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ABSTRACT
DNA barcoding has become a popular method of choice for identification of specimen based on
molecular techniques. Here, we present preliminary findings on generating robust DNA barcode library
of Cervids of India. The dataset comprising the DNA barcode library of seven deer species included in
the genus Cervus, Axis and Muntiacus classified under family Cervidae. Mitochondrial Cytochrome C
Oxidase subunit I gene of ca. 710 bp accepted widely as DNA barcode region, was used for generating
species specific signature from 31 known samples of seven Indian deer species. Expectedly, the NJ tree
clustered three genera i.e. Cervus, Axis and Muntiacus of Cervids of India into three clades. Further, the
intra- and interspecies distances based on Kimura 2 parameter model also supported the results. The
average intra- and interspecies sequence divergence were 0.011 (±0.09) and 0.65 (±0.14), respectively.
The present study has exhibited that DNA barcoding has discriminating power to delineate boundaries
among the closely related species. The data generated are of high importance to the law enforcement
agencies in effective identification of species in wildlife offence cases. The similar approach can be uti-
lized for generating DNA barcodes for other Indian mammals for making effective management and
conservation action decisions.
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Introduction

Indian subcontinent is a home to four mega biodiversity hot-
spots among the 35 hot-spots around the world as defined
by Conservation International (Myers et al. 2000). Of the
known species that inhabits the Indian sub-continent, few
species are endemic while many species have flourished
through the course of evolution.

Majority of deer species are classified under family
Cervidae, which is the second most diverse group in the
world after family Bovidae. Deer are among the most abun-
dant, visible and wondrous mammal with around 40 existing
species in the world (Gaur et al. 2003). These deer (Cervidae)
species are classified into sixteen genera and two subfamilies
with five tribes (Gilbert et al. 2006; Hassanin et al. 2012). The
subfamily, Cervinae composed of two tribes Cervini (with four
genera i.e. Cervus, Axis, Dama, and Rucervus), the second is
Muntiacus (genus: Muntiacus and Elaphodus) (Gilbert et al.
2006). However, in Indian subcontinent, seven deer species
are present and classified under three genera namely Cervus,
Axis and Muntiacus, where genus Cervus consisted with four
deer species i.e. Hangul (Cervus hanglu hanglu), Swamp deer
(Rucervus duvaucelii), Sambar (Rusa unicolor) and Brow ant-
lered deer (Rucervus eldii); genus Axis composed with a species

i.e. Chital (Axis axis) along with a sub-species Hog deer (Axis
porcinus) and lastly, genus Muntiacus is composed of single
species i.e. Barking deer (Muntiacus muntjak). In India, deer
species are protected under the Wildlife (Protection) Act, 1972
(WPA) under different schedules (I, II, III and IV), moreover all
species also protected under International Union for
Conservation of Nature (IUCN) and Convention on
International Trade in Endangered species (CITES) in different
categories and appendix, respectively (IUCN, 2016; CITES,
2016). The detail conservation and population status are given
in Table 1.

Last few decades, saw an unprecedented onslaught on the
wild fauna as a result of poaching and habitat fragmentation.
Deer are generally considered as a prey species to the large
carnivores and forms an integral part of an ecosystem,
hunted primarily for local consumption as well as for com-
mercial benefits (Qureshi et al. 2004; Tordoff et al. 2005;
Maxwell et al. 2007; Johnson 2010). Reckless poaching of
deer has resulted in mortification of fragile ecosystem since
the prey density becomes low, ultimately effecting food avail-
ability for carnivores like tigers, leopards, etc. At times during,
wildlife crime, meat samples seized are in horrible condition
and sometimes samples of multiple species are mixed in the
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single container and send for forensic examination. In such
cases, it is necessary to generate a unified system for analysis
of wildlife samples that can substantially delineate the spe-
cies identification.

For over a long time, molecular genetics has been an
indispensible tool for species identification, taxonomic classifi-
cation and their correlation (Parson et al. 2000; Budowle et al.
2003; Ortea et al. 2009; Laakmann et al. 2013; Rajpoot et al.
2017). DNA barcoding is a simple technique with complex
applications in biodiversity analysis and its assessment to
generate a digital identification system. The cytochrome c
oxidase subunit 1 (COI) has been designated as DNA barcode
loci for mtDNA-based identification of animal specimens
(Folmer et al. 1994; Hebert, et al. 2003). Few last decades
have resulted in an exponential rise in the popularity of DNA
barcoding to address different biological questions related to
biodiversity using complex biological samples (Hebert, et al.
2003; Lahaye et al. 2008; Hajibabaei et al. 2011). The DNA
barcoding methodology depends on the assumption that
each species will have similar DNA barcodes representing its
intraspecies variability. Information based on DNA sequences
have widely been used in systematic, phylogenetic, phylo-
geography and species identification in wildlife forensics to
address different biological questions (Hebert et al. 2004).
The present study addresses the need for comprehensive
DNA barcode database of all seven deer species in India to
better integrate the wildlife management and wildlife law
enforcement in India.

