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)is study proposes a brain-computer interface (BCI)- and Internet of )ings (IoT)-based smart ward collaborative system using
hybrid signals. )e system is divided into hybrid asynchronous electroencephalography (EEG)-, electrooculography (EOG)- and
gyro-based BCI control system and an IoTmonitoring and management system. )e hybrid BCI control system proposes a GUI
paradigm with cursor movement.)e user uses the gyro to control the cursor area selection and uses blink-related EOG to control
the cursor click. Meanwhile, the attention-related EEG signals are classified based on a support-vector machine (SVM) to make
the final judgment.)e judgment of the cursor area and the judgment of the attention state are reduced, thereby reducing the false
operation rate in the hybrid BCI system.)e accuracy in the hybrid BCI control system was 96.65± 1.44%, and the false operation
rate and command response time were 0.89± 0.42 events/min and 2.65± 0.48 s, respectively. )ese results show the application
potential of the hybrid BCI control system in daily tasks. In addition, we develop an architecture to connect intelligent things in a
smart ward based on narrowband Internet of )ings (NB-IoT) technology. )e results demonstrate that our system provides
superior communication transmission quality.

1. Introduction

Traditional artificial care is no longer suitable for the ward
environment, where the aging general population is leading
to an increase in the patient population. Technologies such
as brain-computer interfaces (BCIs) and the wearable In-
ternet of )ings (WIoT) are fundamentally changing the
current state of medical care and interaction [1–3]. )ey
offer hope for improved interaction, relief of medical
pressure, postoperative recovery, and the ability to better
address disability and chronic health problems.

Patient-centered care (PCC), which is one of the most
important bases for judging the quality of care in a ward [4],
is related to the autonomous interaction between the patient
and the outside world [4–6]. At present, different hospitals
have adopted different ways to control operations in their
wards. Due to the lack of convenience, traditional manual

control is gradually being replaced by a control mode based
on human-computer interaction [7]. Traditional manual
help or button control is not intelligent and relies on a
singular control mode. Ultimately, this control approach is
not suitable for patients with spinal cord injuries, amyo-
trophic lateral sclerosis, or other diseases that cause full or
partial loss of control of their limbs.

With such a wearable device, the electrode signals are
collected and analyzed on the cerebral cortex, and the
control is realized in combination with computer software
and hardware. Currently, motor-impaired individuals and
speech-impaired individuals can control a virtual computer
cursor [8] and computer keyboard [9, 10] to browse the web
by means of noninvasive BCIs. Due to the inconvenience for
patients with quadriplegia, many scholars have proposed
BCIs based on steady-state visual evoked potential (SSEVP)
and motor imagery (MI) to support wheelchair mobility to
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assist patients in walking [11], to control robotic arms in-
stead of manual grasping [12–15], to control a robotic arm
in place of an artificial arm [16], and to enable interaction
by means of various other assistive devices [17, 18]. Al-
though single-mode BCIs have achieved some promising
results in the abovementioned studies, hybrid BCIs based
on multimodal signals and shared control systems can offer
improved accuracy and interaction efficiency [19]. Song
et al. improved the accuracy of vigilance estimation based
on EEG and EOGmultimodality [20, 21]. Li et al. presented
a hybrid BCI system that combines P300, SSEVP, and MI
signals to control a wheelchair [22], which compensates for
the limited number of commands available in a single-
mode MI BCI (typically 2 or 3) but also leads to a longer
response time and a higher user workload. Electroocu-
lography (EOG) has also been used to implement device
control based on eye movements [1, 23, 24], such as gazing,
blinking, winking, and frowning. Huang et al. proposed a
novel hybrid BCI control system based on electroen-
cephalography (EEG) and EOG [12]. In this system, the
user performs left/right hand MI to turn a wheelchair left
and right and controls a robotic arm by blinking and
raising his or her eyebrows. In another study [25], EEG and
EOG were used in two separate modes. )e EOGmode was
used to detect eye movements, including blinking,
frowning, winking, and gazing. In EEG mode, multi-
component event-related potentials (ERPs) were adopted
to judge the user’s visual focus. Although the results
achieved with hybrid EOG BCIs suggest that such a hybrid
interface is promising for BCI-related applications, the
following challenges remain: (I) there is a need to reduce
false control commands triggered in the nonblinking state.
(II) )e accuracy with which blinking and other types of
eye movements can be distinguished needs to be further
improved.

