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Abstract
Background: Previously, antigens expressed from DNA vaccines have been fused to the VP22
protein from Herpes Simplex Virus type I in order to improve efficacy. However, the immune
enhancing mechanism of VP22 is poorly understood and initial suggestions that VP22 can mediate
intercellular spread have been questioned. Despite this, fusion of VP22 to antigens expressed from
DNA vaccines has improved immune responses, particularly to non-secreted antigens.

Methods: In this study, we fused the gene for the VP22 protein to the gene for Protective Antigen
(PA) from Bacillus anthracis, the causative agent of anthrax. Protective immunity against infection
with B. anthracis is almost entirely based on a response to PA and we have generated two
constructs, where VP22 is fused to either the N- or the C-terminus of the 63 kDa protease-cleaved
fragment of PA (PA63).

Results: Following gene gun immunisation of A/J mice with these constructs, we observed no
improvement in the anti-PA antibody response generated. Following an intraperitoneal challenge
with 70 50% lethal doses of B. anthracis strain STI spores, no difference in protection was evident
in groups immunised with the DNA vaccine expressing PA63 and the DNA vaccines expressing
fusion proteins of PA63 with VP22.

Conclusion: VP22 fusion does not improve the protection of A/J mice against live spore challenge
following immunisation of DNA vaccines expressing PA63.

1.0 Background
The VP22 protein is a major component of the amor-
phous tegument region of the Herpes Simplex Virus type
I (HSV-1). Composed of 301 amino acids, it has become
known as a protein transduction domain able to mediate
intercellular spread. Like other translocatory proteins such
as antennapedia and the HIV Tat protein, it is highly basic,

it is able to bind heparin or sialic acid and all three pro-
teins have an almost identical predicted pI [1]. VP22 has
been reported as being able to exit the cell in which it is
synthesised via an uncharacterised, golgi-independent
secretory pathway and subsequently enter surrounding
cells by a non-endocytic mechanism. These properties
may be retained after fusion to other proteins [2].
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The ability to 'piggyback' proteins or peptides into cells
may be particularly useful for gene therapy. Thymidine
kinase and p53 have benefited from fusion with VP22
[3,4]. VP22 has been fused to proteins and delivered by a
viral vector. For example, p53 delivered by an adenovirus
vector [5,6], GFP delivered by a lentivirus vector [7] and
Human papillomavirus E7 antigen delivered by a Sindbis
replicon [8,9] have all proved more effective after VP22
fusion.

However, the ability of VP22 to mediate intercellular
spread has been questioned, based on in vitro studies that
use methanol fixation. Because methanol dissolves cellu-
lar membranes, it may produce an artefact interpreted as
cell to cell spread [10]. In further studies, transport could
not be detected in live cells [11] and a fusion protein of
VP22 and diphtheria toxin A (a single molecule of which
is lethal to a cell) could not cross the cell membrane and
cause a measurable cytotoxic effect [12]. A critical analysis
of the literature has led to the conclusion that the effects
of VP22 can be explained by well-established biological
principles whereby VP22 causes liberation from cells, pos-
sibly by cell death. Following this, the protein may bind
to surrounding cells, but does not efficiently penetrate cel-
lular membranes [1].

Irrespective of whether VP22 can mediate intercellular
spread however, VP22 can enhance in vivo responses to a
number of antigens not only in the context of gene ther-
apy, but also when fused to antigens within a DNA vac-
cine. This could be particularly useful because although
DNA vaccines can offer protection against a wide variety
of pathogens in small animal models, their efficacy in
larger animal models and primates is insufficient. In this
study, we evaluate the potential of VP22 to enhance DNA
vaccines against anthrax.

The spore-forming bacterium Bacillus anthracis causes the
disease anthrax. The current UK-licensed vaccine is an
alum-precipitated filtrate of a B. anthracis Sterne strain cul-
ture, administered by the intramuscular route, which
occasionally causes some transient reactogenicity in
vacinees [13]. The US-licensed vaccine is the Anthrax Vac-
cine Adsorbed (BioThrax-AVA) vaccine produced from the
culture supernatant fraction of the V770-NP1-R strain
[14].

