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Abstract: Increasing wheat grain yield while ignoring grain quality and metal accumulation can
result in metal deficiencies, particularly in countries where bread wheat accounts for the majority of
daily dietary regimes. When the accumulation level exceeds a certain threshold, it becomes toxic and
causes various diseases. Biofortification is an effective method of ensuring nutritional security. We
screened 200 spring wheat advanced lines from the wheat association mapping initiative for Mn, Fe,
Cu, Zn, Ni, and Cd concentrations. Interestingly, high-yielding genotypes had high essential metals,
such as Mn, Fe, Cu, and Zn, but low levels of toxic metals, such as Ni and Cd. Positive correlations
were found between all metals except Ni and Cd, where no correlation was found. We identified
142 significant SNPs, 26 of which had possible pleiotropic effects on two or more metals. Several
QTLs co-located with previously mapped QTL for the same or other metals, whereas others were
new. Our findings contribute to wheat genetic biofortification through marker-assisted selection,
ensuring nutritional security in the long run.
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1. Introduction

Wheat (Triticum aestivum L.) is one of the world’s most important crops and a staple
food in many developing countries. It plays a vital role in human health by providing
carbohydrates, proteins, and certain inorganic metals. However, due to the increase in the
world’s population, most wheat research programmes focus on increasing yields, ignoring
grain quality, leading to nutrient deficiencies, especially in countries where bread wheat
forms the majority of daily calories intake [1]. Although the daily requirements for inorganic
metals, such as manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn), are as low as a few
mg, Fe and Zn deficiencies are common in developing communities that depend mainly on
wheat in their dietary regime. However, metals become toxic at high concentrations [2–5].
Nickel (Ni) is another metal required by plants in trace amounts. Although Ni does not
have any special metabolic functions, it is a component of several enzymes, such as ureases
and hydrogenases. Its absence from the soil decreases urease activity and disturbs nitrogen
assimilation. In addition, Ni is necessary for cereals growth and grain production [6].
Cadmium (Cd) is a highly toxic heavy metal with no known beneficial effects on plants.
It is chemically similar to Zn and can compete for common mechanisms for uptake and
translocation in the crop [5,7]. In general, the highest accumulation levels of Ni and Cd are
in roots, then in leaves, and the lowest in seeds [4].

In general, wheat grain consumption is safe when the accumulation of the metals
is under the accepted safety thresholds. However, when it exceeds this threshold, it
may have toxic effects and cause various diseases in humans [4,8]. The accepted safety
thresholds in mg kg−1 are 500 for Mn, 73.3 for Cu, 99.4 for Zn, 67.9 for Ni, and 0.2 for
Cd [4]. In contrast, to combat essential metal malnutrition, biofortification was proposed as
a complementary strategy where stable genotypes with high micronutrient accumulation
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have been characterised and selected for future crosses through traditional or modern plant
breeding techniques [9].

Such biochemical traits are known as quantitative traits influenced by the environment,
and controlled by quantitative trait loci (QTL) [10]. Genome-wide association mapping
(GWAM) is a common approach to dissecting complex phenotypes and mapping the as-
sociated markers. GWAM uses linkage disequilibrium between polymorphic molecular
markers and the causal gene. This approach depends on large panels of breeding lines or
genotypes collected from naturally evolved and adapted populations with wider genetic
variation. It can often identify smaller intervals by making elegant use of historical recom-
bination events using polymorphic markers, such as single nucleotide polymorphisms
(SNPs). As a result, dense maps and high statistical mapping resolution facilitate identify-
ing SNPs associated with the studied trait [11–14]. These associations and candidate genes
may provide key markers for trait introgression, marker-assisted selection, or targets for
functional manipulation for crop improvement.

Another approach that has gained popularity in plant breeding research is genomic
prediction (GP), which depends on using molecular markers that cover the entire genome.
This approach uses genome-wide marker information to predict the breeding value of
complex traits to speed up breeding programmes [15]. A critical method for GP is ridge
regression–best linear unbiased prediction (rrBLUP) that allows for efficient prediction
with unreplicated training data [16].

We used 200 spring wheat advanced lines to investigate the accumulation of six metals
in wheat grains and select genotypes with the desired metal accumulations, to map the
associated SNPs.