Materials and methods

Sample collection and laboratory procedure

A total of 31 samples of seven deer species inhabiting India
were collected from different regions and stored as dried/
fresh tissue in cryo vials till processing them for DNA extrac-
tion. Seven currently surviving Indian deer species i.e. Sambar
(n = 5), Hangul (n = 5), Swamp deer (n = 5), Chital (n = 5),
Hog deer (n = 3), Barking deer (n = 5) and Brow antlered
deer (n = 3) were used in this study (Table 1).

Genomic DNA was isolated from these samples using the
Qiagen DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA)
according to the instruction manual. Extracted DNA tem-
plates were amplified by polymerase chain reaction (PCR)
using the universal primer of COI (Folmer et al. 1994).

The amplification through PCR (ABI 2700 Thermo Cycler)
was executed using 2� PCR master mix (Thermo Fisher
Scientific, Waltham, MA), 4 pm of each primer and approxi-
mately 45–50 ng of genomic DNA under subsequent condi-
tion: initial denaturation at 95 �C for 5 min, followed by 40
cycles of denaturation at 94 �C for 35 s, primers annealing at
45 �C for 1 min, extension at 72 �C for 45 s with a final
extension at 72 �C for 15 min. Thereafter, 3.5 ml of PCR prod-
ucts were subjected to electrophoresis on 1.5% agarose gel
and visualized over the transilluminator to detect the amplifi-
cation. During the whole procedure, extraction and PCR
blanks were incorporated into the analysis to check the con-
tamination. Bidirectional sequencing of COI gene was per-
formed using Big dye terminator cycle sequencing kitVR v 3.1Ta
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(Kumar et al. 2014). The sequences reported in this paper
have been submitted in NCBI GenBank and accession num-
bers are awaited.

Data analysis

Sequence data generated were analyzed by Sequence Analysis
software v 5.2 (Applied Biosystems, Foster City, CA) and the
forward and reverse sequences were trimmed and assembled
using Cromas 2.6.4 (http://www.technelysium.com.au). After
validating all obtained sequence data, multiple sequence
alignment (MSA) was performed using CLUSTAL W as imple-
mented in BioEdit v 7.0.9.0 software (Hall 1999). The intraspe-
cies and interspecies distances were calculated using Kimura 2
parameter (K2P) model (Kimura 1980) as recommended by the
Consortium for Barcode of Life (CBOL, http://www.barcoding.

si.edu/protocols.html) using MEGA 7.0 software (Kumar et al.
2016). Evolutionary distances were calculated using neighbor-
joining (NJ) method (Saitou and Nei 1987), and the phylogen-
etic tree was constructed with 1000 bootstrap replicates
(Felsenstein 1985) using MEGA 7.0 (Kumar et al. 2016).
The species identification success rate was calculated using
genetic distance and BLAST methods. Reference DNA
sequence of musk deer was downloaded from GenBank and
was used as out-group for the analysis.

Results and discussion

Divergence assessment

The isolated genomic DNA for all 31 samples was of
good quality. The obtained novel sequences of COI (658 bp)
contained 479 conserved regions, 129 variable sites,

Table 2. Variable sites position in COI mitochondrial loci among Indian Cervids.

2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 

Nucleotide position 9 0 1 1 2 2 3 3 3 3 4 5 5 5 6 6 7 8 8 8 9 9 0 0 2 3 3 4 4 5 

3 8 1 4 6 9 0 2 5 8 4 6 7 9 2 8 8 0 6 9 2 9 4 7 5 1 7 3 9 2 

Cervus hanglu hanglu  (n=5) A A T C C C T A T T G C T G T C T A C C T C G C G C A C C G 

Rusa unicolor  (n=5) . . . . . . . . . C . . . A . T . G T . C T . . A . . . . A 

Rucervus eldii (n=3) G G C . T T . . . C . . . . C T C G . . . . A A A . . T . A 

Rucervus duvaucelii  (n=5) . . . T T T C . . C . . C . . T C G T T . . . . A . . . T . 

Axis porcinus  (n=3) . . . . T T . . . C . . C . . . C G T . . T . . A . . . T . 

Axis axis  (n=5) . . . T T T . . . C . . C . . T C . . . . T . . A . . . T . 