The key component in both these vaccines is the protec-
tive antigen (PA), which along with lethal factor (LF) and
edema factor (EF) forms a tripartite toxin and is one of the
virulence factors of the bacteria [15]. Host cell intoxica-
tion is thought to occur after binding of the full length 83
kDa PA to the host cell membrane receptor. The 20 kDa
N-terminal fragment of PA is cleaved by furin protease
exposing the LF-EF binding site [16]. The 63 kDa PA frag-

ments form a heptameric pore, the LF or EF bind and the
whole toxin complex is internalised [17,18].

DNA vaccines against B. anthracis expressing either the 63
kDa fragment of PA [19,20] or the 83 kDa PA protein have
proved successful [21]. Protection against lethal toxin
challenge in Balb/c mice or a spore challenge in NZW rab-
bits can be achieved by either intramuscular or gene gun
immunisation [19-22]. Attempts to enhance the protec-
tive efficacy of DNA vaccines against anthrax include co-
administration with a DNA vaccine expressing LF, and a
DNA prime / protein boost regimen [20] or the use of cat-
ionic lipids [22].

The aim of this study was to assess the potential of VP22
to enhance the immunogenicity of a DNA vaccine express-
ing the 63 kDa fragment of PA (PA63) attached to a secre-
tion signal. The VP22 protein, which has previously been
shown to improve the performance of DNA vaccines [23-
26], was fused to either the N- or the C-terminus of PA63.
We show that following gene gun administration of these
vaccines, fusion with VP22 does not improve anti-PA anti-
body responses to the PA63 DNA vaccine, nor does it
increase protection against anthrax lethal spore challenge.

2.0 Methods
2.1 Construction of DNA vaccines
The DNA vaccine pGPA contains the signal sequence for
human plasminogen activator fused to the N-terminus of
the gene for the 63 kDa fragment of PA [19] and was a
kind gift from Dennis Klinman (Food and Drug Adminis-
tration, USA). To include the VP22 sequence derived from
amino acids 159 – 301, which possesses the full transport
activity of the native protein (both the intrinsic transport
ability and the ability to carry proteins of significant size
[27]), the following strategy was employed. To construct
the N-terminal fusion, the gene for the VP22 sequence was
PCR amplified from pCR®T7/VP22-1 (Invitrogen) using
primers VP22 F9 (5' ACTCTAGCTAGCACGGCGCCAAC-
CCGATCCAAGACA 3') and VP22 R8 (5'
ATTGTCACGGTCTGGAACCGTAGGAGCAGCTGGACCT-
GGACCCTCGACGGGCCGTCTGGGGCGAGA 3'). Addi-
tionally, the gene for PA63 was PCR amplified from pGPA
using primers PA F8 (5' CCTACGGTTCCAGACCGT-
GACAAT 3') and PA R9 (5' CGCGGATCCTTATCCTATCT-
CATAGCC 3'). The two sequences were then fused
together by PCR [28] using primers VP22 F9 and PA R9.

To create the C-terminal fusion, the gene for the PA63
sequence was PCR amplified from pGPA using primers PA
F11 (5' CTAGCTAGCCCTACGGTTCCAGACCGTGACAAT
3') and PA R10 (5'
TGTCTTGGATCGGGTTGGCGCCGTAGCAGCTGGACCT-
GGACCTCCTATCTCATAGCC 3'). The gene for VP22 was
PCR amplified from pCR®T7/VP22-1 (Invitrogen) using
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primers VP22 F10 (5' CGGCGCCAACCCGATCCAAGACA
3') and VP22 R11 (5' CGCGGATCCTTACTCGACG-
GGCCGTCTGGGGCGAGA 3'). The two sequences were
then fused together using VP22 F10 and VP22 R11 by PCR
fusion [28]. The PCR primers used to create the two gene
fusions were designed to incorporate a linker sequence of
Gly-Pro-Gly-Pro-Ala-Ala between the VP22 and PA63 pro-
teins, to allow folding of the fusion protein. Using restric-
tion sites NheI and BamHI, the PA63 gene was exised from
pGPA and the gene fusions were ligated into the vector to
form pSTU-22-PA (N-terminal fusion) and pSTU-PA-22
(C-terminal fusion). These constructs were verified by
sequencing and are schematically represented in figure 1.

The control DNA vaccine expressing VP22 only (pSTU22)
has been previously described [26]. The plasmid DNA was
prepared using Qiagen Endofree DNA purification col-
umns (Qiagen Ltd).