2. Material and Methods
2.1. Plant Material, Metal Measurements, and Statistical Analysis

We used 200 spring wheat advanced lines from the wheat association mapping ini-
tiative (WAMI) population [17], genotyped with 26,814 SNPs [18] and released by the
International Maize and Wheat Improvement Center (CIMMYT). The soil texture was
sandy clay loam, from 0 to 30 cm, followed by sandy loam soil, from 30 to 45 cm. The
experimental design was a randomised block design with three replicates. Each genotype
was represented in each block as a row of 2 m and a spacing of 0.10 m between plants.
The experiment received 238 kg ha−1 ammonium nitrate (33.5% N), 75 kg ha−1 calcium
superphosphate (15.5% P2O), and 58 kg ha−1 potassium sulfate (48% K2O).

A concentrated HNO3 and HCLO4 (10:4) mixture was added to 0.5 g of crushed
seeds in the digestion vessel, then closed and heated in a water bath at 80 ◦C for 120 min.
The solution was cooled to room temperature and filtered through Whatman No. 1 filter
paper into 50 mL in a volumetric flask with double-distilled deionised water. An atomic
absorption spectrophotometer (AAS) was used to determine the concentrations of Mn, Fe,
Cu, Zn, Ni, and Cd in the extract.

All statistical analysis was run using the raw data in R for Windows 4.1.2, and for
drawing frequency distributions, we used the R package corrplot.

2.2. Genome-Wide Association Mapping and Genomic Prediction

The TASSEL software, version 5.0 [19], assisted in identifying SNP markers associated
with the raw data of the measured metals using the mixed linear model (MLM), kinship
matrix, and principle component.

The software package for R called ridge regression–best linear unbiased prediction
(rrBLUP) [16] was used to evaluate the genomic predictions. We applied four- and five-fold
cross-validations to the 200 examined genotypes and the training sets comprised 140 and
158 randomly chosen genotypes, respectively. The correlation between the observed and
predicted values supported the calculation of the prediction ability, and then the mean
correlation accuracy was calculated after 100 iterations.
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2.3. Candidate Genes Identification

We obtained the flanking sequences for the significant SNPs [20] and then identified
candidate genes using the BLAST service available at the GrainGenes (https://wheat.pw.
usda.gov/blast/, accessed on 15 March 2022) and the wheat IWGSC RefSeq v2.1 [21]. We
used the KnetMiner gene discovery platform [22] (https://knetminer.org, accessed on
15 March 2022) to search for large-genome-scale knowledge graphs and visualize interest-
ing subgraphs of the related information about the biology and functions of genes, gene
networks, and traits.

3. Results
3.1. Statistical Analysis

A wide range of genetic variations was observed for all traits (Table 1). The lowest
observed variation was for Mn, ranging from 3.0 to 9.9 mg kg−1 with an average of
6.1 mg kg−1. Zinc had the highest variation, ranging from 9.9 to 88.8 mg kg−1. Iron and Ni
showed moderate variations with minimum values of 5.3 and 11.1 mg kg−1, respectively,
and maximum values of 19.2 and 31.0 mg kg−1, respectively. The frequency distribution
(Figure 1) showed normal distribution for all traits.

Table 1. Population performance for the measured metals. Minimum (min), maximum (max), and
mean values in mg kg−1. S.E. represents standard error values. Accepted safety level threshold
according to Al-Othman et al., 2016 [4].

Metal Min Max Mean S.E. Safety Level

Mn 3.000 9.930 6.100 0.099 500
Fe 5.299 19.230 12.633 0.213 -
Cu 4.200 77.300 28.247 1.093 73.3
Zn 9.900 88.800 48.949 1.077 99.4
Ni 11.100 31.000 16.596 0.191 67.9
Cd 0.003 0.266 0.123 0.005 0.2
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Five genotypes selected for their high grain yield [23] showed high Fe and Zn and
low Ni and Cd contents (Table 2). Another eight genotypes showed the highest Fe and
Zn content, and their Cd content was low to moderate. An additional 18 genotypes were
higher than the accepted Cd safety threshold.

Table 2. Metals content (mg kg−1) for genotypes with the highest yield, the highest Fe and Zn content,
and the highest Cd content.

