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Differentiation of hepatocellular adenoma 
by subtype and hepatocellular carcinoma 
in non‑cirrhotic liver by fractal analysis 
of perfusion MRI
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Abstract 

Background:  To investigate whether fractal analysis of perfusion differentiates hepatocellular adenoma (HCA) 
subtypes and hepatocellular carcinoma (HCC) in non-cirrhotic liver by quantifying perfusion chaos using four-dimen-
sional dynamic contrast-enhanced magnetic resonance imaging (4D-DCE-MRI).

Results:  A retrospective population of 63 patients (47 female) with histopathologically characterized HCA and HCC in 
non-cirrhotic livers was investigated. Our population consisted of 13 hepatocyte nuclear factor (HNF)-1α-inactivated 
(H-HCAs), 7 β-catenin-exon-3-mutated (bex3-HCAs), 27 inflammatory HCAs (I-HCAs), and 16 HCCs. Four-dimensional 
fractal analysis was applied to arterial, portal venous, and delayed phases of 4D-DCE-MRI and was performed in 
lesions as well as remote liver tissue. Diagnostic accuracy of fractal analysis was compared to qualitative MRI features 
alone and their combination using multi-class diagnostic accuracy testing including kappa-statistics and area under 
the receiver operating characteristic curve (AUC). Fractal analysis allowed quantification of perfusion chaos, which 
was significantly different between lesion subtypes (multi-class AUC = 0.90, p < 0.001), except between I-HCA and 
HCC. Qualitative MRI features alone did not allow reliable differentiation between HCA subtypes and HCC (κ = 0.35). 
However, combining qualitative MRI features and fractal analysis reliably predicted the histopathological diagnosis 
(κ = 0.89) and improved differentiation of high-risk lesions (i.e., HCCs, bex3-HCAs) and low-risk lesions (H-HCAs, I-HCAs) 
from sensitivity and specificity of 43% (95% confidence interval [CI] 23–66%) and 47% (CI 32–64%) for qualitative MRI 
features to 96% (CI 78–100%) and 68% (CI 51–81%), respectively, when adding fractal analysis.

Conclusions:  Combining qualitative MRI features with fractal analysis allows identification of HCA subtypes and 
HCCs in patients with non-cirrhotic livers and improves differentiation of lesions with high and low risk for malignant 
transformation.
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Key points

•	 Fractal analysis quantifies chaos of perfusion in dif-
ferent hepatocellular adenoma (HCA) subtypes and 
hepatocellular carcinoma (HCC) in the non-cirrhotic 
liver using perfusion MRI.
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•	 Visual analysis of MRI features was not sufficiently 
reliable to differentiate between HCA subtypes and 
HCCs in non-cirrhotic livers.

•	 Combining fractal analysis of perfusion and qualita-
tive MRI features allowed reliable prediction of the 
histopathological lesion subtype.

•	 Fractal analysis of perfusion improved differentiation 
of lesions by risk for malignant transformation.

Background
Hepatocellular adenomas (HCAs) are rare liver tumors 
that mainly develop in young women taking oral contra-
ception [1]. HCAs are a heterogeneous group of different 
subtypes of neoplastic benign hepatocellular prolifera-
tions. Genotype–phenotype classifications have led to 
the identification of five distinct subtypes based on mor-
phological and immunophenotypical features, which are 
currently used in clinical practice: hepatocyte nuclear 
factor (HNF)-1α-inactivated HCA (H-HCA), inflam-
matory HCA (I-HCA), β-catenin-exon-7/8-mutated 
HCA (bex7/8-HCA), β-catenin-exon-3-mutated HCA 
(bex3-HCA), sonic hedgehog HCA (shHCA), and unclas-
sified HCA, with two mixed forms derived from I-HCA 
and the two variants of b-HCA [2–4]. The most frequent 
subtypes are H-HCA (30%-40% of all HCAs) and I-HCA 
(35–45% of all HCAs) [1]. Histologically, H-HCAs are 
characterized by the presence of steatosis, I-HCA feature 
pseudo-portal tracts with inflammation, large arteries, 
ductular reaction, and sinusoidal dilatation and conges-
tion, b-HCAs show cytological atypias, small-cell liver 
changes, a pseudoglandular/acinar architecture, and 
cholestasis, and shHCAs present with hemorrhage [5].