In addition to PCC, safe, effective, timely, efficient, and
equitable care is also a determinant of medical quality [4].
)erefore, monitoring and management are important to
ensure safety and provide timely services. )e traditional
artificial method of vital sign monitoring is time-consuming
and burdensome and is affected by the level of experience of
nurses [26]. WIoT technology provides a new paradigm in
which wearable information-sensing equipment can be
connected via the internet [27]. Huang et al. proposed the
concept of the internet of health things, in which patient data
are aggregated in hospital wards to improve ward efficiency,
provide protection, support the optimization of resources,
and minimize patient health deterioration [23]. Patient vital
sign data can also be used for early warning to reduce
morbidity and mortality. Each patient’s vital sign data are
transmitted to the cloud via WIoT communication [28] and
used as input to current artificial intelligence (AI) tools to
perform model calculations to infer the possibility of future
diseases [29], provide early warning, reduce patient mor-
bidity and mortality, assist in medical care through moni-
toring, and optimize hospital resources. For the prevention
and treatment of infection, WIoT monitoring can be fully
automated and more accurate than humans. Shi et al.
proposed an intelligent reminder and administration system

for hand hygiene (IRAHHS) based on radio frequency
identification technology and intelligent analysis technology,
which can record and remind medical staff who come in
contact with sources of contamination [30]. Current forms
of IoTand AI technologies can help the majority of patients;
however, some patients with physical disabilities are unable
to complete the requirements for interacting with these
systems. Meanwhile, due to the relevance of mood and
depression [31, 32], modern wards should also focus on the
patient’s mood and adopt a corresponding regulatory
mechanism.

To address these issues, we propose a BCI- and IoT-
based smart ward collaborative system using hybrid signals.
In particular, our system relies on a GUI paradigm and BCI
processing. )e GUI is composed of a cursor and multiple
buttons. )e user uses the gyroscope to control the selection
of the cursor area and uses the blinking-related EOG to
control the cursor click. )e user receives prompts for eye
movements (blinks) and simultaneously records them. )e
user’s EEG and EOG signals are identified, and the syn-
chronous selection and transmission of control commands
are performed. To verify the usability and reliability of the
proposed BCI system for users, we conducted two online
experiments with 9 healthy subjects in a smart ward sandbox
scenario. )e results of these two experiments show that the
proposed hybrid BCI system oriented toward the smart ward
control paradigm based on EEG+EOG can provide accu-
rate, quick, and efficient control capabilities. )e addition of
the EEG mode can effectively reduce the number of false
operations, indicating that it has the potential to improve the
self-nursing ability of patients. In addition, wearable devices
and camera equipment can collect physiological signals and
other monitoring signals for patients to realize passive
control and management through comprehensive assess-
ment, optimize medical resources, and promote a safe
medical system.

2. Methods

2.1. Data Acquisition. In this study, a customized EEG
acquisition device with a sampling rate of 125Hz was used
to collect and amplify raw EEG, EOG, and gyro data. )e
device mounts three dry electrodes. As shown in Figure 1,
electrodes placed on the forehead (F7) and mastoid (A2)
on the left side were used as the reference and ground
electrodes, respectively. )e device extracts the EEG
signals and EOG signals from the prefrontal left position
(FP1) of the scalp based on the standard positions in the
10–20 system. )ree dry electrode sensors were attached
to the skin, with the impedance between each of the three
electrodes and the skin being lower than 5 kΩ, and the
device had 50Hz power frequency filtering. Meanwhile,
multimodal signals used for management and early
warning, such as global positioning system (GPS) data,
physiological data, environmental monitoring data, and
visual data, were obtained through a B2315 wearable
wristband device from Oviphone Technology Limited, an
environmental monitor, and cameras (more than 8 mil-
lion pixels).
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2.2. Control Architecture andGUI. As shown in Figure 2, the
proposed hybrid BCI-controlled smart ward collaborative
system mainly consists of a signal acquisition subsystem, an
EEG+EOG BCI subsystem, a wireless transmission sub-
system, and a smart ward subsystem. )e EEG signal is
acquired by a customized EEG acquisition device and is then
transmitted to a PC, where the data processing for the
EEG+EOG BCI subsystem is performed. )e EEG+EOG
BCI subsystem executes data preprocessing, feature ex-
traction, and a transformation algorithm, and in this sub-
system, we include a BCI control GUI to issue EEG control
commands. )e wireless transmission subsystem transmits
the EEG+EOG BCI control commands to the smart ward
control subsystem through the TCP/IP protocol. )e smart
ward subsystem then executes control and interactive op-
erations in accordance with the received EEG+EOG BCI
control commands in the smart ward environment.