2.2 Western blot analysis of expressed proteins
African Green Monkey Kidney COS-7 cells (European
Collection of Animal Cell Cultures, Porton Down) were

plated at 1–5 × 105 cells well-1 into 6 well plates (Corn-
ing). Cells were transfected with 1 µg of plasmid DNA
using the transfection reagent Polyfect (Qiagen) according
to the manufacturer's guidelines. Transfected cell lysates
were separated by 4–20% polyacrylamide gel electro-
phoresis (Tris-Glycine gel, Invitrogen), using XCell Sure-
Lock™ Mini-Cell apparatus (Invitrogen) according to the
manufacturer's protocol. Protein from the gel was then
transferred to nitrocellulose by electroblotting (Invitro-
gen). An ECL Western blotting kit (Amersham Bio-
sciences) was used with antibody to PA (rabbit polyclonal
sera) or VP22 (rabbit polyclonal sera) to detect expression
from DNA vaccines.

2.3 Vaccination of Balb/c mice
Groups of 10 female A/J mice (Harlan OLAC) were immu-
nised with 1 µg of DNA coated onto gold particles and
delivered using a Helios™ gene gun (BioRad) as described
previously [29]. Mice were immunised three times at two-
week intervals. Blood was taken from the tail vein prior to
challenge for serum antibody analysis by enzyme-linked
immunosorbent assay (ELISA).

DNA vaccines constructed in this study as in section 2.1Figure 1
DNA vaccines constructed in this study as in section 2.1. DNA vaccine expressing PA63 (pGPA) is a kind gift from Dennis Klin-
man (Food and Drug Administration, USA). (Abbreviations: PCMV, CMV promoter; Sig, Signal sequence; BGH polyA, Bovine 
growth hormone polyadenylation signal).
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2.4 Measurement of anti-PA antibodies by ELISA
Microtitre plates were coated with 5 µg ml-1 recombinant
PA (Aldevron) in phosphate-buffered saline using 50 µl
well-1 and incubated overnight at 4°C. Three columns on
each plate were coated with anti-IgG (Fab) (Sigma) in
order to produce a standard curve for quantification of
IgG concentration. After washing three times with PBS
containing 0.2% Tween-20, non-specific binding was
blocked with 5% (w/v) powdered skimmed milk in PBS
and the plates were incubated for 2 hours at 37°C. The
plates were washed three times and serum was added at a
starting dilution of 1:50 in blocking buffer, and double-
diluted down the plate. IgG or isotype standards (Sigma),
diluted in blocking buffer, were added to wells which had
been coated with anti-IgG (Fab) (Sigma), and double
diluted as before. Plates were incubated for 1.5 hours at
37°C before washing and the addition of goat anti-mouse
IgG (or anti-mouse IgG isotype) conjugated to horserad-
ish peroxidase (Sigma), diluted in blocking buffer. Plates
were incubated for 1 hour at 37°C, then washed 3 times
before addition of the substrate ABTS (Sigma). Absorb-
ance at 410 nm was measured after 20 minutes incubation
at room temperature and analysed using Ascent software.

2.5 Challenge with B. anthracis
Three weeks after the final immunising dose, mice were
challenged intraperitoneally with B. anthracis STI (Tox+

Cap-) spores. Sufficient spores for the challenge were
removed from stock cultures, washed in sterile distilled
water, and resuspended in PBS to a concentration of 7 ×
105 spores ml -1. Mice were challenged with 100 µl vol-
umes containing 7 × 104 spores per mouse (equivalent to
70 50% lethal doses [LD50s] [30]) and were monitored for
18 days post challenge to determine their protected status.
Humane endpoints were strictly observed so that any ani-
mals displaying a collection of clinical signs that indicated
a lethal infection were culled.

2.6 Statistical Methods
One-way ANOVA with Tukey's multiple comparison post
analysis test and statistical analysis of survival using the
Mantel-Haenszel Logrank test were performed using
GraphPad Prism version 3.02 for Windows, GraphPad
Software, San Diego, California, USA http://www.graph
pad.com.