Genotype Mn Fe Cu Zn Ni Cd Category

393392 7.00 17.81 48.70 39.50 15.60 0.16

High yield
1706327 7.82 16.85 30.60 48.70 12.00 0.08
346403 7.90 15.80 24.00 29.80 15.20 0.21

3597332 9.15 13.12 78.50 52.50 18.40 0.06
294568 5.10 9.81 11.50 50.70 15.60 0.02

358192 8.15 19.23 45.00 50.20 16.00 0.11

High Fe and Zn
content

1403557 8.12 18.21 26.20 44.80 18.80 0.15
1558746 5.50 16.55 38.10 86.70 18.90 0.10
2406044 7.19 18.20 20.30 71.80 18.70 0.16
3585839 6.10 12.13 30.80 79.90 18.20 0.10
3587319 7.90 19.21 42.40 69.80 19.20 0.05
3827755 5.18 11.12 27.10 87.00 15.10 0.15
4755489 6.00 11.12 43.40 81.20 16.00 0.20

41868 3.15 7.15 41.70 16.60 12.20 0.21

High Cd content

295261 4.26 10.22 19.90 44.60 13.10 0.26
3586080 8.99 12.29 43.00 88.80 17.00 0.25
4097301 6.12 13.19 27.10 44.20 19.10 0.22
3592850 7.15 13.15 29.10 59.20 13.20 0.26
4319277 7.19 12.18 31.70 60.60 16.20 0.23
3617481 8.19 15.12 15.60 45.30 17.60 0.21
4755706 6.22 12.15 34.70 37.80 14.20 0.21
4756035 6.19 14.85 41.10 51.20 19.20 0.22

42274 6.19 11.11 46.30 45.20 17.20 0.21
4970584 5.32 12.50 35.30 55.40 13.20 0.27
346047 4.92 12.92 32.10 65.40 15.00 0.25

1493157 6.30 12.92 31.30 50.20 17.60 0.21
1987914 6.95 13.65 32.90 49.80 12.30 0.23
766786 8.00 10.22 28.20 43.20 17.60 0.26
778966 6.99 18.80 26.30 63.10 15.00 0.24

2478018 6.33 12.18 27.50 43.70 17.40 0.26
3686320 6.11 13.22 21.90 40.10 19.80 0.25

Apart from the 18 genotypes with high Cd content, our results showed that, on average,
all metals reported here were lower than the accepted safety thresholds.

The correlation plot (Figure 2) showed a positive correlation between all measured
traits, except Ni and Cd. The highest correlation was 0.70 between Mn and Fe, followed by
0.40 between Fe and Cu. The correlation between Fe and Cd was 0.32, and the correlation
between Cu and Cd was 0.23. The lowest correlation, 0.13, was observed between Cu and
Ni and between Zn and Cd.
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significance level. The blue colour indicates a positive correlation between the measured metals.

3.2. Genome-Wide Association Mapping

One hundred thirty-eight significant SNPs, above –log10 (P) = 3, were associated with
the measured metals (Figure 3, Table 3, and Supplementary Table S1). For example, one
QTL associated with Mn harboured 25 SNPs and 12 genes on 6A at 48 cM, of which 10 and
15 SNPs decreased and increased Mn content, respectively. One more QTL associated with
Fe sheltered nine SNPs located in five genes on 5B at 60 cM. Four and five SNPs showed
negative and positive effects, respectively. The nine SNPs had A as the major allele and C
as the alternate allele.

Interestingly, a QTL on 5B, located between 212 and 215 cM, was associated with
Mn and Fe. This QTL harboured five SNPs. The same allele of each SNP affected both
traits in the same direction; however, the effect on Fe was always double the effect on
Mn. Three of those SNPs had positive effects, and two SNPs showed adverse effects on
both traits. Two additional QTLs on 6A and 6B decreased the Cu and Cd content. Both
of these QTL showed less significant associations with decreasing Fe content (2.7 and 2.8,
respectively). The QTL on 6A was located between 125 and 126 cM, and the SNP was
mapped to TraesCS6A03G0953900.
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Figure 3. Manhattan plots representing association mapping for the 200 wheat genotypes using
26,814 SNPs for Mn (A), Fe (B), Cu (C), Zn (D), Ni (E), Cd (F). The horizontal axis represents the
21 wheat chromosomes, and the vertical axis represents the significance level −log10 (P) values.

Table 3. Selected significant SNPs associated with some metals. Each SNP is detailed according to its
chromosomal (Chr) position in megabase pairs (Mbp), significance value (–log10(P) value), explained
phenotypic variance (R2), the effect of each allele, and its gene name in the first and second version of
the wheat reference sequence (RefSeq), RefSeq v1.0 and RefSeq v2.1, respectively, announced by the
International Wheat Genome Sequencing Consortium (IWGSC).