As illustrated in Figure 3, a two-layer single-page GUI
structure is used for the control of the smart ward envi-
ronment. )e two layers are (a) a mode selection layer and
(b) a command control layer. )e mode selection layer
consists of four buttons. “ ” and “ ” are command number
adjustment buttons; “ ” reduces the number of commands;
“ ” increases the number of commands; and “ ” is a
button for attention switching. )e command control layer
is adjusted with the “ ” and “ ” button commands, dis-
playing between 4 and 12 ward-specific control command
buttons. “ ” is the button to activate/deactivate BCI
control. After a command is clicked, the next click ends the
BCI control task. )e GUI structure also includes a mouse
cursor with a controllable head.When the system is turned on,
the GUI panel is presented, and the user turns his or her head
and blinks to select the mode configuration (default: 12 ward-
specific control commands and attention close). )e user
turns his or her head and blinks to select a ward-specific
control command. )e cursor’s movement in the two-di-
mensional plane is controlled by the gyro, and a blinking
action realizes a cursor click. In addition, when a control
command is successfully implemented, the command button
will be highlighted for 500ms to remind the user of which
command has been selected.

In our system, button selection is used to execute the
control command task. To prevent natural blinking in the
idle state from causing mistaken selection, the user should
close the control GUI panel to reduce the incidence of false
commands issued in the idle state.

2.3. Detection Algorithm

2.3.1. Attention Detection. Attention detection includes
three processes: signal preprocessing, feature extraction, and
classification and recognition.

(1) Signal Preprocessing. In this study, a moving time window
is used to divide the EEG signal. )e length of the time
window is 5 s, and the length of the EEG signal is 625. )e
EEG signal is debaselined to reduce drift and DC inter-
ference. )en, low-pass filtering and high-pass filtering are
performed. In particular, a third-order Butterworth filter
with a cutoff frequency of 60Hz is adopted for low-pass
filtering, and a third-order Butterworth filter with a cutoff
frequency of 0.1Hz is adopted for high-pass filtering. After
filtering, the waves in various frequency wavebands are
obtained, including δ (1∼3Hz), θ (4∼7Hz), α (8∼13Hz), β
(14∼30Hz), and c (31∼48Hz).

(2) Feature Extraction. Spontaneous EEG signals are divided
into five types according to their frequency wavebands: δ, θ, α,
β, and c waves, among which α, β, θ, and c signals are related
to attention [33, 34]. In this study, the Welch algorithm is
used to estimate the power spectral density. First, the finite-
length observation sequence x(n)(n � 1, 2, ..., 625) is divided
into four segments after preprocessing, where the length of
each segment is 250 and the number of overlapping data
points between adjacent segments is 125. )en, each segment
is processed with a Hamming window and subjected to a fast
Fourier transform (FFT) at the same time. Finally, the average
is taken to obtain an estimate of the power spectrum of the
signal. )e resolution of the estimated power spectrum is
1Hz. )e calculation formula is as follows:
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1

MU
􏽘

M− 1

n�0
xi(n)w(n)e

− j2πfreqi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

, (1)

where i represents the EEG signal of the i-th segment, M is
the segment length, w(n) is the Hamming window function,
and U is the calculated power of the window function. )e
calculation formula is as follows:
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)e summation of the energy values produces five
features, in accordance with the waveband distribution of
the EEG signal. Let Pfreq denote the energy value

CH1 REF

GND

Figure 1: Electrode placement. CH1 (FP1): EEG and EOG elec-
trodes; REF (F7): reference electrode; and GND (A2): ground
electrode.
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corresponding to the frequency freq; then, the features
extracted for attention recognition can be defined as follows:

Eδ � 􏽘
3

freq�1
Pfreq,
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7

freq�4
Pfreq,

Eα � 􏽘

13
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30

freq�14
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Ec � 􏽘
48

freq�31
Pfreq.

(3)

In addition, the ratio between α and β activities can be
used as a feature for assessing the level of mental atten-
tiveness [33]. In this study, the following feature value is
calculated using this principle:

R �
Eα

Eβ
, (4)

where R is also a feature used to determine whether the user
is attentive. )erefore, in this study, a total of six features are
extracted as the basis for classification.

(3) Classification and Recognition. In this study, a support-
vector machine (SVM) classifier with excellent classification
performance is employed to separate EEG signals. Attention
samples (attention and nonattention) for training and
testing were collected based on the test of variables of at-
tention (T.O.V.A.)[35], and a linear function was adopted as
the kernel function of the SVM model. Fivefold cross val-
idation was performed to find the optimal parameters of the
model, and finally, the SVMmodel was trained based on the
optimal parameters.

2.3.2. Blink Detection

(1) Signal Preprocessing. In this study, button selection is
achieved by means of blinking-related vertical EOG signals.
In particular, the 600ms EOG signal is intercepted after
finding the starting point of blinking asynchronously based
on the moving average method, and the EOG signal is fil-
tered through a 0.1–10Hz bandpass filter to remove high-
frequency components.

