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Abstract 

Background:  Tumor invasiveness reflects many biological changes associated with tumorigenesis, progression, 
metastasis, and drug resistance. Therefore, we performed a systematic assessment of invasiveness-related molecular 
features across multiple human cancers.

Materials and methods:  Multi-omics data, including gene expression, miRNA, DNA methylation, and somatic 
mutation, in approximately 10,000 patients across 30 cancer types from The Cancer Genome Atlas, Gene Expression 
Omnibus, PRECOG, and our institution were enrolled in this study.

Results:  Based on a robust gene signature, we established an invasiveness score and found that the score was signifi-
cantly associated with worse prognosis in almost all cancers. Then, we identified common invasiveness-associated 
dysregulated molecular features between high- and low-invasiveness score group across multiple cancers, as well 
as investigated their mutual interfering relationships thus determining whether the dysregulation of invasiveness-
related genes was caused by abnormal promoter methylation or miRNA expression. We also analyzed the correlations 
between the drug sensitivity data from cancer cell lines and the expression level of 685 invasiveness-related genes dif-
ferentially expressed in at least ten cancer types. An integrated analysis of the correlations among invasiveness-related 
genetic features and drug response were conducted in esophageal carcinoma patients to outline the complicated 
regulatory mechanism of tumor invasiveness status in multiple dimensions. Moreover, functional enrichment sug-
gests the invasiveness score might serve as a predictive biomarker for cancer patients receiving immunotherapy.

Conclusion:  Our pan-cancer study provides a comprehensive atlas of tumor invasiveness and may guide more pre-
cise therapeutic strategies for tumor patients.
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Background
For decades, cancer has been one of the leading causes 
of deaths worldwide [1], while the activating invasion is 
one of the six hallmark capabilities of the cancer [2] and 

greatly worse the patients’ prognosis. However, the bio-
logical mechanisms underlying invasiveness and metas-
tasis were largely an enigma. An in-depth exploration 
of the tumor invasiveness-related mechanisms would be 
of great significance for us to understand tumorigenesis 
process and identify potential therapeutic targets, thus 
improving cancer patient survival.

Different tumors have different invasiveness-associ-
ated molecular mechanisms but share many common 
genes and signaling pathways [3]. Research in this area 
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has accelerated dramatically recently as powerful new 
tools and refined experimental models have become 
available. In recent years, pan-cancer analysis projects of 
specific function and biological pathway genes aimed at 
identifying the common molecular features across mul-
tiple tumor types have been increasingly reported and 
remarkably provided a multi-dimensional, in-depth, and 
comprehensive understanding of human cancer [4–8]. 
For example, the multi-omics study of Ye et al. identified 
common molecular alterations associated with tumor 
hypoxia and analyzed their correlation with sensitiv-
ity to a series of anti-cancer drugs [4], thus pointing out 
the direction of research into tumor hypoxia microen-
vironment in the post-genome era and highlighting the 
need to take tumor hypoxia status into consideration in 
future studies. Luo et  al. focused on telomerase reverse 
transcriptase activation in 8 cancer types and developed 
a random forest classifier integrating multi-omics signa-
tures to identify patients with different telomerase activi-
ties and overall survival rates, providing novel insights 
that link telomerase-related signatures to patient sur-
vival and opening new avenues for treating cancer [5]. 
Although several invasiveness-associated gene signatures 
have been reported, a comprehensive investigation of 
invasiveness-related molecular features across multiple 
cancer types has not yet been explored.

In the present study, we provide an in-depth pan-
cancer analysis of invasiveness-associated dysregulated 
molecular features and describe their intersection and 
mutual regulatory mechanisms based on the genomic, 
epigenomic, transcriptomic, proteomics, metabolites, 
and drug-response profiles of 30 cancer types from avail-
able databases and our institution. An invasiveness score 
based on a 24-gene signature was established and vali-
dated to serve as a robust prognostic factor and predic-
tive biomarker for guiding more precise and personalized 
anti-cancer therapeutic strategies.

Methods and materials
Acquisition of pan‑cancer multi‑omics datasets
Level 4 gene sequencing (FPKM normalized), mature 
microRNA (miRNA) expression, protein expression, 
DNA methylation, somatic mutation, copy number 
variation (CNV), and corresponding clinical data of 33 
human cancers in The Cancer Genome Atlas (TCGA) 
were downloaded from the UCSC Xena browser 
(GDC hub: https://​gdc.​xenah​ubs.​net). We removed 
patients whose clinical outcome information includ-
ing survival time and vital status were vague or absent. 
We also downloaded mass proteomic spectrum data 
from the Clinical Proteomic Tumor Analysis Consor-
tium (CTPAC) [9, 10]. Normalized metabolite lev-
els of several TCGA breast cancer (BRCA) samples 

were obtained from the study by Tang et  al. [11]. We 
also downloaded cancer cell line drug sensitivity data-
bases from the Genomics of Drug Sensitivity in Can-
cer (GDSC; available at https://​www.​cance​rrxge​ne.​
org/​downl​oads/​anova) [12–14], which includes gene 
expression data obtained using an Affymetrix HT HG 
U133A array and drug sensitivity data, presented as 
area under the dose–response curve (AUC) values and 
IC50 values (half maximal inhibitory concentration) 
based on cell viability assays. Geeleher et  al. devel-
oped a novel computational method to determine drug 
response in large clinical cancer genomics datasets, 
enabling us to conduct pharmacogenomics discovery 
in TCGA patients without having to collect their actual 
drug response information [15]. We combined the 
results from MiRWalk (http://​mirwa​lk.​umm.​uni-​heide​
lberg.​de/​search_​mirnas/) and TargetScan (http://​www.​
targe​tscan.​org/) to identify potential targeting relation-
ships between genes and miRNAs [16].

