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Scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in loss of function,
restriction of tissue movement and adverse psychological effects. Whilst various studies have utilised a range of model systems that
have increased our understanding of the pathways and processes underlying scar formation, they have typically not translated to
the development of effective therapeutic approaches for scar management. Existing treatments are unreliable and unpredictable
and there are no prescription drugs for the prevention or treatment of dermal scarring. As a consequence, scar improvement still
remains an area of clear medical need. Here we describe the basic science of scar-free and scar-forming healing, the utility of pre-
clinical model systems, their translation to humans, and our pioneering approach to the discovery and development of therapeutic
approaches for the prophylactic improvement of scarring in man

1. Introduction

Anything greater than a superficial injury to the skin of
children and adults results in scar formation. Scarring is a
major cause of physical and psychological morbidity [1–8].
Whilst various studies have utilised a range of model systems
that have increased our understanding of the pathways and
processes underlying scar formation, they have not been typ-
ically translated to the development of effective therapeutic
approaches for scar management. This is evidenced by the
fact that despite a number of potential treatment regimens,
no single therapy is accepted universally as the standard of
care [9–11]. As such, scar improvement still remains an area
of clear medical need. Herein, we describe the basic science
underlying scar-free and scar-forming healing, the utility and
translation of preclinical model systems to humans, and our
pioneering approach to the discovery and development of
therapeutic approaches for the prophylactic improvement of
scarring in man.

2. Scar-Free and Scar-Forming Healing

Scarring and wound healing occur within a spectrum
ranging from the ability to completely regenerate tissue
in amphibians, through scar-free healing in embryos of
different mammalian species, to scar-forming healing in
children and adults. From an evolutionary perspective, the
scarring response results in rapid replacement of missing
tissue and, although suboptimal in terms of appearance and
function, results in a reduction in the likelihood of infection
and an increased likelihood of organism survival following
injury. The ability of organisms to heal wounds without
scar formation has nevertheless been demonstrated in the
early embryos of a range of mammalian species including
mice, rats, rabbits, sheep, pigs, marsupials, and monkeys
[12]. Comparison of the architecture of regenerated skin
in embryos with that of adults demonstrates that it is the
organisation of collagen that is largely responsible for scar
formation. Whereas the dermis of embryonic skin is restored
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to the normal “basket weave” architecture of collagen, in
adult scars the collagen is abnormally organised in parallel
bundles of fine fibres that are distinct from the normal skin
(Figure 1). It is of particular note that there appear to be
no major differences between the composition of the dermal
tissue of scar-free and scar-forming healing. This indicates
that scarring is primarily a failure of the regeneration of the
normal skin structure rather than a biochemical problem
related to an abnormal composition of the scar tissue [13].

The mechanisms underlying scar-free and scar-forming
healing have been studied at the molecular, biochemical, and
cellular level. Whilst there are a number of differences that
have been identified between healing in the embryo and the
adult, many of these are not mechanistically causative. In
illustration, the mammalian embryo is surrounded by the
sterile aqueous environment of the amniotic fluid, whereas
adult wounds are exposed to air and a range of potentially
contaminating agents including bacteria and foreign bodies.
Originally, it was thought that the sterile aqueous environ-
ment provided by the amniotic fluid was important in scar-
free healing. However, studies on marsupials such as the
opossum, which complete development in their mother’s
pouch, proved otherwise [14]. In this model, incisional
wounds were made in young pouch opossums and at an
equivalent embryonic time to mouse embryos in an amniotic
environment. Pouch opossums, like embryonic mammals,
were found to heal without scarring despite developing
outside of a sterile amniotic environment. Following injury
to the embryo, the inflammatory response (by virtue of a
less than mature immune system) is less marked and differs
in terms of the types and number of inflammatory cells
that enter the wound [15]. Finally, whilst the profiles and
quantities of growth factors and cytokines associated with
scar-free healing are often different to those in adult scar-
forming healing [16–19], there are only a few of these factors
that present themselves as potential therapeutic targets [12,
13, 20].

Data from our studies and those in the literature demon-
strate that the scarring response represents a continuous
spectrum of phenotypes in organisms ranging from scar-
free through to scar-forming healing (Figure 2). Both scar-
free and scar-forming healing can occur in the same animal,
for example, an axolotl can regenerate an amputated limb
but heals an incisional wound on the flank with a scar; if
part of the liver is removed in mammals by hepatectomy,
the liver regenerates, whilst stab wounds made to the liver
heal with scarring; MRL and other strains of adult mice
including athymic nude-nu mice regenerate ear wounds,
where the absence of T-lymphocytes in wounded ears
provides a microenvironment conducive to regeneration of
mesenchymal tissues, which is in contrast to wounds made
on the dorsum of MRL mice that heal with a scar; penetrating
wounds to the cheek of humans heal with scarring of the
external cutaneous surface but the oral mucosal surface heals
with no discernable scar [13, 21–26]. The likelihood is that
tissue repair and regeneration are not that dissimilar and, in
fact, share many common mechanisms that differ very subtly.
Furthermore, the fact that all mammalian embryos exhibit a
regenerative capacity demonstrates that even adult mammals

contain the genetic program for regeneration. The above
observations are critically important as they demonstrate
that organisms retain the ability to heal via a regenerative as
well as a scar-forming process, which gives a biological basis
for therapeutic modulation of the healing response in adults
to reduce scar formation.