Muntiacus muntjak  (n=5) . . . . T T C G C . A T C A . T C G . T . T . T A T G T . A 
4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

Nucleotide position 6 6 7 7 7 8 8 9 9 9 0 0 0 1 1 1 2 2 3 4 5 6 6 7 7 8 8 9 9 9 

1 7 0 6 9 5 9 2 4 7 4 6 9 2 5 8 7 8 3 9 2 0 6 5 8 1 7 0 3 6 

Cervus hanglu hanglu  (n=5) T C C T G C T G C T C A A T C A G C A C T C C A T C C A A A 

Rusa unicolor  (n=5) . . A . A T . . . . . . . . . . A T . . . . . . C T . . . . 

Rucervus eldii  (n=3) . . . . . . C . . . . C . C . . A . . . C . . G C T . . . . 

Rucervus duvaucelii  (n=5) C T T . A . C . . . T . G C . C A . . T . . . . . . . C . G 

Axis porcinus  (n=3) . T T . . . C A T . T . G . . T T . . T C T T . C . . . . . 

Axis axis  (n=5) C T T C . . C . T . T . G . T C A . G T . T T . C . T . G . 

Muntiacus muntjak  (n=5) . . T C . . C A T C T G . . . . A . . . . T T . . T . . . . 

5 6 6 6 6 6 6 6 6                      

Nucleotide position 9 0 1 1 1 2 2 2 3                      

9 5 2 4 7 0 4 6 5                      

Cervus hanglu hanglu  (n=5) C T C A T A T A T 

Rusa unicolor  (n=5) . . . . . . . . . 

Rucervus eldii  (n=3) . . . . . . . . . 

Rucervus duvaucelii  (n=5) . C T . . . . . . 

Axis porcinus  (n=3) . C T . C G . . C 

Axis axis  (n=5) . C T . C . . G . 

Muntiacus muntjak  (n=5) T C . G C . C G C 

1 1 1 1 

Nucleotide position 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 8 8 8 9 9 0 1 2 3 

5 8 1 4 0 1 7 0 2 8 1 5 7 0 6 9 2 5 8 4 7 0 6 9 2 5 7 6 8 4 

Cervus hanglu hanglu  (n=5) C G A A C T C C A C C C G C T T T A T T C A C T T C T A T T 

Rusa unicolor  (n=5) . A . . . . . . G T . . . . . . . G . C . . T . . . . . . . 

Rucervus eldii  (n=3) T . C . . . . . G T T T A . . C . G . . . . T . . . C G . . 

Rucervus duvaucelii  (n=5) . A . . T . . T . T T . . . . . C G C . . G T . . . . . . . 

Axis porcinus  (n=3) . A . T . C T T . T T . . T . . C . . . . . T . A . . . C . 

Axis axis  (n=5) . A . T . . T T . . T . A . G C C G . . . . T . A . . . . A 

Muntiacus muntjak  (n=5) . A . G . C . T . T T . . T G A C . . . T . T C A T . . . A 

1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

Nucleotide position 3 4 5 6 7 7 7 7 8 9 9 0 0 0 1 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 

7 0 8 1 0 3 6 7 5 1 7 0 6 9 8 1 3 6 9 2 5 8 1 2 4 7 0 1 2 6 

Cervus hanglu hanglu  (n=5) G A T T A T C C T C C A T T C T A C C T T T C T A A C C T G 

Rusa unicolor  (n=5) A . . . . . . . . . . . C . . . . . . . . . . . . . T T . . 

Rucervus eldii  (n=3) . . . . . C . . . . T . . . . . . . . . C . . . . . . T . . 

Rucervus duvaucelii  (n=5) . . . C . . . T . . . G . C . C . . T C C C . . . . T . . . 

Axis porcinus  (n=3) . . . C G . . . C . . G C C . . . . T C C . . . . G T . C . 

Axis axis  (n=5) A . . . G . . T . T T G C . . . . . T . C . T . . G T . . A 

Muntiacus muntjak  (n=5) A C C . G . T T . T . . C . T C G T . A C . . C T . T . . . 

Variable sites 
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Figure 1. The evolutionary relationship among Indian Cervidae using the Neighbor-Joining method (NJ) undertaken in MEGA 7.0. (A) Topology showing the intra-
species (species level) relationship between seven Indian deer species and (B) topology showing interspecies (genus level) relationship.