(2) Feature Extraction. )e first-order derivative operation is
applied to the preprocessed signal to obtain its feature
vector. In this manner, a corresponding feature vector is
extracted immediately after each button flashes. Previous
studies have shown that different kinds of eye movements,
such as gazing, winking, blinking, and frowning, have dif-
ferent amplitudes and durations. Moreover, the peak occurs
before the corresponding valley. )erefore, as shown in

Figure 4, for a blinking EOG waveform (a) and a non-
blinking EOG waveform (b), we extract the peak amplitude
(Vpeak), valley amplitude (Vvalley), peak time (Tpeak), valley
time (Tvalley), reaction time Treaponse, and duration
Td � Tend − Tstart features from these waveforms for blink
detection.

(3) Waveform Detection. In this study, blink detection is
performed for each button flash based on threshold con-
ditions. First, the following equations are used to calculate
the duration and energy of each feature vector:

d � Tend − Tstart,

e � 􏽘

Tvalley

t�Tpeak

f′(n)( 􏼁
2
.

(5)

Subsequently, these special vector diagnostic features e

and d are compared against certain thresholds, which are
chosen based on experience, to determine whether a blink is
detected. For the successful detection of blinking, the fol-
lowing inequalities must be satisfied:

e>E,

Tpeak >Tvalley,

Dmin ≤d≤Dmax,

(6)

where d and e represent the blink speed and strength, re-
spectively; E is the minimum energy threshold; Dmin is the
minimum duration; and Dmax is the maximum duration. If a
feature vector meets the above requirements, a blinking
waveform is detected corresponding to the associated but-
ton, and the result is 1; otherwise, the result is 0, and a
blinking waveform corresponding to the associated button is
not detected.

2.3.3. Cursor Area Selection. In this study, the cursor
movement on the GUI is controlled by the rotation of the
head ring. In particular, the cursor posture is analyzed based
on the quaternion complementary filtering algorithm.

(1) Signal Preprocessing. Gyro data and acceleration data are
obtained from an MPU-6050 motion sensing module. )e
gyro data are calibrated with zero drift, and the acceleration
data are filtered using an extreme sliding window.

(2) Attitude Analysis and Transformation. Subsequently, the
gravity component is obtained based on the quaternion, and
the error between the measured and estimated gravity
vectors is calculated as the difference between them. )e
obtained error is used to correct the gyro measurement
value, and the corrected gyro value is updated with the
quaternion. Finally, the quaternion is standardized and
transformed into Euler angles.

2.3.4. Multimodal Decision-Making. As shown in Figure 5,
button selection is performed through multimodal
fusion control. In particular, the EEG and EOG signals
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will be recorded and stored in real time at a frequency of
125 Hz. )e cursor is allowed to move, and four steps
need to be performed for the user to issue a control
command:

Step 1: the gyro transmits data for posture analysis to
the PC in real time, and these data are used to control
the movement of the cursor in the two-dimensional
plane of the GUI on the PC.)e user uses the gyroscope
to control the cursor to move to the preselected button
area and uses the blinking-related EOG to control the
cursor click.
Step 2: the EEG and EOG signals will be recorded and
stored in real time at a frequency of 125Hz. )e system
uses the moving average method to identify the starting
point of the blinking EOGwaveform in real time. At the
same time, the 5 EEG signals (625 sampling points)
before the starting point, the cursor area coordinates at
the starting point, and the EOG signal (75 sampling
points) 600ms after the starting point are extracted.
Step 3: the EOG signal and the EEG signal are syn-
chronously processed by the algorithm, the EOG signal

is based on waveform detection for blink detection, and
the EEG signal is based on SVM for attention state
classification.
Step 4: finally, the recognition and classification results
meet the threshold requirements, and the button
command covering the area selected by the cursor is the
final control command.

2.4. Monitoring of Multiple Biological Signals. A multimodal
smart ward collaborative system that integrates multiple
signals can simplify and integrate the ward management
process, including vital sign monitoring, environmental
monitoring, and automatic control.

In particular, as shown in Figure 6, the monitoring and
management system can be divided into three layers. )e first
layer is the perception layer, which is composed of various
sensors. It is responsible for collecting data on the internal
electrical state of the ward, environmental monitoring data,
and physiological and positioning data for the patient in the
ward. )e collected data are passed through a microcontrol
unit (MCU) for code integration and transferred to a
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narrowband Internet of)ings (NB-IoT) module.)e second
layer is the transport layer. )e NB-IoT chip automatically
encapsulates the payload into a constrained application
protocol (CoAP) message and simultaneously transmits the
data to nearby communication base stations. CoAP is
designed to solve the problem of limited device resources in
the IoT context, where the traditional hypertext transfer
protocol (HTTP) is often not applicable. )e third layer is
the platform application layer. )e cloud server is autho-
rized to share and store the data collected by the sensors
from the patient’s body. At the monitoring center, the
physiological and medical data are displayed on the patient
monitor in real time, and the positioning and environmental
data are displayed on the safety monitor in real time.
Meanwhile, cloud computing and network technology are
closely integrated to make decisions, analyze the data, and
monitor the ward for the patient’s safety state in real time. In
addition, commands can be sent to the lower-level control
module to control the electrical equipment to realize au-
tomatic control.