3.0 Results
3.1 In vitro expression of DNA vaccines
DNA vaccines encoding PA63, VP22-PA63, PA63-VP22 or
VP22 (Figure 1) were transfected into African Green Mon-
key Kidney cells (COS-7). Cells were harvested and proc-
essed for Western blot analysis 48 hours post transfection.
Cells transfected with the PA63-encoding DNA vaccine
expressed a protein of approximately 68 kDa that reacted
with PA-specific antibody. Fusion of VP22 to either the N-

terminal or C-terminal of PA63 resulted in a protein of
approximately 90 kDa that reacted with both PA-specific
antibody and VP22-specific antibody (Figure 2). Control
cells, transfected with plasmid DNA expressing VP22 only
expressed a protein of approximately 22 kDa that reacted
with VP22-specific antibody. Some degradation of the
PA63 proteins was evident irrespective of whether fused to
VP22 or not. However, the degraded fusion proteins were
recognised by both the anti-PA and anti-VP22 antibodies
suggesting that this degradation was not due to instability
at the point of fusion of the two proteins.

3.2 Anti-PA antibody responses following gene gun 
immunisation
Groups of 10 female A/J mice were immunised three
times by gene gun administration of 1 µg plasmid DNA at
two weeks intervals. Serum samples were collected 17
days after the third immunisation (4 days before chal-
lenge). Sera from individual mice were assayed for PA-
specific total IgG (Figure 3). Mice immunised with PA63-
expressing DNA vaccine produced a mean titre of 27,216
ng/ml total PA-specific IgG, compared with 18,823 ng/ml
and 19,448 ng/ml for the VP22-PA63 and PA63-VP22 -
expressing DNA vaccines respectively. These antibody
titres of PA-specific total IgG did not differ significantly
between the three groups (p > 0.05, One-way ANOVA
with Tukey's multiple comparison posthoc analysis).

3.3 Protection against anthrax spore challenge
Mice were challenged three weeks after the final dose with
70 50% lethal doses of B. anthracis strain STI by the intra-
peritoneal route. The DNA vaccine expressing PA63 con-
ferred 70% survival to the immunised mice. In
comparison, 80% and 50% of the mice survived following
immunisation with the DNA vaccines expressing VP22-
PA63 and PA63-VP22, respectively (Figure 4). Thus inclu-
sion of the VP22 protein at either the N- or C-terminus of
PA63 did not significantly alter protection of the mice. All
three vaccines offered a significant level of protection
compared to naïve mice. Statistical analysis of survival
was performed using the Mantel-Haenszel Logrank test
(GraphPad Prism).

4.0 Discussion
The Herpes Simplex virus type I VP22 protein has been
suggested to mediate intercellular spread by exit from cells
in a golgi-independent manner and entry to adjacent cells
by a non-endocytic mechanism [2]. However, in vitro
studies of this protein remain inconclusive, with reports
that the apparent effects of VP22 can be attributed to an
artefact produced by methodology [1,10,31,32]. Despite
the controversy surrounding in vitro studies, most in vivo
work shows that VP22 has a beneficial effect, particularly
in the gene therapy field. Fusion of VP22 to either the pro
drug-activating enzyme thymidine kinase [3] or the
Page 4 of 9
(page number not for citation purposes)

http://www.graphpad.com
http://www.graphpad.com


Genetic Vaccines and Therapy 2005, 3:3 http://www.gvt-journal.com/content/3/1/3
Western blot analysis of DNA vaccinesFigure 2
Western blot analysis of DNA vaccines. Membranes were probed with anti-PA antibody (A) or anti-VP22 antibody (B) as 
described in section 2.2. Cells were untransfected (1) or transfected with DNA vaccines expressing VP22 (2), PA63 (3), VP22-
PA63 (4) or PA63-VP22 (5).

M 1 2 3 4 5

M 1 2 3 4 5

A

B

120 kDa

100 kDa

80 kDa

60 kDa

120 kDa

100 kDa

80 kDa

60 kDa

30 kDa

20 kDa
Page 5 of 9
(page number not for citation purposes)



Genetic Vaccines and Therapy 2005, 3:3 http://www.gvt-journal.com/content/3/1/3
transcription factor p53 [5] results in an improvement in
their effectiveness. Similarly, inclusion of this protein
within a DNA vaccine can increase immune responses.
Antigens shown to benefit from fusion to VP22 include
Yellow Fluorescent Protein (YFP) [24], Enhanced Green
Fluorescent Protein (EGFP) [26] and the human papillo-
mavirus (HPV) E7 protein [23,25,33,34].

