaction time task 
(go trials) and a stop task (stop trials). For each trial, a central fixation 
point appeared for 500 ms. An “X” or an “O” then appeared for 1000 ms. 
On 75 % of trials (“go” trials), children were asked to indicate with a key 
press whether an “X” or an “O” appeared in the center of the screen. On 
25 % of trials (“stop” trials), an auditory tone presented after the stim-
ulus indicated that the child should not respond. Children were given a 
total of 2000 ms to respond after which the next trial automatically 
commenced. Diffusion parameters were estimated from the go trials of 
the task using the full distribution of correct (pressed X when X was 
presented or pressed O when O was presented) and error (pressed X 
when O was presented or pressed O when X was presented) reaction 
times. Stop trials were ignored for this set of analyses. Diffusion 
modeling has been previously used successfully in the analysis of 
go-trials of a stop task in adults (Verbruggen and Logan, 2009) and in 
our own work in both ADHD and autism spectrum disorders (Karalunas 
et al., 2018; Karalunas and Huang-Pollock, 2013; Karalunas et al., 

2012a). After 32 practice trials, children completed 8 blocks of 32 
experimental trials each. 

Mean reaction time (RT) and the standard deviation of reaction time 
(SDRT) on correct go trials were calculated for each child. Diffusion 
parameters were estimated from the trial-by-trial data using the Fast-dm 
modeling technique and the downloadable program from the author’s 
website (Voss and Voss, 2007). Drift rate (v), boundary separation (a), 
and non-decision time (Ter) were computed for each participant based 
on their performance on go trials as an index of speeded responses in the 
context of a forced-choice reaction time task. Anticipation reaction times 
(those <150 ms) were removed from the distribution because these 
outlier reaction times negatively impact estimation of the diffusion pa-
rameters (Vandekerckhove and Tuerlinckx, 2007). The diffusion model 
adequately fit the data for all adolescents, as indicated by the 
Kolmogorov-Smirnov statistic. 

2.3. Analytic plan 

Data were analyzed in R v3.5.1 (R Core Team, 2018). First, we 
examined whether adolescent ADHD status (ADHD/control) predicted 
aperiodic exponents. Second, we examined whether aperiodic exponents 
were associated with reaction time parameters (mean RT, SDRT, v, a, 
t0), controlling for adolescent sex and ADHD status. Third, we examined 
whether the interaction between ADHD and the aperiodic exponent 
predicted any of the reaction time parameters. Missingness was handled 
using the Multivariate Imputation by Chained Equations (MICE) package 
(van Buuren and Groothuis-Oudshoorn, 2011). We estimated 25 
imputed datasets using 25 iterations. A linear model was fit over the 
imputed datasets and results were pooled and used in regression 
analyses. 

3. Results 

3.1. Sample description 

EEG data were missing for 7 participants (3.8 %; n = 5 children 
where technical issues prevented recording and n = 2 excluded for poor 
data quality). Reaction time data were missing for 7 participants as well 
(3.8 %). Adolescents with and without missing data did not differ as a 
function of age, sex, or ADHD symptoms (ps > .23). 

Descriptive information is presented in Table 1. Adolescents with 
and without ADHD did not differ in age (p = .84), but typically- 
developing adolescents had higher IQ scores (p = .001), and males are 
over-represented in the ADHD sample (p = .03), which is consistent with 
documented differences in prevalence between sexes (Ramtekkar et al., 
2010). Parent and teacher reports on the Conners’ ADHD Rating Scale 
were consistent with diagnostic classifications (ps < .001). 

3.2. Preliminary analyses 

Distributions and comparisons by ADHD status for each reaction 
time parameter are presented in Fig. 1A–E Two extreme mean RT values 
were excluded from analyses. Reaction time variability (SDRT) data 
were log transformed to account for positive skewness. All other vari-
ables had an approximately normal distribution. Aperiodic exponents 
for the EC and EO conditions were highly correlated (r = .80), and 
therefore averaged for primary analyses. 