3. Experiments and Results

3.1. Experimental Process. In this study, two types of online
experiments were performed to verify the proposed system.
)e first was asynchronous online experiments, using an IoT
sandbox as the experimental control equipment. )e second
experiment was an online monitoring and management
experiment. )e details of the experiments are introduced in
this section.

Nine healthy volunteers (numbered S1∼S9) aged be-
tween 21 and 26 years participated in this study. Among
them, three (S4, S7, and S8) were women, and the others
were men. It should be noted that S1∼S3 had experimental
experience with BCIs, while the others did not. All subjects
reported normal vision or corrected-to-normal vision. Eight
subjects, S1∼S8, participated in the online asynchronous
experiment, and S14 participated in the IoT experiment.

Figure 7 illustrates the detailed timelines of a single run
of asynchronous online Experiment 1. )e performance
indices used in this study are listed as follows:

(i) Accuracy (ACC): the probability of correctly
selecting a button

(ii) Response time (RT): the time required to generate a
command

(iii) Information transfer rate (ITR) [33]: the number of
bits of information transferred per minute

(iv) False operation rate (FOR): the number of false
operations occurring per minute in the idle state

Experiment 1. To test interaction and control by moving the
cursor and using the visual command button interface
(asynchronous online implementation), the following steps
were completed:

(1) Calibration: each subject performed 10 blinking
actions in accordance with the presented blink
command prompts. )e interval between consecu-
tive blinks was 2 s, and the total time was 20 s.

(2) Start task: twelve control command buttons are
adjusted by means of “plus/minus” buttons. )en,
attention detection was turned on for 4 subjects
(S1∼S4) and turned off for 4 subjects (S5∼S8). After
the mode configuration was completed, the subjects
selected the “start” button to start the BCI control
task. )e total time was 4 s.

(3) Each subject selected the target button in accor-
dance with the presented prompts and completed 6
operations: turning on the lights, opening the
curtains, turning on the TV, calling the doctor,
turning off the infusion set, and making an
emergency call. During this period, incorrect
control commands could appear, and the subjects
needed to correct them until the correct command
was obtained.
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Control State

Temperature
Humidity
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Figure 6: Monitoring and management system architecture.
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(4) End task: the subjects returned to the task start GUI.
(5) Steps (2) to (4) were repeated 10 times, with a rest

time of 1 minute each time.
(6) Finally, subjects S1∼S4 turned off attention detec-

tion, subjects S5∼S8 turned on attention detection,
and all subjects then repeated steps (2) to (5).

Experiment 2. )is experiment was divided into three
subexperiments to verify the accuracy and reliability of the
system:

Subexperiment A: an environmental monitoring
module was placed in a representative simulated ward
sandbox for 12 hours of continuous monitoring.
Meanwhile, the monitored values reported by an RS-
MG111-N01-1 sensor (Shandong Renke Control
Technology Co., Ltd.) were recorded as the control
standard every 4 hours. )is sensor has high mea-
surement accuracy, with a temperature accuracy of
±0.3°C, a humidity accuracy of ±3% RH, formaldehyde
(HCHO) concentration accuracy of ±2.5%, and a
PM2.5 accuracy of ±5%.
Subexperiment B: subject S14 was required to wear the
bracelet used in our system and an Apple Watch Series
S6 at the same time for a 40-minute heart rate ex-
periment. )e experiment was divided into 4 activity
sets: sitting, walking, running, and walking. Each set
lasted 10 minutes, and heart rate data were collected
from the subject at intervals of one minute during that
time.
Subexperiment C: to verify the stability of system data
transmission, first, a terminal node cyclically sent data
packets (16 bytes) to the cloud server. )e interval time
was 1 s, and the transmission test was divided into 5
groups, where the total number of data packets sent in
each group was different. Subsequently, another ter-
minal node was introduced as an interfering node, and

a comparative experiment was performed with the
same total number of data packets.