3. In Vitro and In Vivo Models to
Investigate the Mechanisms of Scarring and
Evaluate Potential Treatments

A number of in vitro and in vivo models have been used
to investigate the mechanisms underlying the healing and
scarring response. The range of model systems, their uses and
limitations are summarised below.

The healing and scarring response consists of a robust
series of complex, dynamic and interacting cellular, and
molecular processes including haemostasis, the inflamma-
tory response, granulation tissue formation, and remod-
elling. The functions of the cell types involved in these
processes are also regulated by a wide range of extra-
cellular stimuli including growth factors/cytokines as well
as interaction with the extracellular matrix [27], which
elicit effects by cell surface receptors and a range of
intracellular signalling cascades that result in changes in
gene and protein expression. Taken together, these events
contribute to complex dynamic microenvironments within
the injured tissue during healing and scar maturation with
which resident and infiltrating cells interact. A number
of in vitro models have been utilised to investigate the
various aspects of the healing and scarring response at the
molecular and cellular level and include different cell types
(e.g., neutrophils, macrophages, lymphocytes, keratinocytes,
melanocytes, fibroblasts, and endothelial cells) and different
molecular and cellular processes (e.g., signal transduction,
gene expression, proliferation, migration, growth factor pro-
duction, extracellular matrix production, and remodelling)
[28–32]. Whilst in vitro models represent applicable systems
to study individual components, these systems do not always
accurately model the vastly more complex and interactive
in vivo situation. Typically, we employ in vitro systems to
further evaluate and refine findings generated from in vivo
models.

A number of species including mice, rats, and pigs have
been used as potential models of scarring in preclinical
studies (Table 1). These studies include the use of excisional
and incisional wounds in rodents and pigs, typically with
macroscopic and/or microscopic endpoints for scarring,
as well as the use of transgenic mice and more recently
the Red Duroc pig, which exhibits some of the features
of hypertrophic scarring seen in humans [54–56]. Most
studies have not systematically compared the molecular,
cellular, and tissue responses in these models to those in
man. More importantly, most studies have not investigated
the translation of therapeutic modulation in preclinical
models to that in man. Addressing these issues is key to
not only discovering and developing potential therapeutics
for humans, but also investigating and understanding their
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Figure 1: Scarring results from an abnormal deposition and organisation of collagen cutaneous scar in a noncaucasian subject at 12 months
following a 1 cm full thickness incision to the inner aspect of the upper arm (a). Histological staining of the excised scar with Van Gieson’s
stain demonstrating collagen (blue/green) and elastin (purple) staining in the normal skin compared to scar tissue and a normal undulating
epidermis with rete ridges in the normal skin compared to a flattened epidermis overlying the scar (b). Picrosirius red staining of the same
scar viewed using polarised light (c), illustrating the normal “basket-weave” organisation of collagen in the normal skin resulting in organised
light scattering (birefringence) compared to the abnormal organisation of collagen fibres within the scar resulting in a lack of birefringence.
Arrowheads indicate the border of normal skin and scar tissue. Scale bars in (b) and (c) are 500 mm. In (b) and (c), rr = rete ridges; e =
epithelium.
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Figure 2: Scar-free to Scar-forming healing in vertebrates represents a continuous spectrum of responses.

mechanisms of action. We have addressed these issues in
a series of extensive longitudinal studies utilising a range
of endpoints and technologies both in pre-clinical models
and humans. Our studies in mice, rats, and pigs have
demonstrated that scars are stable and mature at ≥ 70
days postwounding in mice/rats and ≥6 months in pigs

compared to 6 to 12 months in man. Comparison of
the macroscopic appearance of these scars and the ability
to assess a scar reduction effect within these pre-clinical
models demonstrates that next to man, rats scar the worst
and represent the most appropriate model (Figure 3). We
have also compared the gene expression profiles during the
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Figure 3: Comparison of Scarring at the Macroscopic and Microscopic Levels between experimental incisional wound models in pre-clinical
species and humans. Scarring response in mice 70 days following a 1 cm full thickness incisional wound on the dorsum at the macroscopic
((a) arrowheads indicate ends of original wound) and microscopic ((b) arrowheads indicate scar) levels. Scarring response in rats 84 days
following a 1 cm full thickness incisional wound on the dorsum at the macroscopic ((c) arrowheads indicate ends of original wound) and
microscopic ((d) arrowheads indicate scar) levels. Scarring response in pigs 168 days following a 1 cm full thickness incisional wound on the
dorsum at the macroscopic ((e) arrowheads indicate ends of original wound) and microscopic ((f) arrowheads indicate scar) levels. Scarring
response in humans 365 days following a 1 cm full thickness incisional wound on the inner aspect of the upper arm at the macroscopic ((g)
arrowheads indicate ends of original wound) and microscopic ((h) arrowheads indicate scar) levels.