Aperiodic exponents did not differ based on adolescent sex, t(175) =
− 1.07, p = .28. Adolescent ADHD was significantly associated with 
greater SDRT (t(175) = − 4.35, p < .001), slower drift rate (t(175) =
5.16, p < .001) and faster non-decision time (t(175) = 2.90, p < .01). 
Adolescent ADHD was not, however, associated with mean RT (t(173) =
1.24, p = .22) or boundary separation (t(175) = 1.26, p = .21). Overall, 
findings were consistent with published results in this sample at year 1 
of the longitudinal study (Karalunas et al., 2012a) and with the broader 
literature (Karalunas et al., 2012b). Bivariate correlations among 
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variables of interest are presented in Table 2. Aperiodic exponents were 
associated with boundary separation (r = .16, p = .04). None of the other 
variables were significantly correlated with aperiodic exponents (ps >
.15). 

3.3. Primary analyses 

Adolescents with ADHD had smaller exponents relative to the control 
group (β = − .16, t(175) = − 2.08, p = .04), indicative of a flattened PSD 
(Fig. 1F). Power spectral densities for each condition by ADHD status (in 
log-log and semi-log) are presented in Fig. 1G–J. Exponents did not 
differ by stimulant medication history, t(172) = 0.41, p = .68. 

Regression analyses showed that, controlling for ADHD status, ex-
ponents were positively associated with SDRT (β = .16, p = .03), indi-
cating that less intraindividual variability was related to a flattened PSD. 
Exponents were also associated with drift rate (β = − .15, p = .03); faster 
drift rate was related to a flattened PSD. These effects are plotted by 
diagnostic category in Fig. 2. Exponents were marginally associated with 
boundary separation (β = .15, p = .07). Exponents did not predict mean 
RT (β = .05, p = .54) or non-decision time (β = .03, p = .67). There was 
no significant interaction between ADHD status and aperiodic exponents 
on any of the reaction time or drift difusion parameters (ps > .51). Re-
sults remained the same when adolescent sex was included in the model. 

Finally, results were similar when accounting for missingness via 

MICE (van Buuren & Groothuis-Oudshoorn, 2011). Adolescents with 
ADHD had smaller exponents relative to the control group, t(170.59) =
− 1.95, p = .05). Controlling for ADHD status, exponents were signifi-
cantly associated with SDRT (p = .03) and drift rate (p = .04). Exponents 
were marginally associated with boundary separation (p = .06), and did 
not predict mean RT (p = .46) or non-decision time (p = .67). Posthoc 
analyses showed that results were similar when the 17 adolescents in the 
ADHD group at Year 1 who transitioned to the control group were 
excluded from the primary analyses (see Supplement). 

3.4. Pre-registered analyses 

It is worth noting that the current analyses were inspired by a pre-
registered study submitted to Open Science Framework in October, 2018 
(osf.io/vwtqn). Due to rapid developments in research on the aperiodic 
exponent (Donoghue et al., 2020a), the original method for calculating 
the exponent, as well as related aspects of the analysis plan, were no 
longer considered best practice. We therefore updated the analysis plan 
to what is described above. For transparency, we have included findings 
from analyses as described in original preregistration in the Supplement. 
Of note, when estimated as a linear regression coefficient estimated from 
2− 25 Hz (with 5− 9 Hz activity removed) for each participant, the 
exponent was associated with adolescent age (r = .36, p < .001) and 
reaction time variability (β = .15, p = .04), but not ADHD (β = − .001, p 
= .99) or any of the other reaction time parameters (ps > .08). 

4. Discussion 

Efficient information processing facilitates cognition and may be 
disrupted in multiple neurodevelopmental disorders, including ADHD. 
Computational cognitive models point to inefficient information pro-
cessing as a key driver of cognitive impairments in ADHD (Karalunas 
et al., 2014, 2012a; Weigard et al., 2018). Our results highlight the 
clinical utility of the aperiodic exponent as a neural correlate of ADHD 
and disrupted information processing in adolescence. We further recent 
work aimed at understanding the neural mechanism underpinning 
ADHD, while introducing several new questions about how to interpret 
the functional significance of this relationship. 

ADHD is believed to be characterized by inefficient information 
processing that contributes to cognitive impairments for some children 
with the disorder (Karalunas et al., 2014; Kofler et al., 2013; Tamm 
et al., 2012). Emerging evidence implicates an imbalance of cortical 
excitation and inhibition as one neural correlate (and possible mecha-
nism) of cognitive impairment in specific psychiatric disorders (e.g., 
schizophrenia; Peterson et al., 2017). Our findings contribute to this 
burgeoning literature, linking a noninvasive index of the E/I balance 
(Gao et al., 2017) to ADHD in adolescence. Consistent with our hy-
pothesis, adolescents with ADHD had smaller exponents (flatter PSD) 
relative to their typically-developing peers, which may reflect abnormal 
E/I balance in developing cortical circuitry. Our findings are consistent 
with clinical and animal models of ADHD, which have shown altered 
GABAergic and glutamatergic activity in this population (Edden et al., 
2012; Hammerness et al., 2012; Zimmerman et al., 2015), potential 
indicators of E/I imbalance in cortical circuitry. 