The European Association for the Study of the Liver 
(EASL) issued recommendations for the management of 
HCA [6], acknowledging that the risk of complications, 
such as malignant transformation and bleeding, is strictly 
influenced by sex and tumor size [7]. Aside from that, 
subtyping of HCAs should also be considered since dif-
ferent subtypes are associated with different outcomes 
[3]. Indeed, the risk of malignant transformation into 
hepatocellular carcinoma (HCC) is higher for the b-HCA 
subtype, reaching 40% in these HCAs, whereas H-HCAs 
have a low potential for malignant transformation [8]. 
I-HCAs have been proven to have a higher probability of 
regression during follow-up [9].

Magnetic resonance imaging (MRI) has shown poten-
tial for HCA subtyping, using combinations of features 
associated with different tumor phenotypes [10, 11]. Sen-
sitivities and specificities around 90% have been reported 
for differentiating the two most common subtypes, 
H-HCA and I-HCA [12]. However, some features depend 
on the employed contrast agent, e.g., the presence of an 

enhancing capsule, which is not entirely characteristic 
to HCC, since a peripheral pseudocapsule has also been 
noticed in HCA [13]. While results for the differentiation 
of β-catenin-mutated HCA and HCC in non-cirrhotic 
liver have not been consistent using imaging alone, high 
specificity has been reported for the hepatobiliary con-
trast agent phase [14]. Therefore, biopsy is a common 
requirement in the clinical setting [15, 16]. To date, quali-
tative interpretation of MRI features, enhancement pat-
terns, and nodule appearance on hepatobiliary phase 
images are the cornerstones of imaging-based charac-
terization of HCAs [10]. Few studies have investigated 
quantitative interpretation of imaging data [17]. Notably, 
no attempts have been reported to quantitatively assess 
perfusion patterns of HCA and HCC.

Perfusion is inherently chaotic, and perfusion patterns 
tend to vary with the underlying biological tissue charac-
teristics and vascular structure. Fractal analysis has been 
established as a method to quantitatively assess perfu-
sion chaos by calculating the fractal dimension (FD) [18], 
which can be interpreted as a quantitative measure of 
chaos [19, 20]. Vascular structure can be interpreted as 
an anatomical hallmark that determines the observable 
perfusion pattern. Thus, quantitative assessment of the 
perfusion pattern might allow conclusions to be drawn 
on the underlying vascular structure.

The objective of this proof-of-concept study was to 
investigate the feasibility and diagnostic performance of 
fractal analysis of perfusion using 4D dynamic contrast-
enhanced (DCE) MRI to differentiate between subtypes 
of HCA and HCC in the challenging subgroup of non-
cirrhotic patients.

Methods
Patients
Consecutive patients with histologically character-
ized and subtyped HCA or HCC and non-cirrhotic 
hepatic parenchyma (i.e., fibrosis class F0-F1 in histo-
logical analysis) examined at Beaujon Hospital in Paris, 
France, between January 2015 and December 2020 
were retrospectively analyzed. Inclusion criteria were 
patients who underwent liver MRI within 3 months of 
histological confirmation and lesion diameter of 2  cm 
or greater. Exclusion criteria were subjacent liver dis-
ease (i.e., Budd–Chiari syndrome, non-cirrhotic portal 
hypertension, hereditary hemochromatosis, non-alco-
holic fatty liver disease), presence of hepatitis B or C 
virus infection, previous HCC, previous systemic or 
locoregional treatments of the lesion, or hemorrhagic 
presentation of the lesion. When multiple nodules 
were present, one histologically confirmed lesion per 
patient was analyzed, which corresponded to either 
the largest, best accessible, or most conspicuous lesion, 



Page 3 of 12Michallek et al. Insights into Imaging           (2022) 13:81 	

respectively. Histological diagnosis of both lesion 
and liver parenchyma was obtained by percutaneous 
biopsy or by analysis of resected liver specimens. For 
each lesion, we compiled the results of immunohisto-
chemical analysis and, where performed, of molecular 
analysis, according to the recent genotype–phenotype 
classification (Additional file 1: Table S1) [3, 21]. In case 
of diagnostic doubt, molecular analysis was performed. 
Clinical data, results of laboratory tests, and hemody-
namic data were collected. Institutional review board 
approval was obtained for this observational retrospec-
tive study, and informed written consent for patient 
inclusion was waived. Figure  1 shows the flowchart of 
patient selection.