We also included several independent gene-array 
datasets from Gene Expression Omnibus (GEO) and 
PRECOG repository as external validation cohorts 
(Additional file 1: Table S1). Gene expression data and 
corresponding reliable clinical survival information 
were directly downloaded from http://​www.​ncbi.​nlm.​
nih.​gov/​geo and https://​precog.​stanf​ord.​edu/, respec-
tively. Background adjustments and data normalization 
were performed with the limma package [17].

We retrospectively selected 34 patients with lung ade-
nocarcinoma (LUAD) and 44 with lung squamous cell 
carcinoma (LUSC) who underwent lobectomy and sys-
tematic lymph node resection at our institution, from 
July 2012 to December 2012. All pulmonary resections 
were performed by experienced thoracic surgeons in 
our institution, and resected tumors and lymph node 
specimens were all labeled in the operating theater and 
reviewed by at least two qualified pathologists to con-
firm the diagnosis of LUAD or LUSC through hematox-
ylin and eosin-stained sections and immunochemical 
analysis. Patients with evidence of metastasis at the 
time of diagnosis, or history of chemotherapy, radio-
therapy, and immunological therapy were excluded. 
RNA sequencing for all tumor samples was performed 
using Illumina Hiseq 2500 and BGI-500RNAseq plat-
forms. Patients’ postoperative data were collected 
annually by outpatient follow-up and phone call. All 
patients provided written informed consent to conduct 
genomic studies in accordance with the ethical princi-
ples of the Declaration of Helsinki and the International 
Conference on Harmonization Guidelines for Good 
Clinical Practice, and the study was approved by the 
ethical committees of our institution (No. 201986122 
and No. 2011-219(2)).

https://gdc.xenahubs.net
https://www.cancerrxgene.org/downloads/anova
https://www.cancerrxgene.org/downloads/anova
http://mirwalk.umm.uni-heidelberg.de/search_mirnas/
http://mirwalk.umm.uni-heidelberg.de/search_mirnas/
http://www.targetscan.org/
http://www.targetscan.org/
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://precog.stanford.edu/
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Estimation of invasiveness‑score
To construct a compendium of genes related to tumor 
invasiveness, we systematically searched published stud-
ies and adopted a 24-gene expression signature derived 
from a comprehensive pan-cancer analysis using the 
“extreme value association” algorithm, which identi-
fies sets of genes whose coordinated overexpression 
indicates the presence of a advanced-stage phenotype 
[18] (Additional file  7: Data S1). The signature includes 
COL11A1, POSTN, EPYC, ASPN, COL10A1, THBS2, 
FAP, LOX, SFRP4, INHBA, MFAP5, GREM1, COMP, 
VCAN, COL5A2, COL5A1, TIMP3, GAS1, TNFAIP6, 
ADAM12, FBN1, SULF1, COL1A1, and DCN. The inva-
siveness scores were computed from RNA sequencing 
of each bulk sample using the gene set variation analysis 
(GSVA) algorithm in the GSVA package [19], an unsu-
pervised gene set enrichment method that computes an 
enrichment score by integrating the collective expres-
sion of a given gene set relative to the other genes in the 
sample. It has been reported that GSVA outperforms 
single cell gene set enrichment analysis (ssGSEA) when 
measuring the signal-to-noise ratio in differential gene 
expression and differential pathway activity identifica-
tion analyses because GSVA includes normalization of 
gene expression aimed at reducing the noise of the data 
[20]. The distribution patterns of the invasiveness score 
in different patients were plotted using the pheatmap 
package. Afterwards, we classified patients into high- and 
low-invasiveness groups based on an optimal cutoff value 
of the invasiveness score determined by log-rank test of 
recurrence-free survival (RFS) or overall survival (OS). 
The cutoff value was obtained with the assistance of sur-
vminer package, which finds the optimal cut point of one 
or multiple continuous variables at once that correspond 
to the most significant relation with survival outcome 
(RFS or OS here), using the maximally selected rank sta-
tistics. Considering the natural discrepancy in progno-
sis of different cancer types, we determined the cutoff 
value of the invasiveness score in each cancer separately. 
Results are presented with the forestplot package.

Differential expression and functional enrichment analysis
Differentially expressed genes (DEGs), miRNAs, pro-
teins, were identified between high- and low-invasive-
ness score groups across cancer types using the package 
limma. All the p-values generated from multiple tests for 
high throughput data, including differentially expressed 
gene, miRNA, protein, methylation, somatic mutation, 
and copy number variation analyses, as well as functional 
enrichment analyses, were adjusted as false discovery rate 
(FDR). |Log (fold change) (log FC)| > 0.5 and FDR < 0.05 
were considered cutoff criteria to screen for differential 

expression. Functional enrichment analyses of the 
detected DEGs were performed with the clusterProfiler 
package [21]. Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) terms were identified 
with a strict cutoff of FDR < 0.05. We also obtained gene 
sets that represented different biological pathways from 
several publications, including tumor-infiltrating lym-
phocytes (TILs) [22], immune cytolytic activity (CYT), 
interferon (IFN) response [23], hypoxia score [3], and the 
immune score based on the ESTIMATE, which calculates 
immune and stromal scores to predict the infiltration of 
non-tumor cells by analyzing specific gene expression 
signatures of immune and stromal cells [24] (Additional 
file 7: Data S1). ssGSEA was used to quantify the enrich-
ment levels of these signatures in each tumor sample [25].

Comparison of somatic mutations and CNV
Comparison of the somatic mutations and gistic-iden-
tified CNVs between high- and low-invasiveness score 
groups across cancer types was tested using the Kruskal–
Wallis test, where p-values < 0.01 after adjustment for 
mutational frequency were considered statistically signif-
icant. Results were generated with the oncoplot function 
in the maftools package.