In this study, the VP22 protein has been fused to either the
N- or C-termini of the Protective Antigen (PA) of B.
anthracis. This antigen expressed from a DNA vaccine is
protective against challenge with either lethal toxin (PA
plus LF) in Balb/c mice [19,20] or spore challenge in New
Zealand white rabbits [21]. We used an immunisation
regimen and challenge dose of STI spores designed to
offer significant but not full protection to anthrax chal-

lenge of A/J mice. This design would allow us to demon-
strate any increased protection due to fusion of VP22 to
PA within the DNA vaccine. Our results showed that the
fusion of VP22 with PA63 at either terminus failed to sig-
nificantly enhance anti-PA antibody responses compared
to the PA63 DNA vaccine. Following challenge, all three
DNA vaccines expressing either PA63, VP22-PA63 or PA63-
VP22 offered significant protection against 70 LD50's of B.
anthracis compared to unimmunised control mice. How-
ever, the inclusion of VP22 did not significantly increase
or decrease the protection afforded when compared to
PA63-expressing DNA vaccine alone. This suggests that the
fusion of VP22 to either the N- or C-terminus of PA63
within a DNA vaccine, does not alter either the antibody
response elicited in vivo or the protection afforded to A/J
mice following spore challenge. The longevity of the

A/J mice were immunised with DNA vaccines expressing PA63, VP22-PA63 or PA63-VP22Figure 3
A/J mice were immunised with DNA vaccines expressing PA63, VP22-PA63 or PA63-VP22. Anti-PA total IgG levels in the sera at 
day 38 were determined by ELISA. Bars represent the mean of each group, the error bars represent 95% confidence intervals. 
n = 10 mice per group.
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immune response or the ability of these DNA vaccines to
initiate long-term protection was not evaluated in this
study.

The failure of VP22 fusion to increase antibody responses
to PA63 contrasts with other YFP, EGFP or HPV E7 antigens
expressed from DNA vaccines where improvement is evi-
dent [23-26]. Furthermore, the failure to increase protec-
tion against B. anthracis challenge contrasts with studies
involving DNA vaccines expressing HPV E7 protein where
protective anti-tumour immunity was increased with
VP22 fusion [33,34]. However, the DNA vaccines express-
ing the reporter proteins YFP and EGFP lack secretion sig-
nals and the level of enhancement afforded to the HPV E7
protein following fusion with VP22 was equivalent to that
afforded by inclusion of a secretion signal [23]. The PA63-
expressing DNA vaccine used here does contain a secre-
tion signal.

The inclusion of a secretion signal is a commonly used
strategy for DNA vaccination as liberation of the protein
from the cell can increase immune responses [35-37]. The
inclusion of VP22 within a DNA vaccine may enable non-
secreted proteins to exit the cell thus increasing their expo-
sure to antigen presenting cells such as dendritic cells. This

is consistent with the hypothesis that VP22 does not
mediate intercellular spread as first described, but rather is
liberated from cells possibly by cell death [1]. Apart from
liberation of the expressed protein from the cell, VP22
may enhance DNA vaccines in other ways. For example,
the fusion of immunostimulatory sequences to antigens
expressed from DNA vaccines has been shown to provide
cognate T cell help [38]. In this study, a DNA fusion vac-
cine against B cell tumours uses the non-toxic C fragment
of tetanus toxin. So it is possible that fusion of VP22 to
antigens encoded by DNA vaccines may improve immu-
nogenicity by provision of cognate T cell help.

5.0 Conclusion
This study investigates the inclusion of the VP22 protein
in a DNA vaccine expressing PA63 of B. anthracis. The VP22
protein has been shown previously to enhance the per-
formance of DNA vaccines expressing non-secreted pro-
teins. In this case, the PA63-expressing DNA vaccine
contains the human plasminogen activator signal
sequence [19]. Inclusion of VP22 within this DNA vaccine
construct did not enhance anti-PA antibody responses or
offer an increase in the level of protection afforded to A/J
mice following anthrax spore challenge. This suggests that
although VP22 can improve responses to DNA vaccines

Numbers of mice surviving 18 days post challenge with 70 LD50s of B. anthracis STI spores after immunisation with DNA vac-cines expressing PA63, VP22-PA63 or PA63-VP22. n = 10 mice per groupFigure 4
Numbers of mice surviving 18 days post challenge with 70 LD50s of B. anthracis STI spores after immunisation with DNA vac-
cines expressing PA63, VP22-PA63 or PA63-VP22. n = 10 mice per group.
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encoding non-secreted proteins, it does not improve
responses to a PA63-expressing DNA vaccine encoding a
secretion signal.
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