Imaging
Patients were examined using the standard clinical liver 
MRI protocol on one of two clinical MRI scanners (1.5 T 
SIGNA Artist, GE Healthcare; 3  T Achieva, Philips 
Healthcare) equipped with high-performance gradients 
and phased-array coils. After acquisition of pre-contrast 
sequences, 0.05  mmol/kg body weight of Gd-BOPTA 
(MultiHance, Bracco Imaging) or Gd-DOTA (Dotarem, 
Guerbet) followed by a 20  mL saline solution flush was 
administered at 2 and 1 mL/s, respectively, with a power 
injector. A multi-arterial phase, a portal venous phase, 
and a three-minute delayed phase were acquired. Techni-
cal details of the MRI protocol are provided in Additional 
file 1: Table S2.

Fig. 1  Flowchart of retrospective patient inclusion. HCA—hepatocellular adenoma, HCC—hepatocellular carcinoma, HBV/HCV—hepatitis B or C 
virus, PSVD—porto-sinusoidal venous disease, DCE-MRI—dynamic contrast-enhanced magnetic resonance imaging, H-HCA—HNF1α-inactivated 
HCA, b-HCA—β-catenin-exon-3-mutated HCA, I-HCA—inflammatory HCA
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Qualitative analysis of MRI features
Qualitative analysis of MRI features was performed by 
two radiologists (R.S. and M.D.B., 6 and 10 years of expe-
rience in abdominal radiology) in consensus according 
to typical imaging appearance by EASL guidelines [6] 
and evaluated, e.g., in [10, 22, 23]. In summary, typical 
H-HCA imaging characteristics include non-rim arterial 
phase hyperenhancement (APHE), non-rim washout, and 
homogeneous signal drop on opposed-phase compared 
to in-phase T1-weighted gradient echo images. I-HCA 
typically shows non-rim APHE, hyperenhancement dur-
ing the portal venous and delayed phase, and marked T2 
hyperintensity, with the “atoll sign” being highly specific 
for I-HCA. Typical features for HCC include non-rim 
APHE, non-rim washout in the portal venous or delayed 
phases and presence of an enhancing capsule. However, 
for bex3-HCAs no typical imaging features have been con-
sistently agreed upon in the literature and are not reli-
ably differentiable from HCCs [6]. Therefore, any lesions 
without typical features were considered “undetermined 
from imaging” and statistically treated as non-diagnostic, 
as explained below.

Image preprocessing
Image preprocessing was performed prior to fractal 
analysis and consisted of the following steps: multi-phase 
registration, image denoising, intensity standardization, 
and segmentation. All image preprocessing is detailed in 
Additional file 1: Image Preprocessing.

Fractal analysis
Branching patterns of the vascular tree are a multi-scale 
phenomenon and feature fractal structure [24]. Perfu-
sion, the physiological process corresponding to vascu-
lar anatomy, mirrors the anatomical fractal properties 
such that the fractal phenotype of the perfusion pattern 
depends on the underlying anatomy of the vascular tree 
[25]. Perfusion patterns have previously been character-
ized by fractal analysis of radiological and nuclear medi-
cine imaging datasets with fractal dimension (FD) as 
quantitative imaging biomarker [19]. FD has been shown 
to quantify chaos of perfusion patterns, thereby convey-
ing pathophysiologically relevant information on vascular 
structure and function [20]. In this study, we applied frac-
tal analysis to dynamic contrast-enhanced MRI datasets. 
We calculated FD maps to visualize the local amount of 
perfusion chaos, and we hypothesized that character-
izing perfusion patterns by fractal analysis would allow 
conclusions to be drawn on differences in underlying 
vascular anatomy between hepatocellular adenomas and 
carcinomas. To this end, a previously established fractal 
analysis method [26, 27] was applied to 4D DCE-MRI 

to generate (1) a local map of the FD and to derive (2) a 
global FD value for the whole liver lesion as well as for 
representative sites in remote normal liver tissue similar 
to the ones used in [28]. We applied fractal analysis in a 
full 4D manner comprising an arterial, portal venous, and 
delayed phase of contrast agent distribution. We created 
maps of the local FD for visual inspection, and we calcu-
lated the global FD for each liver lesion and a representa-
tive site in adjacent liver parenchyma. We subtracted the 
global FD of normal liver parenchyma from the global FD 
of the lesion to obtain the FD difference (FDdiff), thereby 
accounting for individual levels of perfusion chaos and 
standardizing the measurement.