Preprocessing and analysis of DNA methylation data
We employed the TCGA DNA methylation data obtained 
by the Illumina Human Methylation450 BeadChip array, 
which contains 485,577 probes (396,066 after filtering 
invalid probes) covering 99% of RefSeq genes. The meth-
ylation levels of each probe were quantified as β-values, 
which are the ratios of the intensities of methylated and 
unmethylated alleles. 5′-C-phosphate-G-3′ (CpG) meth-
ylation data between high- and low-invasiveness score 
groups were normalized and compared with the CHAMP 
pipeline [26]. The algorithm used for differentially 
methylated CpG sites is similar to that used in the DEG 
analysis, and the threshold was set as FDR < 0.05 and an 
absolute ∆β-value > 0.2. A gene was considered to be dif-
ferentially methylated if there was at least one differen-
tially methylated CpG in its promoter region.

Statistical analysis
All statistical analyses were conducted using R software 
(Version 3.5.3; R Foundation for Statistical Computing, 
Vienna, Austria). We performed the Pearson correlation 
test and calculated the coefficient (r) with corresponding 
p value when necessary, considering |r| > 0.3 and p < 0.05 
as strong correlation. We employed several R packages 
for data visualization, including circlize, ggpubr, igraph, 
and networkD3. Student’s t-test and the Wilcoxon test 
were used to compare continuous variables between 
the high- and low-invasiveness score groups, while 
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Chi-square and Fisher’s exact tests were used for cat-
egorical variables when appropriate. Log-rank tests and 
Kaplan–Meier survival curves visualized by the ggplot2 
package were used to compare survival between different 
populations. A univariable Cox proportional risk analysis 
was performed to test the prognostic value of the inva-
siveness score. The p-values were all two-sided. In the 
Chi-square test, Fisher’s exact test, log-rank test, Cox 
analysis, and correlation test, p-values < 0.05 were consid-
ered statistically significant.

Result
Classification and validation of the invasiveness score 
groups based on a 24‑gene signature
The study design is shown in Additional file 2: Figure S1. 
To investigate the invasiveness-related genes across 
human tumors, we focused on a 24-gene expression sig-
nature [18] (Additional file 7: Data S1) and calculated the 
invasiveness score by GSVA based on this signature for 
each cancer patient enrolled in this study (Additional 
file  7: Data S2). Another three invasiveness gene signa-
tures, including 64, 17, and 79 genes (Additional file  7: 
Data S1) [27–29], were also screened for initial analysis; 
however, by investigating the prognostic value of the 4 
candidate gene signatures in LUAD patients, our 24-gene 
signature exhibited the best prognostic value as an indi-
cator of tumor invasiveness (Fig.  1c, Additional file  7: 
Figure S2A). The robustness of this invasiveness-associ-
ated signature has also been verified in several previous 
independent studies [30–32]. The GSVA score based on 
this signature was highly correlated with the invasiveness 
score for the other three signatures in the 30 cancer types 
included in TCGA (Fig.  1a), further suggesting the reli-
ability and practicality of this 24-gene signature to define 
the tumor invasiveness level in multiple cancer types.

The invasiveness score exhibited distinct distribu-
tion patterns in different cancer types (Fig.  1b). For 
example, the median (interquartile range) was 0.752 
(0.651–0.843) for pancreatic cancer (PAAD); for thy-
moma (THYM), the value was much lower: − 0.678 
(− 0.757 to − 0.560). These results suggest that inva-
siveness-related genes are significantly upregulated in 
malignancies such as PAAD and BRCA, thus leading 
to the increased score. Considering the relatively poor 

prognosis of patients with PAAD compared with other 
tumor types such as THYM [1] (5 year survival rate in 
TCGA: 0.225 for PAAD and 0.926 for THYM) it could 
be inferred that the 24-gene signature and correspond-
ing score precisely reflect the degree of malignancy of 
the cancer, which is consistent with our speculation 
above.

In each cancer type, we classified patients into high- 
and low-invasiveness groups based on the invasiveness 
score and RFS. Although overall survival (OS) is uni-
versally recognized as the gold standard when assessing 
prognostic information or measuring treatment effects 
in clinical research, the complexity of cancer death, 
including invasion, recurrence, and metastasis, still lim-
its the practicality and reliability of OS in the estimation 
of cancer progress and prognosis. Therefore, consider-
ing the superiority of RFS compared with OS in such 
circumstances [33, 34], we selected RFS in this study to 
investigate the association between invasiveness and can-
cer survival. Acute myeloid leukemia (LAML), bile duct 
cancer (CHOL), and glioblastoma (GBM) were excluded 
because of the inaccessibility of their RFS data and the 
remaining 30 cancer types, which included a total of 9356 
patients, were finally enrolled for subsequent analysis. 
The correlation between the AJCC TNM staging system 
and our invasiveness group classification is shown in 
Additional file  7: Figure  S3A. Patients in the high- and 
low-invasiveness groups showed distinct enrichment 
of the 24 genes in our signature (Additional file  7: Fig-
ure S2B), and high-invasiveness scores were consistently 
associated with worse prognosis in the majority of the 
30 cancer types, including LUAD (hazard ratio [HR]: 
1.73 (1.10–2.70), p = 0.015), LUSC (HR: 1.64 (1.02–2.63), 
p = 0.037), and esophageal carcinoma (ESCA; HR: 2.54 
(1.23–5.25), p = 0.011; (Fig.  1c, d and Additional file  3: 
Figure S4), indicating the robust prognostic value of our 
score-originated invasiveness group classification in both 
RNA sequencing and gene-chip data. However, inter-
estingly, high-invasiveness scores were found to be sig-
nificantly associated with better prognosis in only four 
cancer types: diffuse large B cell lymphoma (DLBC), 
thyroid carcinoma (THCA), liver hepatocellular carci-
noma (LIHC), and head/neck squamous cell carcinoma 
(HNSC) (Additional file 3: Figure S4).