Metal SNP Chr Position
(Mbp)

-
LOG10(P) R2 Allele

(Alternate) Effect Gene RefSeq v1.0 Gene RefSeq v2.1

Fe
IACX2594

5B 708

3.8 0.077 A (G) 2.09

TraesCS5B02G560400 TraesCS5B03G1356900

Mn 3.7 0.075 A (G) 0.96
Fe RAC875_rep_c106589_184 3.8 0.077 C (T) 2.09
Mn 3.7 0.075 C (T) 0.96
Fe RAC875_rep_c106589_650 3.7 0.076 A (G) −2.06
Mn 4.0 0.082 A (G) −0.99
Fe wsnp_Ex_c24031_33277293 3.8 0.077 A (G) −2.06
Mn 3.7 0.075 A (G) −0.96
Fe wsnp_Ex_c24031_33277856 3.8 0.079 A (C) 2.04
Mn 4.0 0.082 A (C) 0.98

Cd
wsnp_Ex_c34597_42879693

6A 600

3.6 0.073 C (T) −0.05

TraesCS6A02G375600 TraesCS6A03G0953900

Cu 3.1 0.060 C (T) −7.75
Fe 2.7 0.050 C (T) −1.85
Cd

wsnp_Ex_c2236_4189774
3.6 0.072 A (G) −0.05

Cu 3.1 0.061 A (G) −7.81
Fe 2.6 0.048 A (G) −1.82

Ni BobWhite_c6300_169

3A

576 6.7 0.146 A (C) −1.45 TraesCS3A02G331500 TraesCS3A03G0794000
Ni RAC875_c60753_129 577 6.7 0.146 A (C) 14.48 NA NA
Ni RFL_Contig4431_279 577 6.6 0.146 A (C) 14.47 TraesCS3A02G331900 TraesCS3A03G0794600
Ni Kukri_c5615_1214 579 4.4 0.090 A (C) −8.09 TraesCS3A02G334100 TraesCS3A03G0799100
Ni RAC875_c2140_128

581
4.4 0.090 A (C) −8.08

TraesCS3A02G334700 TraesCS3A03G0801000Ni RAC875_c2140_103 4.4 0.090 A (C) 8.07
Ni Kukri_c37815_53 578 3.6 0.071 A (C) 5.87 TraesCS3A02G333100 TraesCS3A03G0796700
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3.3. Genomic Prediction (GP)

We expanded our study to include the GP, and the predictability values for our wheat
panel were low to moderate, ranging from 0.15 to 0.65. Using a training population of
140 genotypes revealed a prediction of 0.34 for Mn, 0.39 for Fe, 0.21 for Cu, 0.14 for Zn,
0.17 for Ni, and 0.20 for Cd. Increasing the size of the training population to 158 showed
similar prediction values, namely, 0.32, 0.37, 0.19, 0.15, 0.15, and 0.21 for Mn, Fe, Cu, Zn, Ni,
and Cd, respectively.

4. Discussion

Wheat grains are inherently low in essential metals, such as Mn, Fe, Cu, and Zn, which
leads to metal malnutrition: a problem affecting a large number of the human population
that depends on wheat as a staple crop. Manganese and Cu deficiencies in humans are not
dangerous, but together with Fe and Zn, they play central roles in growth, development,
and the immune system. Therefore, there is a higher priority and a fundamental need to
grow healthy wheat with high concentrations of essential metals and low concentrations of
toxic metals for humans, such as Ni and Cd.

Biofortification is a sustainable and cost-effective solution that relies on selecting geno-
types with accepted levels of metal accumulation and dissecting the genetic architecture
underlying their natural variation [8,9,24–26]. We selected the best performing genotypes
based on different criteria. First, we reported the metal content of the five highest yielding
genotypes that overlapped with an earlier study [23] that evaluated the same populations
under the same environmental conditions. Interestingly, those genotypes were among
the highest in Mn, Fe, Cu, and Zn, and the lowest in Ni and Cd content, supporting their
suitability for future breeding programmes. The second group included eight genotypes
with high Fe and Zn content, recommended by an introgression scheme to introgress genes
underlying high Fe and Zn content into high-yielding genotypes.

The metal mean values reported here are comparable with earlier reports for winter
wheat. For example, the mean values for Mn and Fe, 6.1 and 12.6 mg kg−1, respec-
tively, are comparable with previous measurements of 8 and 13 mg kg−1 [27], and 10 and
12 mg kg−1 [28], respectively. The concentrations of Fe, Cu, and Zn reported here agree
with a report on Iranian wheat [2], and the Zn and Cd concentrations agree with reports on
Chinese wheat [24,28,29].