This is the first study, to our knowledge, to examine aperiodic ac-
tivity parameterized via FOOOF in adolescents with ADHD. Our findings 
partially align with prior work that identified a flatter PSD in older 
children (mean age 9.9 years) during cognitive performance (Perter-
mann et al., 2019). However, Pertermann et al. (2019) relied on a 
method for quantifying the aperiodic signal that within the current 
sample yielded divergent results in comparison to FOOOF. Using 
FOOOF, Robertson et al. (2019) found steeper PSD in young (mean age 
= 5.75 years), medication-naïve children with ADHD, the opposite 
pattern observed here and in other studies (Pertermann et al., 2019). 
Aligning results across development and method is a crucial next step to 
reconcile the inconsistent findings reported in this emerging literature. 

Table 1 
Descriptive information.   

ADHD (n =
87) 

Controls (n =
97)    

M (SD) M (SD) p 95 % CI 

Age (years) 13.93 (1.45) 13.97 (1.28) 0.84 [− 0.36, 0.44] 
Sex (male:female) 63:24 54:43 0.03  
IQ 107.86 

(16.16) 
115.06 
(13.67) 

0.001 [2.86, 11.54] 

Stimulant 
medicationa 

57 % — <

0.001  
Median income $50,000– 

$74,000 
$50,000– 
$74,000   

Caucasian/Non- 
Hispanic 

n = 81 n = 90   

Total ADHD 
symptomsb 

12.00 (3.67) 0.50 (1.33) <

0.001 
[− 12.44, 
− 10.56] 

Conners’ ADHD RSc     

Parent Int T-score 75.76 (10.75) 47.20 (9.62) <

0.001 
[− 31.56, 
− 25.57] 

Teacher Int T- 
score 

66.75 (12.52) 48.30 (7.98) <

0.001 
[− 22.00, 
− 14.91] 

Parent Hyp-Imp 
T-score 

69.55 (15.73) 48.41 (9.22) <

0.001 
[− 24.89, 
− 17.40] 

Teacher Hyp-Imp 
T-score 

64.29 (15.49) 48.00 (7.40) <

0.001 
[− 20.38, 
− 12.21] 

Aperiodic 
exponents 

1.70 (0.30) 1.79 (0.28) 0.04 [0.01, 0.18] 

Mean RT (ms) 644.63 
(137.45) 

684.42 
(165.98) 

0.09 [− 5.78, 
85.35] 

SDRT (ms) 211.97 
(87.65) 

167.18 
(58.59) 

<

0.001 
[− 66.69, 
− 22.90] 

Drift rate 3.15 (0.73) 3.76 (0.82) <

0.001 
[0.37, 0.84] 

Boundary 
separation 

1.55 (0.29) 1.60 (0.28) 0.21 [− 0.03, 0.14] 

Non-decision time 0.39 (0.11) 0.44 (0.13) < 0.01 [0.02, 0.09] 

Note. RT = reaction time. SDRT = standard deviation of reaction time. 
a Three children who no longer met ADHD criteria at the EEG visit were 

nonetheless prescribed stimulant medications. They were retained for primary 
analyses because detailed independent review by the diagnostic team describe in 
methods confirmed the lack of diagnosis. 

b Total symptom counts reflect combined scores from parents (K-SADS) and 
teachers (ADHD-RS) report using an “OR” algorithm. 