Fig. 1  a Spearman’s correlation of the invasiveness score between this 24-gene signature and the other two gene signatures across 30 cancer 
types. b The distribution of the invasiveness score across 30 cancer types. Within each group, the scattered dots represent the invasiveness score of 
each patient. The lines in the boxes represents the median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile 
range). The whiskers encompass 1.5 times the interquartile range. c Kaplan–Meier curves shows that high-invasiveness score group is associated 
with worse RFS in LUAD, LUSC, and ESCA cohort. d The prognostic value of invasiveness score in each cancer type, shown in the forest plot with 
corresponding hazard ratio (HR) and 95% confident interval (95% CI). e Gene set enrichment analysis (GSEA) based on mass proteomic spectrum 
data indicated that the proteins in the invasiveness-signature were significantly enriched in the high-invasiveness score group in BRCA and OV

(See figure on next page.)
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We externally validated the prognostic value of our 
invasiveness score group classification in non-small-cell 
lung carcinoma patients from our institution, as well as 
three independent GEO datasets of LUAD, LUSC, and 
ESCA (Additional file  4: Figure  S5). Besides, similar 
results were also obtained from 10 independent datasets 
from PRECOG database, including LUAD, COAD, STAD, 
and so on. Unfortunately, RFS data was not available in 
PRECOG, therefore we had to perform our analyses 
based on OS here (Additional file 4: Figure S5). Moreo-
ver, to further explore whether we could reach similar 
results at a post-transcriptional level, we performed gene 
set enrichment analysis (GSEA) in 102 BRCA patients 
and ten ovarian cancer (OV) patients whose mass pro-
teomic spectrum data were available in the CTPAC [9, 
10]. The expression data of 9733 and 7625 proteins was 
available for BRCA and OV patients, respectively. Based 
on the invasiveness group determined by RNA-sequenc-
ing data, the 24-gene signature, which corresponds to 24 
proteins, was also enriched in the high-invasiveness score 
group for both cancer types (FDR = 0.00261 for BRCA 
and 0.0021 for OV; Fig. 1e). This phenomenon could be 
explained by the high correlations between mRNA and 
protein expression levels in a patient. Taken together, our 
analyses integrating RNA-sequencing, RNA-chip, pro-
teomic, and survival data support the validation of our 
invasiveness score group classification across different 
cancer types.

Multidimensional characterization of invasiveness‑related 
genomic features across multiple cancer types
The proportions of high- and low-invasiveness score 
groups varied greatly among different cancer types 
(Fig. 2a). For example, the high-invasiveness score group 
included 86.36% (133 of 154) of PAAD and 86.44% of 
BRCA patients. By contrast, only 20.57% (29 of 141) and 
47.79% (54 of 113) of KIRC and THYM patients, respec-
tively, were classified into the high-invasiveness score 
group. These results demonstrate the distinct overall 
invasiveness of different cancer types, consistent with the 
results shown in Fig. 1b.

To systematically outline the genomic characteristics 
of the invasiveness of patient cancers, we performed a 
multidimensional comparison of six types of molecular 
features between the high- and low-invasiveness groups 
in 30 cancer types: mRNA-sequencing (58,387 genes), 
mature miRNA (approximately 2000 miRNAs), protein 
expression (223 proteins), DNA methylation (396,066 
probes covering > 20,000 genes), somatic mutation, and 
CNV data. Significantly different features were identified 
(Fig. 2b).

Differential genomic features between the high- and 
low-invasiveness groups exhibited varied distribution 

across the 30 cancer types, which could be explained by 
the different tumor characteristics and varied sample 
sizes. For instance, only six DEGs were detected in uter-
ine carcinosarcoma (UCS), while 6069 were detected in 
testicular cancer (TGCT). We failed to identify differen-
tially expressed miRNAs in adrenocortical cancer (ACC), 
large B-cell lymphoma (DLBC), rectal cancer (READ), 
melanoma (SKCM), and UCS but identified 180 in blad-
der cancer (BLCA). Alterations in DNA methylation 
probes ranged from one in kidney chromophobe (KICH) 
and colon cancer (COAD) to 88,772 in TGCT. No sig-
nificantly differentially expressed proteins were identified 
after FDR adjustment, thus we just displayed the proteins 
with an unadjusted P-value < 0.05 in Fig. 2b. In terms of 
differentially mutated genes, only four sites in BRCA, 22 
in lower grade glioma (LGG), two in PAAD, and four in 
THCA were found. However, a large number of CNV 
alterations were identified; the largest number was 10,484 
in BRCA (Fig. 2b, Additional file 7: Data S3).

Remodeling of cellular metabolism appears to be a con-
sequence and possibly a cause of oncogenic transforma-
tion in human cancers. A study by Tang et  al. analyzed 
25 breast cancer patients (23 fully analyzed by TCGA) 
by chromatography/mass spectrometry and quantitated 
399 identifiable metabolites. We explored the correlation 
between these metabolites and our invasiveness score 
in BRCA cancer patients and identified 40 metabolites, 
such as β-alanine (r = − 0.825) and isovalerylcarnitine 
(r = − 0.808) [11], that were significantly negatively corre-
lated with the score (Fig. 2c). However, only two metab-
olites, glutamine (r = 0.457) and myristate (r = − 447), 
were significantly positively correlated with the score 
(Additional file 7: Figure S3B).