Statistical analysis
We used the two-sided Student’s t test to identify clini-
cal differences in the patient population or classical MRI 
features. Descriptive characteristics of liver lesions are 
expressed as mean ± standard deviation or median with 
quartiles or range, where applicable. The local FD maps 
were analyzed qualitatively as well as quantitatively using 
histogram statistics including calculation of histogram 
skewness and kurtosis. Global FD differences (FDdiff) 
were assessed using descriptive statistics. The Kruskal–
Wallis test and pairwise comparisons with the Wilcoxon 
test were used to identify FD differences for each lesion 
type (i.e., each HCA subtype and HCC). Optimal cut-
off values were determined by Youden’s J-index. Overall 
diagnostic accuracy was assessed in terms of the multi-
class analysis of the area under the receiver operating 
characteristic curve (AUC) with confidence intervals 
being computed by bootstrapping as in [29]. Quadratic-
weighted κ-statistics were calculated to compare agree-
ment of visual analysis and fractal analysis with the 
histopathological reference standard. For differentiating 
lesion types by clinical relevance, we divided the lesions 
in our study population into a high-risk group (HCCs 
and bex3-HCAs) and a low-risk group (H-HCAs and pure 
I-HCAs) according to malignancy or, respectively, poten-
tial to undergo malignant transformation. Non-diag-
nostic lesions were handled in an intention-to-diagnose 
approach as explained in [30], by assigning non-diagnos-
tic high-risk lesions to the diagnosed low-risk group and 
non-diagnostic low-risk lesions to the diagnosed high-
risk group. This approach ensures a more realistic evalua-
tion in non-diagnostic cases [30]. Inter-reader agreement 
was assessed by unweighted κ-statistics and Bland–Alt-
man analysis. A level of p ≤ 0.05 after Bonferroni cor-
rection, where applicable, was considered statistically 
significant. The STARD criteria for studies reporting on 
diagnostic accuracy were adhered to. Statistical analysis 
was performed using R (v3.4.1).
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Results
Patient population
From a total of 279 patients screened, 63 patients were 
eligible according to our inclusion criteria (47 female 
[75%], mean age 41 ± 12  years, range 18–79, see Fig.  1; 
Tables  1, 2). Our study population included 16 HCC 
patients and 47 HCA patients. The HCA group consisted 
of 13 H-HCAs, 7 bex3-HCAs, and 27 I-HCAs. Mean 
lesion size was larger in HCC than in HCA (81 ± 26 mm 
vs. 58 ± 25  mm, p = 0.003). The final histopathological 
diagnosis was based on surgical specimens in 27 patients 
(HCC: 13, HCA: 14) and biopsy in the remaining cases.

Histopathological characteristics
Histopathological analysis identified similar prevalence 
of hepatic steatosis in patients with HCA and HCC 
(p = 0.20). However, in the HCA subgroup, patients with 
I-HCA had a higher prevalence of hepatic steatosis than 
patients with bex3-HCA or H-HCA (p = 0.001). Presence 
of intralesional fat was not significantly different between 
HCC and HCA (p = 0.18); however, in the HCA sub-
group, intralesional fat was significantly more common 
in patients with H-HCA than in patients with I-HCA 
or bex3-HCA (p = 0.001). Histopathological findings are 
summarized in Tables  1 and 2, and full immunohisto-
chemical and molecular characteristics on the per-lesion 
level are provided for HCA in Additional file 1: Table S1.

Qualitative MRI features
Qualitative MRI features were significantly different 
among HCA subtypes for contrast enhancement char-
acteristics (non-rim APHE, p = 0.05; non-rim washout, 
p < 0.001), and signal drop on the opposed-phase gradi-
ent echo sequence (p < 0.001). H-HCA showed a typical 
MRI pattern in 6/13 cases (46%). In the I-HCA subgroup, 
13/27 lesions (48%) showed a typical MRI pattern, and 
an “atoll sign” was found in 10 of these 13 lesions. In 
the HCC group, 14/16 lesions (87%) with a typical MRI 

pattern were found. The two non-correctly categorized 
HCC lesions did not show APHE and hence, did not meet 
the predefined typical HCC criteria, although washout 
and a peripheral enhancing capsule on delayed phase was 
present. MRI features in bex3-HCA were similar to those 
found in HCC (non-rim APHE and non-rim washout) in 
4/7 patients (67%). The details are given in Table 2.

Local fractal analysis
Visual inspection of MR images revealed different levels 
of chaos of the investigated tumor entities (Figs. 2, 3, 4, 5). 
In quantitative measurements, local FD was particularly 
high in areas with highly dynamic contrast enhancement 
characteristics, both spatially and temporally (see HCC 
example in Fig. 5). Histogram analysis of FD distributions 
showed that those highly chaotic regions were especially 
prevalent in HCCs, which had a significantly lower skew-
ness than HCAs (skewHCC = − 0.14 vs. skewHCA = 0.06, 
p = 0.02). Kurtosis nonsignificantly tended to be higher 
in HCCs (kurtHCC = 0.06) than HCAs (kurtHCA = − 0.2), 
p = 0.18.