3.2. Experimental Results. )e results of Experiment 1 are
shown in Tables 1 and 2. All indicators in this experiment
were averaged for each subject. In asynchronous mode, 8
subjects completed a set of control experiments with attention
detection turned on and with attention detection turned off.
In this mode, all subjects made button selections as quickly as
possible. If a false choice occurred in the middle of the se-
lection process, the subject needed to correct it and record the
false event until the correct order was issued. In this mode,
there is no need to wait for the flashing time of the preselect
button in synchronous EOG mode [23]. Consequently, the
time to generate a command was greatly reduced; in par-
ticular, the RT was 2.87± 0.49 s (attention closed) and
2.65± 0.48 s (attention open). When attention detection was
turned off, the overall ACC, ITR, and FOR of the system were
95.54± 1.28%, 47.43± 7.62 bits/min, and 1.10± 0.32 bits/min,
respectively; when attention detection was turned on, the
values of these indices were 96.65± 1.44%, 53.42± 8.44 bits/
min, and 0.89± 0.42 bits/min, respectively.

)e online asynchronous experiment fairly compre-
hensively demonstrates the performance of the system and
shows that the performance of multimodal fusion control is
satisfactory.

To measure the workload involved in the proposed
hybrid BCI system, once Experiment 1 was completed, the 8
subjects were asked to independently complete a workload
questionnaire following the NASA Task Load Index (TLX)
method of Hart and Staveland [36]. )is questionnaire
evaluates workload in terms of six aspects: mental de-
mand, physical demand, temporal demand, overall per-
formance, effort, and frustration level. As shown in
Figure 8, the average scores for all 6 factors in the two
modes remained below 26. )e overall average scores for
the two states in the experiment were roughly the same. In
particular, the overall average scores for the two states in
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Figure 7: )e online asynchronous experiment. In the calibration phase, 10 blink prompts were presented at intervals of 20 s. In the mode
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Experiment 1 were roughly the same, which shows that
reducing error rates can improve individual performance
satisfaction and reduce frustration. In general, our pro-
posed hybrid BCI based on EEG, EOG, and gyro signals
was acceptable.

From the results of Experiment 2 reported in Table 3, it
can be concluded that the cloud platform could accurately
and reliably display the monitoring data. Our system can
obtain real-time information on environmental parameters
such as temperature, humidity, HCHO, and PM2.5. In
particular, the temperature measurement accuracy was

maintained within ±1%, the humidity accuracy was main-
tained within ±2%, the HCHO accuracy was maintained
within 3%, and the PM2.5 accuracy was maintained within
±5%. )us, compared with the standard values, the relative
errors of the measured parameters were very small. Simi-
larly, as shown in Figure 9, our system could accurately and
reliably monitor the user’s heart rate data. Compared with
the standard values, the maximum relative error during
running was 4.83%, and the absolute error was 7 bpm. In
addition, we divide the data into 5 sets to complete the

Table 1: Results for the subjects in Experiment 1 (attention closed).

Sub. Attention state ITR (bits/min) FOR (events/min) ACC (%) RT (s)
S1 Closed 48.59 1.03 95.71 2.75
S2 Closed 34.49 1.01 94.29 3.72
S3 Closed 47.76 1.39 94.64 2.71
S4 Closed 39.37 0.55 97.14 3.55
S5 Closed 46.19 1.34 94.64 2.80
S6 Closed 56.05 0.77 97.50 2.52
S7 Closed 50.06 1.47 94.29 2.56
S8 Closed 56.91 1.21 96.07 2.38
Avg — 47.43± 7.62 1.1± 0.32 95.54± 1.28 2.87± 0.49

Table 2: Results for the subjects in Experiment 1 (attention open).

Sub. Attention state ITR (bits/min) FOR (events/min) ACC (%) RT (s)
S1 Open 55.28 0.77 97.14 2.53
S2 Open 37.91 0.81 95.71 3.53
S3 Open 60.85 1.30 95.71 2.20
S4 Open 45.13 0.30 98.57 3.25
S5 Open 61.41 0.85 97.14 2.28
S6 Open 60.09 0.40 98.57 2.44
S7 Open 56.69 1.21 95.71 2.36
S8 Open 50.00 1.46 94.64 2.59
Avg — 53.42± 8.44 0.89± 0.42 96.65± 1.44 2.65± 0.48

Table 3: Comparison of measured and standard monitoring values
in the ward environment.

Parameter Time Standard
values

Measured data by
our system

Measured
values

Relative
error (%)

Temperature °C

6:00 27.22 27.02 −0.73%
10:00 31.95 32.01 0.19%
14:00 34.56 34.9 0.98%
18:00 31.22 31.03 −0.61%

Humidity % RH

6:00 65.6 65.63 0.05%
10:00 60.13 60.13 0.00%
14:00 58.17 57.08 −1.87%
18:00 58.98 58.53 −0.76%

HCHO mg/m3

6:00 0.0596 0.0588 −1.34%
10:00 0.0608 0.0612 0.66%
14:00 0.0644 0.0636 −1.24%
18:00 0.0629 0.0612 −2.70%

PM2.5 ug/m3

6:00 101 104.0000 2.97%
10:00 110 115.0000 4.55%
14:00 113 118.0000 4.42%
18:00 113 117.0000 3.54%
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Figure 8: Subjective workload assessment results for Experiment 1.
)e means and standard deviations of the NASA-TLX scores are
represented by circles and error bars, respectively.
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communication experiment of 600 to 6,000 data packets.)e
5 sets of transmission experiments proved the reliability of
network communication. As shown in Table 4, in the ab-
sence of an interfering node, the packet loss rate and bit error
rate of network communication over 10minutes were 0.1%
and 0%, respectively. Under interference from another node,
the packet loss rate and bit error rate were 0.2% and 0.8%,
respectively.