c Conners’ ADHD rating scale (Conners, 2003). Int = Inattention, Hyp-Imp=
Hyperactivity-impulsivity. 
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Using a SSM approach to model cognitive performance, we 
confirmed that adolescents with ADHD had more variable response time 
and slower drift rates. These results conform to prior SSM findings in 
ADHD and to findings in this same sample at younger ages (Karalunas 
et al., 2012a; Karalunas and Huang-Pollack, 2013). Researchers have 

speculated that within-person, moment-to-moment fluctuations in per-
formance, captured by the SDRT and drift rate parameters, reflect 
inefficient information processing (Karalunas et al., 2014; Karalunas and 
Huang-Pollock, 2013). Contrary to our hypotheses, we found that, when 
controlling for ADHD status, adolescents who had smaller exponents 
exhibited less reaction time variability, suggesting less variability in 
performance. This effect was mirrored in the SSM parameters, with a 
smaller exponent being related to faster drift rate, a well-validated in-
dicator of efficient information processing that is thought to directly 
relate to higher signal-to-noise ratios in circuits underlying 
decision-making (Ratcliff et al., 2003, 2009). 

These discrepant findings may speak to a U-shaped relationship be-
tween aperiodic activity and performance. It is possible that any 
imbalance in excitatory/inhibitory inputs may contribute to non- 
optimal performance, regardless of the direction of effect (Voytek and 
Knight, 2015). Thus, after removing the association between ADHD and 
the aperiodic exponent, deviations in either direction would be prob-
lematic. This would be consistent with theory suggesting a U-shaped 
relationship between aperiodic activity and psychiatric disorder spe-
cifically (Voytek and Knight, 2015) and brain-behavior relationships 
more broadly (Northoff and Tumati, 2019). Additional research with 
clinical populations is critically necessary to determine whether (and 
how) aperiodic activity relates to specific cognitive dysfunctions that 
contribute to psychopathology risk. Future research might also consider 
examining whether homogenous can be identified based on aperiodic 

Fig. 1. Distribution and group comparison of mean reaction time (A), reaction time variability (B), drift rate (C), boundary separation (D), non-decision time (E), 
and aperiodic exponents (F). Power spectral densities for eyes closed (G, I) and eyes open (H, J) in semi-log (G, H) and log-log (I, J) space averaged across adolescents 
in the ADHD (orange) and control (blue) groups. FOOOF (Donoghue et al., 2020a) removes periodic (putative oscillations) activity that rise above the aperiodic 
component of the neural signal, disentangling power spectral features that are thought to have distinct physiological mechanisms. We did not expect a knee in the 
PSD across the examined frequency range, nor did we observe one when visually inspecting each individual PSD after spectral parameterization via FOOOF. On 
average, we did observe an alpha “bump” around ~10 Hz as well as a smaller beta “bump” around ~20 Hz, each of which is more prominent in the eyes closed (I) 
relative to eyes open (J) condition, as would be expected. 

Table 2 
Correlation table.   

1. 2. 3. 4. 5. 6. 

1. Aperiodic 
exponents 

—      

2. Age (years) − .11 —     
3. Mean RT .06 − .09 —    
4. SDRT .11 − .30 

*** 
.46 
*** 

—   

5. Drift rate − .10 .29*** .07 − .57 
*** 

—  

6. Boundary 
separation 

.16* − .12 .56 
*** 

.46*** .07 — 

7. Non-decision time .06 .05 .82 
*** 

.18* .22 
** 

.20 
** 

Note. RT variability data (SDRT) were natural log transformed for all analyses. 
RT = reaction time. SDRT = standard deviation of reaction time. 

* p < .05. 
** p < .01. 
*** p < .001. 
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(as well as periodic) power spectral features to improve clinical pre-
diction (Karalunas et al., 2014). 

Converging evidence indicates that the aperiodic exponent is a 
physiologically distinct component that coexists with periodic activity 
(putative oscillations) in neural signals and may underpin a range of 
cognitive and behavioral states (e.g., González-Villar et al., 2017; He 
et al., 2020; Peterson et al., 2017; Podvalny et al., 2015; Schaworonkow 
and Voytek, 2020; Tran et al., 2020). To this end, it has recently been 
argued that band ratio measures (e.g., theta/beta ratio) that are preva-
lent in pediatric ADHD research may be conflated by aperiodic activity 
(Donoghue et al., 2020b). Rather than indicating correlated change 
between frequency bands, as has been previously claimed, Voytek and 
colleagues proposed that concomitant age-related shifts in the distri-
bution of spectral power reflects a single, unified “rotation” in the 
aperiodic (1/f-like) component of the signal (Donoghue et al., 2020a; 
Voytek and Knight, 2015). Our findings suggest that the historical 
emphasis on oscillatory dynamics in understanding cognitive impair-
ment of neurodevelopmental disorders is too limited. Studies that 
simultaneously consider periodic and aperiodic changes will be critical 
for clarifying neural mechanisms of these impairments. 