Inter-reader agreement was high (κ = 0.95, 95% confi-
dence interval [CI] 0.90–1.0), and Bland–Altman plotting 
showed no relevant bias and acceptable limits of agree-
ment (− 0.07 to 0.07).

Global fractal analysis
Global FDdiff values (FDdiff = FDtumor-FDliver) for HCA 
subtypes and HCCs were as follows: H-HCA: FDdiff = 0.08 
(CI 0.06–0.10), bex3-HCA: FDdiff = 0.16 (CI 0.15–
0.17), I-HCA: FDdiff = 0.25 (CI 0.23–0.31), and HCC: 
FDdiff = 0.26 (CI 0.22–0.30); see Fig. 6 and Table 3. Global 
FDdiff values were significantly different between individ-
ual HCA subtypes and HCCs (p < 0.001), except between 
HCCs and I-HCAs, both showing a similar FDdiff distri-
bution. Optimal FDdiff cutoff values were 0.11 and 0.18 
for differentiating H-HCA, bex3-HCA, and I-HCA/HCC, 
respectively. These cutoffs achieved a multi-class AUC of 

Table 1  Patient characteristics

HCC, hepatocellular carcinoma; HCA, hepatocellular adenoma; BMI, Body Mass Index; SD, standard deviation; bold typeface indicates statistical significance (p ≤ 0.05)
a Pathology finding

All n = 63 HCC n = 16 HCA n = 47 P value

Women (%) 47 (75) 4 (25) 43 (92)  < .001
Age (years) ± SD (range) 41 ± 12 (18–79) 58 ± 14 (29–79) 35 ± 7 (18–57)  < .001
BMI (kg/m2) ± SD 25 ± 6 25 ± 5 26 ± 3 .34

Days between MRI and histology ± SD (range) 41 ± 25 (0–95) 34 ± 25 (1–85) 43 ± 25 (0–95) .22

Lesion size (mm) ± SD (range) 64 ± 28 (20–163) 81 ± 26 (38–163) 58 ± 25 (20–143) .003
Surgical resection (%) 27 (43) 13 (81) 14 (30)  < .001
Presence of hepatic steatosis (%)a 21 (33) 5 (31) 16 (34) .02
Presence of intralesional fat (%)a 20 (32) 3 (19) 17 (36) .18
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0.90 (CI 0.89–0.95) for differentiating between the differ-
ent HCA subtypes using fractal analysis alone.

Comparison of qualitative features and fractal analysis
Based on qualitative analysis of multiparametric MRI 
data alone, presence of typical features as outlined above 
achieved low overall agreement (κ = 0.35 [CI 0.15–0.56]) 
and moderate correlation (Spearman’s ρ = 0.25, p = 0.05). 
Due to missing consensus criteria for typical MRI fea-
tures in bex3-HCAs, this entity could not be differentiated 
from visual MRI analysis alone.

Combining visual MRI features and fractal analysis 
improved the prediction of the histopathological diagno-
sis to 13/13 H-HCAs (100%), 13/27 I-HCAs (48%), and 

16/16 HCCs (100%), and allowed to correctly predict 6/7 
bex3-HCAs (86%). Overall, combining visual MRI fea-
tures with fractal analysis achieved high agreement to 
histopathological reference (κ = 0.91 [CI 0.83–0.98]) and 
strong correlation (Spearman’s ρ = 0.93, p < 0.001).

For differentiating lesion types by clinical relevance, we 
divided the lesions in our study population into a high-
risk group (HCCs and bex3-HCAs) and a low-risk group 
(H-HCAs and pure I-HCAs) according to their (poten-
tial) malignant behavior. As explained in the Methods 
section, we used an intention-to-diagnose approach to 
deal with non-diagnostic lesions. Doing so, we found a 
sensitivity and specificity for identifying high-risk lesions 
by qualitative MRI features alone of 43% (CI 23–66%) 

Table 2  Characteristics of hepatocellular adenoma (HCA) subtypes

HCA, hepatocellular adenoma; H-HCA, HNF1α-inactivated HCA; bex3-HCA, β-catenin-exon-3-mutated HCA; I-HCA, inflammatory HCA; HCC, hepatocellular carcinoma; 
BMI, Body Mass Index; SD, standard deviation; bold typeface indicates statistical significance (p ≤ 0.05)
a Percentage of female population only
b Pathology finding