1 2 3 4 5 6 7
Cervus hanglu hanglu 0.009 0.012 0.014 0.015 0.016 0.019

Rusa unicolor 0.045 0.012 0.014 0.015 0.015 0.019

Rucervus eldii 0.069 0.069 0.017 0.018 0.018 0.023

Rucervus duvaucelii 0.088 0.09 0.107 0.012 0.012 0.019

Axis porcinus 0.098 0.102 0.125 0.069 0.012 0.016

Axis axis 0.0106 0.109 0.122 0.076 0.065 0.017

Muntiacus muntjak 0.142 0.134 0.156 0.139 0.117 0.116
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Figure 2. Estimates of evolutionary divergence over sequence pairs intraspecies (A) and interspecies (B). The numbers of base differences per site from averaging
over all sequence pairs between groups are shown for n¼ 31 nucleotide sequences after removing all ambiguous positions for sequence pairs.
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71 parsimony sites and 58 singleton sites. The BLAST result of
COI sequences indicated that all seven Indian deer samples
were matched with 99–100% with respective species. The
maximum likelihood estimate of transition/transversion bias
(R) was 11.18 whereas nucleotide composition of COI loci was
A = 31.8%; T = 24.6%; C = 27.1% and G = 16.6%. Furthermore,
the average intraspecies mean pairwise difference was 0.11 (±
0.09), while average interspecies sequences divergence was
0.65 (± 0.14). The observed variable sites position within the
COI sequences of seven Indian deer species are shown
in Table 2.

Determination of intraspecies and interspecies K2P
distances

The obtained COI sequences clearly showed intraspecies and
interspecies distance among seven deer species. The tree top-
ology revealed that these seven Indian deer species were div-
ided into two major groups, where clear intraspecies (within
species level) and interspecies (genus level) distances were
observed by using a K2P technique (Figure 1). Among four
species from genus Cervus included in the study, NJ tree,
clustered an array of three species in one group (Hangul,
Sambar and Brow antlered deer) with node support 59–93%,
while Swamp deer was clustered in another group with
genus Axis. The second group formed by genus Axis (Chital
and Hog deer) and Muntiacus (Barking deer), also had an
interesting inclusion of Swamp deer together with genus Axis
as sister group with 57% node support. In genus Axis, the
intraspecies K2P distance based on tree topology showed
that Chital and Hog deer are clustered together with 63%
node distance. Whereas in genus Muntiacus, Barking deer
clustered separately from genus Axis with node distance of
75%. The interspecies distance in NJ tree also divided these
three genera clearly with tree ranged from 52% to 91%.

The evolutionary divergence based on intraspecies vari-
ation, in seven deer species, ranged from 0.45 (± 0.09) to
0.156 (± 0.023), whereas the maximum sequences divergence
(0.156; ± 0.023) were observed between Brow antlered deer
and Barking deer (Figure 2(A)). Between Cervus group the
sequences divergences ranged from 0.045 (± 0.09) to 0.117
(± 0.016), where the maximum divergence (0.117; ± 0.016)
was observed between Brow antlered deer and Swamp deer,
whereas minimum divergence was observed (0.045; ± 0.09)
between Hangul and Sambar. Moreover, in the Axis group,
observed sequence divergence from Chital to Hog deer was
0.065 (± 0.012), while in Muntiacus, sequence divergence was
absent since Barking deer was solitary representative of the
group, albeit it showed minimum sequence divergences
(0.116; ±0.017) from Chital (Figure 2(A)).

The evolutionary divergence based on interspecies vari-
ation, in three genus ranged from 0.031 (± 0.008) to 0.104 (±
0.015), among which, the maximum (0.104; ± 0.015) and min-
imum (0.031; ± 0.008) sequences divergence was observed
between the genus Cervus to Muntiacus and Cervus to Axis,
respectively. Moreover, the sequence divergence between
Axis to Muntiacus was 0.085 (± 0.013) (Figure 2(B)). The DNA
sequences of COI gene revealed that the obtained sequences
are very helpful to delineate the Indian Cervids.

Conclusion

The present study unequivocally demonstrates the applicabil-
ity of DNA barcodes using COI gene as a potential tool for
identification of Cervids in Indian. Our data represent the val-
idity of DNA barcodes in identification of mammalian species
especially closely related deer species and a paradigm shift to
focus on conservation of mammals through robust tools like
DNA barcodes. These barcodes once developed could
become potent tools in the hands of enforcement agencies
entrusted with the responsibility of checking their illicit trade.
In cases where meat samples, raw or finished products of
deer species are seized, approach based on the present study
would help in robust identification of closely related/multiple
species Universally accepted DNA barcode gene when used
in concatenation with other mitochondrial gene can deliver
information on phylogeographic perspective of the data that
would enable law enforcement agencies to track the geo-
graphic origin of the wild specimens and their derivatives in
illicit trade. An effective check on their collection from wild,
in turn, would help in their conservation in situ and wildlife
management.
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