Integrated correlation analysis of drug response and DEGs 
across tumor types
Given the previously reported association of drug resist-
ance with invasiveness and the epithelial–mesenchymal 
transition (EMT) [35–37], we speculated that the DEGs 
between the high- and low-invasiveness score groups 
might serve as therapeutic targets. Therefore, we com-
prehensively analyzed correlations between the drug sen-
sitivity data from GDSC and the expression level of 685 
genes, which were significantly differentially expressed 
in at least ten cancer types, in cancer cell lines. Cell 
lines not derived from the 30 cancer types in TCGA 
were excluded. Finally, the RNA sequencing data of 435 
cancer cell lines and their sensitivity to 169 anti-cancer 
drugs, presented as AUC (see “Methods and materials”), 
were used for subsequent analyses (Additional file  7: 
Data S4). These drugs target several important biological 
processes, including metabolism, apoptosis, chromatin 
histone methylation, DNA replication, EGFR signaling, 
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and the p53 pathway. As shown in Fig.  3a, the network 
depicts the complicated correlations among the anti-can-
cer drugs and 104 of 685 invasiveness-related DEGs that 
were strongly correlated (|r| > 0.3) with cell line sensitiv-
ity (AUC) to at least four drugs [an interactive version 
of Fig.  3a is also provided, which is available at http://​
www.​datap​redic​tionzc.​com/​invas​ivene​ss_​drugr​espon​se, 

enabling further exploration of this complex network]. 
For example, COL3A1, a key gene in the constitution of 
the extracellular matrix (ECM), is significantly upregu-
lated in the high-invasiveness score group in 26 cancer 
types. Overexpression of COL3A1 mRNA in 435 cell 
lines was linked to higher sensitivity to four anti-cancer 
drugs, including the ATM kinase inhibitor KU55933 

Fig. 2  a The circular bar plot displays the percentages and numbers of samples in high- and low-invasiveness score group across multiple cancer 
types. Red bar represents high-invasiveness group while blue represents low. The cancers are also annotated with the physiology systems they 
belong to: ‘R’, Respiratory system; ‘U/G’, Urinary system and Genital system; ‘D’, Digestive system; ‘N’, Nervous system; ‘O’, Other systems. b Relative 
abundance and numbers of multidimensional significant discrepant invasiveness-associated molecular features. c The circos plot exhibits 
invasiveness-related metabolites in BRCA patients. The length of each arc indicates the Spearman correlation between the invasiveness score and a 
series of metabolites. Top ten negatively-correlated metabolites with the highest |r| were displayed in the plot

http://www.datapredictionzc.com/invasiveness_drugresponse
http://www.datapredictionzc.com/invasiveness_drugresponse
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(r = − 0.599). It has been reported that overexpression 
of COL3A1 is correlated with worse prognosis in many 
cancers [38, 39]. A2M, which is involved in the Fas apop-
totic signaling pathway, was upregulated in 18 cancers 
in the high-invasiveness score group and negatively cor-
related with sensitivity to eight drugs, such as Axitinib 
(r = − 0.503) and Dabrafenib (r = − 0.494). Overexpres-
sion of ACTN1 in the high-invasiveness score group 
was detected in 15 cancer types and suggested poten-
tial resistance to eight drugs, including Oxaliplatin and 
Leflunomide, both of the which target DNA replication 
(r = 0.401 and r = 0.349, respectively).

In terms of drugs, we identified the DNA-PK inhibitor 
NU7441, the GSK3 inhibitor SB216763, and KU55933 as 

three “core nodes” in the network since they were signifi-
cantly correlated with the expression of 77, 91, and 110 
invasiveness-related DEGs in our analysis (Fig.  3b–d). 
Taken together, our results demonstrate the extensive 
interactions between drug responses and invasiveness-
related genomic features, highlighting the potential of 
our invasiveness score as a predictor of anti-cancer thera-
peutic effects.

Application of the invasiveness score in assessment 
of other biological processes
To better understand the biological processes globally 
dysregulated with different invasiveness statuses, we 
conducted GO enrichment analyses of the DEGs in each 

Fig. 3  a The network exhibits the correlation between the drug sensitivity in cancer cell lines from GDSC and the expression level of 685 
invasiveness-associated DEGs across cancer types. Dark blue dots represent genes, while dots with other colors represent the anti-cancer drugs 
targeting different biological pathways. Red lines indicate positive correlation and blue lines indicate negative. b–d Genes significantly correlated 
with three important anti-cancer drugs—NU7441 (b), SB216763 (c), and KU-55933 (d)—were highlighted
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cancer type and screened the pathways that were signifi-
cantly enriched in at least ten cancer types (Additional 
file 7: Data S5). Studies have shown that the EMT plays 
an important role in cancer invasiveness, metastasis, 
and drug resistance [36, 40, 41], which is consistent with 
enrichment of “Epithelial-to-mesenchymal transition” 
[GO: 0001837] in 25 cancer types (Fig. 4a). Interestingly, 
we noticed that “response to hypoxia” [GO: 0001666] and 
a series of immune-related pathways like T cell activa-
tion (GO: 0050863) were also generally enriched across 
multiple tumor types (Fig. 4a). Therefore, we performed 
a more focused analysis to investigate the associa-
tion between our invasiveness score and cancer patient 
immunity or hypoxia status.

The “immune score” and “hypoxia score” were cal-
culated by ssGSEA based on the signatures proposed 
by Yoshihara et  al. [24] (Additional file  7: Data S1). As 
depicted in Fig. 4b, we observed a consistent and strong 
positive correlation between the invasiveness score and 
the hypoxia score across all cancer types, indicating the 
potential of combining anti-hypoxia drugs with conven-
tional anti-cancer therapies in patients with higher inva-
siveness scores. In terms of immunity, invasiveness was 
positively correlated with the immune score and diverse 
immune signatures across several cancer types, includ-
ing the expression of CD8A, TIL infiltration, CYT, the 
IFN response [42], and an expression signature of antigen 
processing and presenting machinery (Fig. 4b). However, 
the correlation between the invasiveness score and the 
mutation load, a well-recognized biomarker for immu-
notherapy, was weak. In addition to the immune-related 
pathway (gene set), we found significant overexpres-
sion of four immune checkpoint genes in the high-inva-
siveness group in various cancers, including BLCA and 
LUAD (Fig. 4c). These results suggest that highly invasive 
tumors tend to exhibit an immune-stimulatory tumor 
microenvironment, and the invasiveness score might 
serve as a new predictive biomarker for the response 
of cancer patients to immune checkpoint inhibitor 
treatment.