All HCA (n = 47) H-HCA (n = 13) b-HCA (n = 7) I-HCA (n = 27) P value

Women (%) 43 (92) 12 (92) 5 (71) 26 (96) .11

Age (years) ± SD (range) 35 ± 7 (18–57) 37 ± 8 (18–57) 32 ± 8 (22–51) 35 ± 6 (24–47) .38

BMI (kg/m2) ± SD 26 ± 3 24 ± 2 25 ± 2 27 ± 3 .62

Oral estrogen intakea (%) 23 (53) 5 (42) 3 (60) 15 (58) .56

Previous pregnancya (%) 13 (30) 7 (58) 0 (0) 6 (23) .03
Menopausea (%) 1 (2) 1 (8) 0 (0) 0 (0) .27

Metabolic syndrome (%) 5 (11) 1 (8) 0 (0) 4 (15) .56

Days between MRI and histology ± SD (range) 43 ± 25 (0–90) 43 ± 30 (0–90) 60 ± 21 (2–90) 39 ± 25 (0–89) .28

Lesion size (mm) ± SD (range) 58 ± 25 (20–143) 60 ± 20 (25–143) 73 ± 29 (38–125) 54 ± 25 (20–140) .21

Surgical resection (%) 14 (30) 2 (15) 5 (72) 7 (26) .03
Presence of hepatic steatosis (%)b 16 (34) 1 (8) 1 (14) 14 (52) .01
Presence of intralesional fat (%)b 17 (36) 12 (92) 4 (57) 1 (4)  < .001
MRI features (%)

 Arterial phase

  Hyperintense 38 (81) 8 (62) 5 (71) 25 (93) .05
  Isointense 7 (15) 4 (31) 1 (14) 2 (7) .15

  Hypointense 2 (4) 1 (8) 1 (14) 0 (0) .42

 Portal venous phase

  Hyperintense 24 (51) 0 (0) 1 (14) 23 (85)  < .001
  Isointense 8 (17) 2 (15) 3 (43) 3 (11) .14

  Hypointense 15 (32) 11 (85) 3 (43) 1 (4)  < .001
 Delayed phase

  Hyperintense 22 (47) 0 (0) 1 (14) 21 (78)  < .001
  Isointense 6 (13) 0 (0) 2 (29) 4 (15) .33

  Hypointense 19 (40) 13 (100) 4 (57) 2 (7)  < .001
 T2-weighted

  Hyperintense 23 (49) 1 (8) 5 (71) 17 (63) .001
  Isointense 16 (34) 7 (54) 2 (29) 7 (26) .21

  Hypointense 8 (17) 5 (39) 0 (0) 3 (11) .10

Out-of-phase sequence signal drop 15 (32) 10 (77) 3 (43) 2 (7)  < .001
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and 47% (CI 32–64%), respectively, with an AUC of 0.55 
(CI 0.42–0.68). The combination of qualitative MRI fea-
tures and fractal analysis achieved 96% (CI 78–100%) 
sensitivity, 68% (CI 51–81%) specificity, and an AUC of 

0.82 (CI 0.73–0.90). This improvement was significant 
for sensitivity (p = 0.003) and AUC (p = 0.003) but not for 
specificity (p = 0.3).

Fig. 2  Representative case of hepatocyte nuclear factor (HNF)-1α-inactivated hepatocellular adenoma. Dynamic contrast-enhanced MR images of 
the arterial (A), portal venous (B), and delayed (C) phase are shown along with the fractal dimension (FD) map as overlay over the arterial phase (D) 
and a zoom on the lesion (E). The panel organization is the same throughout Figs. 2, 3, 4, and 5. The depicted patient was a 26-year-old female with 
obesity (BMI = 28 kg/m2) and no history of oral contraception. She was admitted for characterization of an incidentally found liver mass. Typical MRI 
features including arterial phase hyperenhancement, washout, and out-of-phase signal drop (not shown) suggested HNF1α-inactivated adenoma, 
which was subsequently confirmed by biopsy

Fig. 3  Representative case of β-catenin-exon-3-mutated hepatocellular adenoma. The panel organization is the same throughout Figs. 2, 3, 4, 
and 5. The depicted patient was a 34-year-old female with a 9-cm painful mass in the right liver lobe, showing arterial phase hyperenhancement 
without clear washout. Subsequent biopsy established the diagnosis of β-catenin-exon-3-mutated adenoma. The lesion was surgically resected
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Discussion
Among patients with non-cirrhotic livers, we found 
that fractal analysis is an effective descriptor of per-
fusion chaos and adds complementary information 
for differentiating between HCA subtypes and HCC. 