4. Discussion

In this work, we presented a BCI- and IoT-based smart ward
collaborative system using hybrid signals. )e experimental
results of eight subjects showed that the average accuracy of
the hybrid BCI system was 95.54± 1.28% and 96.65± 1.44%,

and the ITR was 47.43± 7.62% and 53.42± 8.44%, respec-
tively. Attention-related EEG analysis effectively reduces the
FOR of the BCI system. )e use of gyro data endows the
asynchronous BCI system with a higher RT and lower FOR.
In addition, the IoTmonitoring and management system is
developed based on NB-IoT technology. )e experimental
results show that the packet loss rate and bit error rate of
network communication are both lower than 1%, thus
proving the reliability of our system.

In a traditional ward environment, users perform con-
trol functions through manual operations; however, the size
and performance of the manual control equipment limit the
number of commands that can be issued. In this study, we
propose a hybrid BCI system based on EEG, EOG, and gyro
signals, which provides a novel control method that allows
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Figure 9: Absolute and relative error results for the measured and standard heart rate values.

Table 4: Results of the network communication test.

Number of sent data packets
(pcs)

No interfering node Interfering node
Received data

(pcs)
Packet loss rate

(%)
Bit error rate

(%)
Received data

(pcs)
Packet loss rate

(%)
Bit error rate

(%)
600 600 0 0 600 0 0
1200 1200 0 0 1200 0 0.3
2400 2400 0 0 2396 0.2 0.5
4800 4799 0.1 0 4797 0.1 0.4
6000 5996 0.1 0 5989 0.2 0.8
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users to overcome certain physical limitations. Generally, an
EOG signal exhibits obvious patterns that are relatively
simple to detect, and consequently, a BCI system based on
EOG imposes a low workload and simple operation re-
quirements [37]. Conversely, BCI systems based on ERPs
(P300 and SSEVP) [13, 16, 22]and MI-based BCI systems
often have high workloads and require a long training time.
In addition, an ERP-based BCI typically has a low ITR or
high FOR in either the control or idle state, while an MI BCI
commonly has a long RT. However, the number of possible
commands in an EOG-based BCI system is limited by the
different types of eye movements that can be recognized. For
this reason, we propose a hybrid EEG+EOG method for
button selection. We propose an EOG cursor interaction
GUI. )e cursor moves to the button area for blinking and
clicks, and the richness of control instructions is improved.
Furthermore, RT is another important indicator used to
assess an asynchronous system. In this study, compared with
other synchronous button blinking guidance methods
[12, 23, 24], the gyroscope cursor moving method does not
need to wait for the guidance blinking time and provides
faster instruction completion speed (average RT: 2.87± 0.49/
2.65± 0.48).

A major challenge in an EOG-based BCI system is to
avoid false operations in the idle state when the user in-
voluntarily blinks, which may trigger a control signal.
)erefore, a single-mode system based on blinking alone will
tend to have a high FOR. In recent years, to ensure the ability
to accurately distinguish between intentional blinking and
the idle state, many scholars have attempted to develop
EOG-based BCI systems using multiple blinks and different
eye movement patterns, such as two blinks [25, 38], three
blinks [25], blinking a single eye [39], and saccades [24, 40].
In our study, the user confirms that the final command needs
to meet two conditions in addition to recognizing the blink
action: (1) the user’s cursor area is a button area instead of a
nonbutton area, and (2) the user’s EEG attention state
classification result before blinking action needs to satisfy
the nonidle condition. )e two conditions effectively reduce
the natural blink false operations in the idle state and im-
prove the system robustness. In particular, the system de-
termines the blinking action based on waveform detection.
At the same time, cursor area determination and attention
state SVM classification are simultaneously performed with
waveform detection. If the three conditions are satisfied to
execute the final command, if one of the three conditions is
not satisfied, the command is determined to be invalid, and
no operation is performed. As shown in Tables 1 and 2, the
introduction of this attention state method significantly
reduces the FOR. Meanwhile, our system analyzes the cursor
position based on the quaternion complementary filtering
algorithm. In contrast to the method based on MI and EOG
presented by He et al. [41], our asynchronous system does
not require training and is easier to operate. In addition,
fixation duration, saccade frequency, and duration affect
subjects’ mental load and reduce task efficiency [42]. Next,
we will improve attention based on finding a reasonable
fixation duration and task duration.