Invasiveness‑associated differential DNA methylation, 
miRNA expression, and CNV
Gene expression is regulated by various factors, such 
as DNA methylation, miRNAs, somatic mutations, and 
CNVs. Thus, we performed an integrative assessment of 
the associations between invasiveness-associated DEGs 
and multidimensional molecular alterations to determine 
the drivers of genomic dysregulation.

DNA methylation was the first epigenetic abnormality 
recognized in human cancer and is a ubiquitous feature 
of carcinogenesis [43], where hypermethylation generally 
leads to gene silencing and hypomethylation results in 

overexpression. The distribution of differentially methyl-
ated CpGs between the high- and low-invasiveness score 
groups in the different cancer types is presented in Addi-
tional file 5: Figure S6. In this study, we focused on meth-
ylation of the gene promoter region including TSS200, 
TSS1500, 3′-UTR, and 1st-Exon (Fig. 5a), since differen-
tially methylated genes (DMGs) are commonly defined 
according to their promoter methylation status [44, 45]. 
The genes were classified into four groups based on the 
intersection between invasiveness-associated DMGs 
and DEGs: hypermethylated and upregulated (hyper-
up), hypermethylated and downregulated (hyper-down), 
hypomethylated and upregulated (hypo-up), and hypo-
methylated and downregulated (hypo-down) (Fig.  5a, 
Additional file  7: Data S6). Considering the nature of 
DMGs and DEGs, we focused on genes in the hyper-
down and hypo-up groups in downstream analyses. For 
example, in ESCA, 83 genes were hypermethylated and 
downregulated, while 140 were hypomethylated and 
upregulated. However, these differentially methylated 
and expressed genes (DMEGs) exhibited few generali-
ties across tumor types as no identified DMEG existed in 
even at least three cancers. We also investigated whether 
somatic mutations and CNVs were associated with the 
invasiveness group independent of tumor origin. Only a 
few differentially mutated genes were detected between 
the high- and low-invasiveness groups (Fig. 2b). Despite 
a large number of significant invasiveness-related CNVs, 
the results still lacked generality and could be primar-
ily attributed to CNVs specific to certain tumor types 
(Fig.  5b). These results suggest that abnormal methyla-
tion, mutation, and CNV of a specific gene might not be a 
major driver of the dysregulation of invasiveness-related 
genes in human cancer.

We also investigated the intersection between invasive-
ness-related DEGs and differentially expressed miRNAs 
across multiple cancer types based on the miRNA-gene 
targeting relationship predicted by miRWalk. As shown 
in Fig.  5c, 21 miRNAs were significantly overexpressed 
in the high-invasiveness score group in at least 16 can-
cer types, while 17 genes, which were potentially regu-
lated by these miRNAs, were downregulated in at least 
five tumors (Additional file  7: Data S7). For instance, 
members of the miR-199 and miR-214 families, which 
have been reported to cooperatively regulate the EMT 
in triple negative breast cancer [46] and promote inva-
sion and metastasis of melanoma [47], were upregulated 
in 15 cancers, including BLCA, BRCA, and ESCA, while 
their target genes, such as CEACAM, were downregu-
lated. Downregulation of CEACAM is considered a pre-
dictive marker of rectal cancer recurrence [48], and HLF 
serves as a driver of hepatocellular carcinoma [49]. The 
heatmaps in Fig. 5c demonstrate that the logFC between 
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Fig. 4  a The radar plot exhibits several GO biological pathways that were significantly enriched in multiple cancer types based on the 
invasiveness-related DEGs. The number of cancers of each biological pathway is shown as the position of the corresponding dot in each spoke. b 
Correlation between the invasiveness score and the ssGSEA score of several pathways, as well as the mutation load, across 30 cancer types. Dot size 
is proportional to the −log P-value of correlation; color indicates magnitude of correlation (r value). c Comparison of the 4 immune-checkpoint 
molecules’ expression level in high- and low-invasiveness group across multiple cancer types. The points connected by lines represent the mean 
value of the expression level in each group across different cancer types, whereas the significantly differential expression is annotated with a red dot 
on the top of plot. Dot size are proportional to the −log P-value of t-test
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the high- and low-invasiveness score groups of these tar-
get genes tended to be the opposite of miRNAs, indicat-
ing the important role miRNAs play in the regulation of 
invasiveness.

Investigation of invasiveness‑associated genomic 
alterations and drug sensitivity in ESCA
To further explore the association between the invasive-
ness status of a tumor and sensitivity to anti-cancer treat-
ment, we performed a thorough and integrated analysis 
to assess correlations among multidimensional invasive-
ness-related molecular features and drug response data 
predicted by Geeleher et al. based on a novel algorithm 
[15]. We focused on ESCA as an example since ESCA 
is one of the most focused cancer types in our depart-
ment of thoracic surgery, and exhibits the most typical 
mutual regulation of RNAs, miRNAs, and DNA meth-
ylation. A total of 38 genes were significantly upregulated 
in the high-invasiveness score group, and all of which 
were hypomethylated and regulated by several down-
regulated miRNAs (Fig. 6). The expression levels of these 
genes were significantly correlated with the IC50 values of 
various anti-cancer drugs (|r| > 0.3, p < 0.05), while miR-
NAs displayed opposite correlations with the same drug 
(Additional file  7: Data S8). For example, ADAM12, a 
biomarker of cancer stem cell phenotype which has been 
reported to promote esophageal squamous cell carcino-
mas invasion [50, 51], was upregulated in high-invasive-
ness ESCA patients (logFC = 2.01, FDR = 2.92 × 10−22), 
and showed hypomethylation in the promoter region 
(logFC, or delta-β = − 0.25, FDR = 0.0005). The expres-
sion level of ADAM12 was negatively correlated with 
the response to 20 anti-cancer drugs, inclu-ding the 
tyrosine kinase inhibitors Imatinib and Pazopanib 
(r = − 0.701 and − 0.598, respectively), the angiokinase 
inhibitor AMG.706 (r = − 0.626), the mitosis inhibitor 
Docetaxel (r = − 0.553), and Cisplatin, which interferes 
with DNA replication (r = − 0.531). Three miRNAs that 
target the 3′-UTR regions of ADAM12 exhibited sig-
nificant downregulation in the high-invasiveness score 
group (miR-130b-3p: logFC = − 0.535, FDR = 0.041; miR-
130b-3p: logFC = − 0.509, FDR = 0.005; miR-502-3p: 
logFC = − 0.713, FDR = 1.554 × 10−04), and the miRNAs 