4.1. Limitations 

A major unresolved limitation is that results using two different 
approaches for characterizing aperiodic activity do not align. The hy-
potheses tested here were part of a study that was preregistered in late 
2018. At the time, a regression-based method for calculating the 
aperiodic exponent was common in the published literature (e.g., Dave 
et al., 2018; Voytek et al., 2015). When using that method to estimate 
the slope of the EEG power spectrum in this sample, we did not see an 
association with ADHD or SSM parameters, but did see an association 
with age that was not present when using FOOOF (see Supplement). 
Donoghue and colleagues (2020a) have since argued that the 
regression-based calculation method may be susceptible to periodic 
oscillatory activity. Instead, they emphasize the importance of param-
eterizing spectral features of the PSD via an iterative fitting process. We 
believe that the regression-based power spectral slope estimates may 
have been biased by individual differences in periodic activity (e.g., 
beta; see Fig. 1I–J). FOOOF and the regression-based method differ 
based on how periodic activity is removed, either by canonical fre-
quency bands or via a person-centered approach, respectively. With this 
in mind, we shifted away from the preregistered analysis plan to align 
with evolving best practices in this area of research. Direct comparison 

of these approaches is beyond the scope of this paper, but will be 
important for future work aimed at integrating results from this rapidly 
developing area of research. 

Another limitation of this study was that we calculated the aperiodic 
exponent at rest rather than in response to stimuli. It is well-accepted 
that organization and functional characteristics of the brain at rest are 
one important piece of understanding brain-behavior relationships 
(Arieli et al., 1996; Cao et al., 2017; Deco et al., 2011; Fox et al., 2007; 
Grayson and Fair, 2017; Wang et al., 2016). Indeed, the approach of 
relating resting-state brain dynamics to task performance has often been 
applied to clinical research (Rogala et al., 2020; Szostakiwskyi et al., 
2017; van Dongen-Boomsma et al., 2010v) and other studies have used 
this design in studying the associations of the aperiodic exponent to 
cognitive performance (Robertson et al., 2019). However, other studies 
record during cognitive tasks (Dave et al., 2018; Pertermann et al., 
2019). Dave and colleagues (2018) found that exponents (estimated as 
EEG power spectrum slopes) were highly stable across cognitive tasks, 
lending support for their role as a signature of the brain’s intrinsic ar-
chitecture. Nevertheless, additional research is needed to determine the 
relationship between slopes measured at rest and during active tasks. 
Establishing a resting state index of disrupted information processing 
would afford developmental cognitive neuroscientists new opportu-
nities to assess dynamic neural communication in populations for whom 
recording evoked activity can be challenging, such as infants. 

Lastly, adolescents in our sample either had ADHD or had minimal 
(or no) symptoms. While an extreme group design provides insight into 
differences in a clinical disorder, it fails to capture the full range of 
childhood attention and hyperactivity-impulsivity. Further investiga-
tion into the functional significance of the aperiodic exponent with both 
normative and clinical samples across the lifespan is needed. 

5. Conclusions 

Efficient information processing is a critical function of the devel-
oping brain and may be disrupted in a variety of neurodevelopmental 
conditions, including ADHD. Nonetheless, neural mechanisms of 
cognitive impairment remain underspecified. EEG studies have tradi-
tionally focused on group differences in oscillatory dynamics, but recent 
work confirms the importance of aperiodic activity of neural power 
spectra as a potential confound leading to misinterpretation of oscilla-
tory results (Donoghue et al., 2020b). Our study represents the largest 
investigation into the behavioral and cognitive correlates of the aperi-
odic exponent in children with ADHD to-date. Findings that the 

Fig. 2. Associations between aperiodic exponents and (A) reaction time variability and (B) drift rate for adolescents in the ADHD (orange) and control (blue) groups.  
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aperiodic exponent, an index of cortical excitatory/inhibitory imbal-
ance, is related to ADHD and cognitive impairments highlights the 
importance of this neural signature across development. Results un-
derscore the need for additional work that considers both periodic and 
aperiodic activity to understand the neural mechanisms underlying 
cognitive dysfunctions in ADHD. 
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