Another challenge in an EOG-based BCI system is to
increase the ITR. )e core requirement is to maintain the
correct rate while decreasing the RT. For this purpose, it is
crucial to accurately identify the blinking action of the EOG.
In particular, active blinking yields a stronger EOG signal
than autonomous blinking or no blinking; the energy and
duration are both greater [43]. )e asynchronous BCI
system has no synchronous blinking induction and can
accurately find the onset point of the EOG signal suspected
of blinking. Based on the moving average method, the point
of signal transition is found from the comparison between
the actual collected value and the predicted value, and then,
the 600ms EOG signal is intercepted for waveform detec-
tion. Compared with traditional peak and trough detection
[37], the EOG signal has more prominent energy charac-
teristics after first-order difference processing, and the test
accuracy is 95.54± 1.28/96.65± 1.44 in 8 subjects. Table 5
compares the results of our BCI control system with those of
several existing BCI control systems. Our system shows
advantages in terms of the ACC and FOR, and the ITR is also
good, although lower than that in [44] in synchronousmode,
because the button flashing time interval is shorter in the
latter system, thereby shortening the RT; however, this will
also affect the classification accuracy.

Furthermore, accurate and reliable data collection to fa-
cilitatemonitoring is amajor challenge in the establishment of
smart wards.)e proposed system uses NB-IoT technology to
integrate environmental and physiological data collected in
the ward to form a safe and effective smart ward monitoring
and management platform. In particular, an NB-IoT system
can be established using an existing network architecture
(such as long-term evolution (LTE) or global system for
mobile communications (GSM)) to achieve low-cost and
rapid deployment. )is technology also meets the needs of
massive machine-type communication (mMTC) scenarios in
fifth-generation (5G) networking [48]. At the same time, NB-
IoToffers coverage enhancements and greater delay tolerance
while featuring low power consumption. For physiological
information collection, a convenient wearable device is
adopted for daily use. )e built-in high-precision sensor

Table 5: Comparison with other BCI systems.

Publication Mode (s) ACC
(%)

ITR
(bit/
min)

FOR
(event/
min)

He and Li [37] EOG 93.02 45.83 —
Huang et al. [23] EOG 91.7 48.8 0
Kubacki [15] EEG+EOG 90.0 — —
Chen et al. [16] EEG+CV 94.0 14.21 —
Zhang et al. [45] EEG 89.9 23.2 —
Zhou et al. [46] EEG 92.8 ≤26.3∗ ≥6.71∗
Zhang et al. [24] EOG 93.6 26.8 —
Shao et al. [44] EEG+EOG 95.42 105.5 0.80
Zhang et al. [47] EEG 91.7 ≤23.8 ≥1.75∗
Our system EEG+EOG+Gyro 96.7 53.42 0.89
—denotes not reported ∗)e value was calculated from the results reported
by the authors.
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ensures that the data are accurate and reliable. )e heart rate
monitoring accuracy is guaranteed to remain within 5%, and
the average relative error in the sitting state is 0.82%. In
addition, the introduction of GPS and environmental mon-
itoring data into the system can comprehensively ensure user
safety. As seen from the results of an information trans-
mission test, the packet loss rate and bit error rate of network
communication are less than 1% regardless of the presence of
interfering nodes. )e experimental findings show that the
system stably runs and achieves the expected results.

5. Conclusions

)is study proposes a BCI- and IoT-based smart ward
collaborative system using hybrid signals. )e system is
divided into a hybrid EEG-, EOG-, and gyro-based BCI
system and an IoTmonitoring and management system.)e
experimental results of 8 subjects showed that the accuracy
and ITR of the hybrid BCI were 96.65± 1.44% and
53.42± 8.44, respectively. Attention-related EEG analysis
effectively reduces the FOR of the BCI system. Meanwhile,
the use of gyro data endows the asynchronous BCI system
with a higher RTand lower FOR. In addition, to ensure user
safety, the IoT monitoring and management system is de-
veloped based on NB-IoT technology. )e experimental
results show that both environmental data and physiological
data are accurately monitored. )e packet loss rate and bit
error rate of network communication are both lower than
1%. Our system provides a novel control method for dis-
ability and chronic patients, which effectively improves
accuracy and reduces FOR. At the same time, it provides a
safe and reliable monitoring system for medical care and
realizes PCC. In future work, we will continue to improve
the hybrid BCI system by further optimizing the eye-
tracking method and integrating IoT resources to make the
proposed smart ward collaborative system more user
friendly for disabled people.
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