When typical qualitative MRI features are absent, frac-
tal analysis can significantly improve diagnostic accu-
racy in differentiating high-risk (HCC, bex3-HCA) from 
low-risk lesions (H-HCA, I-HCA). Interestingly, fractal 
analysis revealed a higher perfusion chaos of HCCs in 

Fig. 4  Representative case of inflammatory hepatocellular adenoma. The panel organization is the same throughout Figs. 2, 3, 4, and 5. The 
depicted patient was a 25-year-old female with a liver mass incidentally discovered during exploration for a chronic inflammatory state. Arterial 
phase hyperenhancement, persistent hyperintensity during the portal and delayed phases, and marked T2 hyperintensity (not shown) suggested 
inflammatory adenoma, which was confirmed by biopsy

Fig. 5  Representative case of hepatocellular carcinoma. The panel organization is the same throughout Figs. 2, 3, 4, and 5. The depicted patient 
was a 42-year-old man without symptoms, admitted for exploration of a liver lesion and elevated alpha-fetoprotein. MRI features with arterial 
phase hyperenhancement, washout, and enhancing capsule suggested hepatocellular carcinoma, confirmed by biopsy and subsequently resected 
specimen. Remote liver tissue showed no fibrosis
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comparison with bex3-HCAs. Therefore, the FD might 
be an effective imaging biomarker to differentiate those 
two entities, for which typical imaging features have not 
yet been established [6]. In our study, we performed frac-
tal analysis using images acquired with a routine clinical 
MRI protocol that included multi-phasic dynamic con-
trast-enhanced imaging during arterial, portal venous, 
and delayed (3  min) phases. Our reported FDdiff values 

therefore do not require specific protocol adaptations 
and do not rely on a specific perfusion model.

In clinical practice, correct imaging-based subtyping 
of HCA is challenging [28] and, although diagnostic cri-
teria exist for most subtypes, individual lesions may pre-
sent with varying sets of features, which often precludes 
definitive noninvasive diagnosis [3]. Furthermore, studies 
using qualitative MRI features for differentiation of HCA 
subtypes rarely include HCC in non-cirrhotic livers as 
separate entity. Therefore, the diagnostic performance 
of MRI features is not well established in such rela-
tively broad populations. Moreover, our study included 
only lesions with histopathological ground truth, which 
induced a selection bias, especially for H-HCAs and 
I-HCAs. The former aspects explain the comparatively 
low performance of MRI features found in our study and 
justify exploration of fractal analysis as a quantitative 
biomarker of perfusion in the challenging population of 
patients with non-cirrhotic livers.

Fractal analysis allows quantitative assessment of the 
perfusion pattern, thus providing information on the 
architecture of the underlying vasculature. Differences 
in vascular structure have been found between differ-
ent HCA subtypes [31]. In our study, FDdiff was simi-
lar in I-HCA and HCC, which both had highly chaotic 
perfusion patterns on visual inspection. This observa-
tion might be attributable to high vascular density and 
potentially similar architectural vascular changes due 
to inflammation or tumor angiogenesis, especially in 
comparison with benign lesions like  bex3-HCA prior to 
malignant transformation. Indeed, compared to the other 
subtypes of adenomas like bex3-HCA, I-HCA contains 
more arteries and dilated sinusoids which are commonly 
of large size, and HCC is composed of numerous isolated 
arteries [32, 33]. Such differences in vascular architecture 
stimulated the present study, and our results suggest that 
characterization of perfusion patterns is suitable to quan-
titatively assess the relationship between contrast agent 
deposition and the underlying vascular structure.

Since perfusion is inherently chaotic, an absolute 
interpretation of the FD can be challenging, especially 
in the liver, with its unique dual vascular supply by the 
arterial and portal venous system. In previous studies, 
quantitative intensity measurement has been standard-
ized to normal liver parenchyma [28]. We adopted this 
approach and individually calibrated quantitative FD 
values according to the physiological level of perfusion 
chaos in each patient, and we employed individual noise 
level and intensity-adapted preprocessing to standardize 
all imaging sequences. Differences in global FD deter-
mined in this way were thus found to reliably differenti-
ate the tumor entities investigated in this study. Since the 
patients included in our analysis were examined on two 