The positive correlation observed here between Mn, Fe, Cu, and Zn is similar to earlier
observations for synthetic hexaploid wheat [8], Chinese wheat [28], and European elite
registered varieties [1]. The positive correlations between Cd, Mn, Fe, and Zn align with an
earlier report [7] where high-Cd accumulating wheat varieties had high Ca, Mg, Mn, and
Fe. In contrast, low-Cd accumulating wheat varieties were deficient in essential nutrients
such as Zn. Therefore, reducing the Cd allocation in wheat is the ultimate target of breeding
programmes. However, this is a challenging task as Cd transporters are also transporters of
essential metals, such as Fe, Zn, or Mn [30]. One way to overcome this constraint could be
the introgression of essential metals genotypes with low Cd accumulation. A recent study
reported the introgression of Zn in wheat as a step toward mitigating malnutrition among
the masses in developing countries [31].

The highest correlation observed here was 0.70 between Mn and Fe, for which we
mapped a QTL on chromosome 5B harbouring five significant SNPs located between
708,652,692 and 708,655,527 bp in TraesCS5B03G1356900. Three significant SNPs in the
same gene were reported recently to be associated with Cu [28]. The alternative name of this
gene is PGR5-LIKE A, and in Arabidopsis, At5g59400; AtPGR5LA is tightly co-expressed
with several other genes—FER1, FER4, NAP1, NAS3, and YSL1—that are involved in ROS
detoxification and iron distribution [32]. Two more SNPs in TraesCS1B03G1211300 were
associated with Mn and mapped to chromosome 1B at 141 cM, between 677,600,765 and
677,607,233 bp, co-located with a significant SNP associated with Mn and Zn at 142 cM,
between 676,697,120 and 676,706,013 [28]. On chromosome 2B, we found three significant
SNPs associated with Fe at 99 cM co-locating with three significant SNPs associated with
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Cu at 108–109 cM and one significant SNP associated with Zn and Mn [28]. We mapped
two significant SNPs on chromosome 5B at 96 cM associated with Cu co-located with SNPs
associated with Cu, Zn and Mn [26]. Our QTL on chromosome 3A was associated with
Ni and harboured 40 significant SNPs, of which 33 SNPs were between 85 and 86 cM,
and 7 SNPs were at 93 cM, co-located with a previous QTL associated with Cu, Fe, S,
and P. Another 25 significant SNPs associated with Mn on chromosome 6A at 48 cM co-
located with Fe, S, and Cu [33]. The SNP marker Excalibur_c92298_213, located between
498,311,693 and 498,314,962 bp on chromosome 1D, was associated with Mn and Fe with
−log10(P) values of 3.4 and 2.7, respectively. This SNP was very close to a significant SNP
associated with Cd located between 493,863,084 and 493,875,788 [28]. Several co-locations
were observed for the correlated metals Cu and Cd (0.23) on chromosomes 6A (between
600,667,268 and 600,672,612 bp) and 6B (between 695,976,232–695,981,168 bp). However,
these two QTLs are not favourable for breeding programmes as they reduce both metals
and their effect on Cu is 14 times the effect on Cd. The observed co-locations are not unique
to our study but were observed recently in wheat [26]. Altogether, our results indicate
pleiotropic effects of the significant SNPs on the measured traits.

In general, GP is a promising approach for enhancing complex traits, such as metal
content in wheat, primarily when a large germplasm panel with high numbers of markers
is investigated. Both requirements facilitate more accurate estimates of breeding values
that were low to moderate for the measured metals, which is in agreement with previous
results for wheat [1,34,35].

5. Conclusions

Upon evaluating 200 wheat genotypes for six metals, we selected five high-yielding
genotypes with the desired concentrations of the measured metals. In addition, we selected
eight genotypes with the highest Fe and Zn content for possible use in future breeding
programs. In addition, we mapped 138 SNPs with favourable allelic effects essential
for selecting genotypes with high micronutrient content via marker-assisted breeding
programs. The identified candidate genes need to be confirmed or modified through
genome editing technology.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13061052/s1, Table S1: Significant SNPs associated with the
measured metals and their effects on the associated traits. Candidate genes are presented according
to their names in the RefSeq v1.0 and RefSeq v2.1.
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