positively correlated with drug responses (resistance) 
which have negative correlations with ADAM12, such as 
miR-30b-5p with Imatinib and Docetaxel (r = 0.418 and 
r = 0.404, respectively) and miR-502-3p with Imatinib 
and Cisplatin (r = 0.484 and r = 0.470, respectively). 
Moreover, a similar gene-methylation-miRNA-drug reg-
ulatory network was observed in genes upregulated in 
low-invasiveness score ESCA patients (Additional file 6: 
Figure S7, Additional file 7: Data S9). Taken together, our 
findings demonstrate the complicated regulatory mecha-
nism of tumor invasiveness in multiple dimensions, and 
present several potential biomarkers and therapeutic tar-
gets for future research.

Discussion
Tumor invasiveness reflects a series of biological changes 
that contribute to tumorigenesis, progression, metastasis, 
and response to anti-cancer therapy. Therefore, a com-
prehensive genomic analysis focusing on the comparison 
of cancer patients characterized by different invasive-
ness statuses will be important to guide more precise and 
personalized anti-cancer therapeutic strategies [18, 52]. 
In this study, we first demonstrated the robustness of a 
24-gene signature that defines malignancy and tumor 
invasiveness across 30 cancer types in TCGA, and then 
classified tumor patients into high- and low-invasiveness 
score groups based on the invasiveness score in each can-
cer. The prognostic value of the invasiveness score was 
determined and externally validated in several independ-
ent cohorts. Moreover, by integrating multi-omics data, 
we provided an integrative view of invasiveness-associ-
ated dysregulated molecular features and investigated 
their mutual interfering relationships and correlations 
with drug responses, thus depicting the complex regula-
tory network of tumor invasiveness in multiple dimen-
sions. The major results for each result subsection and 
some heuristic choices used for the criteria for common 
molecular alteration in different datatype in this study 
were summarized in Additional file 1: Tables S1 and S2.

It has been hypothesized that as carcinomas aris-
ing from epithelial tissues progress to higher pathologi-
cal grades of malignancy, reflected in local invasion and 

Fig. 5  a Inner ring: scatter plot of mean methylation difference (shown as delta beta value) versus expression difference (shown as log Fold 
change) in 7 cancer types. Each point represents a CpG-gene pair. Outer ring: Bar plot exhibited the distribution of differentially methylated and 
expressed genes across gene regions (promoter only: TSS1500, TSS200, 5′-UTR, 1st exons) in different cancer types. b Invasiveness-associated copy 
number variations (CNVs) across twelve cancer types. The results show significantly higher CNV frequency in high-invasiveness score group (red), 
and lower frequency in low-invasiveness score group (blue). c Common upregulated miRNAs and downregulated genes in high-invasiveness 
score group across multiple cancer types. The arc plot (right) shows the targeting relationship (thin lines) between miRNAs (green dots) and genes 
(purple dots). The heatmaps (left) exhibits the log Fold change (high-invasiveness vs. low-invasiveness) of each miRNA and gene in different cancer 
types, where red cell represents significantly upregulated while blue represents significantly downregulated and white represents no-significance

(See figure on next page.)
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distant metastasis, the associated cancer cells typically 
develop alterations in their shape as well as in their 
attachment to other cells and to the ECM [2]. This com-
plex process can be considered a consequence of the 
combined effect of the EMT [53, 54], the presence of 
activated fibroblasts in the reactive desmoplastic stroma, 
and the tumor microenvironment, which are regulated 
by accumulated genetic and epigenetic alterations. The 
interruption of any one or more of these steps could 
potentially inhibit the development of tumor invasive-
ness [55].

The 24-gene signature proposed by Kim et  al. used 
in this study integrates critical regulator genes in this 

cascade, including THBS2 and INHBA, which are 
involved in TGF-β signaling and facilitate fibroblast-
mediated collagen gel contraction, resulting in ECM 
remodeling and tumor invasiveness [56, 57]. Hence, it 
is consistent with previous studies that in most can-
cer types (23 of 30), a higher invasiveness score was 
associated with worse RFS, and its prognostic value 
was further validated in several external cohorts from 
GEO, PRECOG, and our institution. However, in a few 
cancers, such as DLBC, THCA, LIHC, and HNSC, we 
observed opposite results, which may be a result of the 
different origin, biological characteristic, and microen-
vironment of specific cancer types. It is widely accepted 