Fig. 6  Global fractal dimension differences 
(FDdiff = FDtumor − FDnormal-liver) by tumor entity. All group comparisons 
were significant (p < 0.001) except for inflammatory adenomas 
(I-HCAs) versus hepatocellular carcinomas (HCCs), p = 1. H-HCA, 
HNF1α-inactivated adenomas; bex3-HCA, β-catenin-exon-3-mutated 
adenomas

Table 3  Results of global fractal analysis

Global fractal dimension differences (FDdiff = FDtumor − FDliver) are given as 
median and quartiles

n, number of patients per lesion entity; HCA, hepatocellular adenoma; H-HCA, 
HNF1α-inactivated HCA; bex3-HCA, β-catenin-exon-3-mutated HCA; I-HCA, 
inflammatory HCA; HCC, hepatocellular carcinoma

Lesion entity n Global FDdiff

Median Quartiles

H-HCA 13 0.08 0.06–0.10

bex3-HCA 7 0.16 0.15–0.17

I-HCA 27 0.25 0.23–0.31

HCC 16 0.26 0.22–0.30
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different MRI scanners from different manufactures with 
administration of different contrast agents, our approach 
allowed us to standardize quantitative measurement, thus 
creating a biomarker that yields consistent and reliable 
results in different imaging setups. Even if hepatospecific 
GD-BOPTA contrast agent differs from the extracellular 
GD-DOTA contrast agent in terms of pharmacokinet-
ics, the hepatobiliary phase of GD-BOPTA occurs late (at 
least 60  min after administration). Therefore, the three-
minute delayed phase can be considered to be similar to 
that obtained with an extracellular contrast agent [34].

This study has limitations: The number of cases 
included in this retrospective analysis is limited, and 
no shHCA or b-HCA with confirmed exon7,8-muta-
tion were included. These are two rare subtypes, each 
accounting for approximately 4% of all HCAs [3]. Moreo-
ver, hybrid or unclassified HCA subtypes were not pre-
sent in the study population. Those subtypes are not yet 
well understood and may require further histopathologi-
cal and genetical insights before fractal analysis becomes 
meaningful. As discussed above, the inclusion of differ-
ent HCA subtypes and HCC in normal livers without 
risk factors for HCC development led to a selection bias 
linked to biopsy or resection, as lesions without histo-
logical ground truth (albeit potentially typical imaging 
appearance) were excluded. Due to biopsy availability, 
only one lesion per patient with histological subtyping 
was included in the analysis; therefore, we cannot con-
clude on subtypes of not biopsied and, hence, not ana-
lyzed lesions in patients with multiple lesions. The 
imaging protocol might have confounded fractal analysis 
results, specifically because we decided to include MRI 
examinations performed on both 1.5 T and 3 T scanners 
and because experimental validation in an immediate 
scan–rescan experiment using different field strengths is 
not yet available for fractal analysis. However, given the 
scale-invariant nature and since we implemented a pre-
processing scheme to account for noise and image sig-
nal normalization, we expect effects of field strength on 
fractal analysis to be minimal. Moreover, we standardized 
fractal analysis results using remote liver tissue sampled 
from adjacent locations to minimize the confounding 
effect of local field strength inhomogeneities. Further-
more, no conclusion can be drawn on the diagnostic 
value of fractal analysis in the cirrhotic liver because pro-
spective data to independently validate our established 
thresholds are not yet available.

Our results might stimulate further research to moni-
tor potential malignant transformation of lesions in 
patients managed by watchful waiting. Fractal analysis 
might constitute an indicator for such malignant trans-
formation and might be useful in identifying lesions that 

require definitive surgical treatment versus lesions that 
only require follow-up. Moreover, it might be interesting 
to investigate whether our results could also help in pre-
dicting major complications, e.g., hemorrhage or rupture, 
which are more common and potentially life-threatening 
complications in HCAs [35]. As a quantitative imaging 
method, diffusion-weighted imaging (DWI) has shown a 
large overlap of visual appearance and quantitative values 
in focal liver lesions [36]; however, it might be interest-
ing to investigate its value when combined with fractal 
analysis of perfusion. Finally, prospective investigation 
of the clinical benefit of fractal analysis with suspension 
of biopsy for HCA diagnosis in a controlled study setting 
might be valuable.

Conclusions
In conclusion, our study indicates that the chaos of perfu-
sion differs between HCA subtypes and between HCA and 
HCC in the non-cirrhotic liver. Fractal analysis can be used 
to quantify these differences using three-phasic 4D DCE-
MRI. According to our hypothesis, chaos of the perfusion 
pattern is strongly related to the organization of the under-
lying vascular structure, which is assumed to differ between 
the tumor entities and subtypes analyzed in our study.
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