Fig. 6  Intersection of invasiveness-related mRNAs, DNA methylation, miRNAs and response in ESCA. Upregulated genes (blue dots) in 
high-invasiveness group were all hypo-methylated and regulated by multiple downregulated miRNAs (green dots). The expression levels of these 
genes significantly correlated with the IC50 to various kinds of anti-cancer drug (red dots, |r| > 0.3, p < 0.05), while that of miRNAs displayed opposite 
correlation with the same drug. The pink lines represent the targeting relationship between miRNA and genes, or the correlation between miRNA/
gene and drug response
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that one gene might play diverse roles in different can-
cers. Therefore, we speculated that several genes from 
the 24-gene signature might generate unexpected effect 
on the invasiveness level of these tumor types, thus 
leading to the opposite prognostic results. For exam-
ple, INHBA (inhibin βA), a subunit of a ligand of the 
transforming growth factor-β superfamily, has been 
reported to be a tumor suppressor in DLBC [58], but 
a promotor in BRCA [59]. Meanwhile, TIMP3, which 
encodes a metalloproteinases inhibitor, also suppresses 
the invasion and migration of a few cancer types such 
as LIHC and THCA [60, 61]. In addition, Lai et al. indi-
cated that SULF1 normally functions as a negative reg-
ulator in HNSC and loss of it potentiates growth factor 
signaling, enhances motility, invasiveness and inhibits 
stress-induced apoptosis [62]. However, considering 
our results from TCGA and external validation cohorts, 
despite these exceptions, we still firmly believe the 
robustness and representativeness of our invasiveness 
score in most cancer types.

Another important finding of this analysis was the sig-
nificant positive correlation between the invasiveness 
score and a series of immune-associated biomarkers, as 
well as the higher enrichment level of several immune-
checkpoint molecules in the high-invasiveness score 
group across multiple cancer types, implicating poten-
tial application of the score in the identification of tumor 
patients who are more likely to benefit from immuno-
therapy. This phenomenon of increased immune infil-
tration in higher invasiveness tumors could be partly 
explained by the existence of cancer-associated fibro-
blasts (CAFs), which are important during tumor growth, 
invasion, and dissemination through a paracrine fashion 
[63]. Evidence continues to mount that activated CAFs 
contribute to not only the maintenance of an inflam-
matory phenotype within the tumor microenvironment 
by the secretion of several chemokines involved in the 
recruitment of innate and adaptive immune cells, such 
as monocytes, mast cells, and T cells, but also through 
their acquisition of an immune-editing and immuno-
suppressive phenotype [63, 64]. We also found a strong 
correlation between the invasiveness score and the level 
of hypoxia, which might be due to poor perfusion and 
excessive oxygen consumption in advanced stage tumors. 
It has been reported that hypoxia-inducible transcrip-
tion factors (HIFs) also participates in compromising 
the cytotoxic functions of immune cells that infiltrate 
tumors, further enhancing the malignant phenotype 
[65]. Therefore, in cancer patients with high-invasive-
ness scores, the combined use of anti-CAF therapy, anti-
hypoxia therapy, and immunotherapy aimed at targeting 
immune checkpoint blockade might reverse the immu-
nosuppressive tumor microenvironment, resulting in a 

more durable therapeutic response [66] and changing the 
face of anti-cancer treatment.

A number of potential therapeutic targets were identi-
fied through our correlation analysis of common DEGs 
in multiple cancer types and drug-response data, such as 
the GSK3-inhibitor SB216763, which has been reported 
to inhibit the proliferation of several cancers [67]. 
Another “core” drug, the DNA-PK inhibitor NU7441, has 
been demonstrated to increase cancer cell sensitivity to 
chemotherapy and radiotherapy [68]. Although several 
previous studies have shown the importance of DNA 
methylation, miRNA regulation, somatic mutations, and 
CNVs in cancer invasiveness and metastasis [46, 69], 
alterations in mutations and copy number seem to be 
mostly determined by tumor type. By contrast, our cor-
relation analyses illustrated the complicated intersection 
among common invasiveness-related dysregulated genes, 
miRNAs targeting the 3′-UTR regions, and promoter 
methylation in different cancer types; we also integrated 
these invasiveness-associated genomic alterations and 
drug sensitivity in ESCA samples. Further in  vitro and 
in vivo validations are warranted to determine the clinical 
relevance of these drugs in patients with different inva-
siveness statuses and corresponding genomic alterations.

Interestingly, we found a strong negative correlation 
between the invasiveness score and several metabolites, 
including β-alanine and isovalerylcarnitine. Vaughan 
et al. demonstrated β-alanine functions as an intracellu-
lar buffer in the regulation of cancer cell energetics that 
elicits several anti-tumor effects by suppressing glycolytic 
and oxidative metabolism, resulting in reduction of the 
total metabolic rate [70]. However, no research regard-
ing the impact of isovalerylcarnitine and cancer has been 
published. A pan-cancer study focusing on the potential 
clinical implications of the combination of invasiveness 
score and metabolites will be necessary to validate our 
findings.

Our study still has several limitations. First, consider-
ing the spatial heterogeneity in one tumor sample, the 
lack of multi-loci sampling RNA-sequence data within 
a single tumor in these public large-scale datasets such 
as TCGA and GEO might weaken the predictive value 
of the invasiveness score. With advancements in single-
cell sequence techniques, we believe this will be read-
ily addressed in future studies. Second, the information 
regarding the immunotherapy process and outcome 
were not provided in TCGA database, thus limiting us 
from validating our findings on the associations between 
cancer immunity and invasiveness in patients receiv-
ing immunotherapy. Third, as a pan-cancer analysis, our 
research is aimed at identifying the common molecular 
alterations related to tumor invasiveness across most 
tumor types. However, during this process, some distinct 
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but important features in specific cancer, such as the 
diverse prognostic value of one gene in different tumor 
types mentioned above, might be inevitably neglected. 
Further research beyond these common features is war-
ranted to precisely elucidate the specific meaning of our 
gene signature, invasiveness score, and all of the molecu-
lar alterations, in each cancer type.

Conclusion
In summary, by integrating multi-omics data, our large-
cohort pan-cancer study provides a comprehensive atlas 
of genomic factors associated with tumor invasiveness 
and extracts common molecular alterations across tumor 
types, shedding light on the complex regulatory network 
of tumor invasiveness and may guide more precise and 
personalized therapeutic strategies for tumor patients.
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