healing and scarring process in these pre-clinical species
(up to 30,000 genes per sample per time point; >300
samples; 11 time points) and compared these to profiles
in man (Caucasians and Noncaucasians; 30,000 genes per
sample per time point; >250 samples; 9 time points).
Analyses of the expression of genes involved in all the major
phases of healing and scarring have clearly demonstrated
molecular comparability, particularly between rat and man,
indicating that the major difference between the healing and
scarring in these models is time, with humans exhibiting
an extended scar maturation phase [50, 51] (Figure 4).
In addition, a number of genes/gene pathways have been
identified from these studies in rats and man as further
potential novel targets for the reduction of scarring in the
skin.

4. Translation from Pre-Clinical Studies to
Clinical Efficacy

As noted above, we have demonstrated that there is signifi-
cant molecular and cellular comparability between the heal-
ing and scarring process in relevant pre-clinical models and
in man. Unlike other therapeutic/chronic disease indications,
it is important to note that healing and scarring represent an
acute biological response that is conserved across species, and
the progression of which is somewhat predictable. However,
whilst a number of studies have reported therapeutic scar
reduction in a variety of pre-clinical models, very few, if any,
have demonstrated a translation of these findings to man in
suitably designed, controlled, prospective, and randomised
clinical trials [9–11].
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Figure 4: Gene expression in models of incisional wounds and scars in rat and man demonstrate molecular comparability heatmaps of
samples of normal skin, wounds, and scars following 1 cm incisional wounds analysed for gene expression using Affymetrix Microarrays
comparing the levels and timings of expression of genes involved in the inflammatory, granulation, remodelling, and maturation phases of
healing and scarring (examples shown consist of comparison of ∼300 genes for each phase).

Our approach for the development of therapies has
focused on agents for the prophylactic reduction of scarring
in man. This involves local administration of these agents to
the margins of a wound at the time of surgery that leads
to long-term improvements in scarring. The use of pro-
phylactic, regenerative medicines is a novel pharmaceutical
approach to scar improvement, and there are a number of
challenges associated with this including: designing clinical
trials in what is considered a pioneering therapeutic area,
developing and validating suitable endpoints for evaluat-
ing the effectiveness of a prophylactic drug, where there
is no established baseline against which improvements
in scarring could be determined (since baseline would
otherwise be normal skin before surgery or injury), and
patients vary markedly in their propensity for scarring
[57, 58]. Our novel approach has been to utilise a within-
subject, placebo-controlled, human volunteer model, prior
to starting patient studies, not only to establish local drug
safety and tolerability but also to investigate a number of
other key parameters including: optimal dose(s) and dosing
frequency of the drug, evaluation of a variety of relevant
endpoints, effects of the drug in subjects with different
demographics, for example, sex, race, and age, effects of
the drug in different wound types, for example, incisions
and excisions. Studies to date have demonstrated that these
prospective, double-blind, within-subject designs allow for
a relevant and well-controlled approach for determining

the proof-of-concept for potential therapies. Since there
are no registered pharmaceuticals for the prophylactic
reduction of scarring, we have had to pioneer this area
in terms of clinical trial design and so have explored a
variety of potential surgical models in patient populations
to define their appropriateness for demonstration of drug
effects.

We have successfully demonstrated a translation of scar
reduction approaches from pre-clinical models to clinical
studies, showing clear and robust effects with both ilodecakin
(recombinant human interleukin-10, IL-10, Prevascar) in
a Phase II clinical trial and with avotermin (recombinant
human transforming growth factor beta 3, TGFβ3, Juvista)
in extensive Phase II volunteer- and patient-based studies
[49, 52, 59]. For example, in three double-blind, placebo-
controlled studies, intradermal avotermin (concentrations
ranging from 0.25 to 500 ng/100 μL per linear cm wound
margin) was administered to both margins of 1 cm, full-
thickness skin incisions, before wounding and 24 h later,
in healthy men and women [59]. Treatments (avotermin
and placebo or standard wound care) were randomly
assigned to wound sites by a computer-generated randomi-
sation scheme, and within-participant controls compared
avotermin versus placebo or standard wound care alone.
Primary endpoints consisted of visual assessment of scar
formation at 6 months and 12 months after wounding in
two studies, and from week 6 to month 7 after wounding
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Figure 5: Mechanisms and processes associated with scar-free healing, scar-forming healing and prophylactic scar reduction therapies.

in the third study [59]. All investigators, participants,
and scar assessors were blinded to treatment and efficacy
analyses.

In two studies, avotermin 50 ng/100 μL per linear cm
significantly improved median score on a 100-mm visual
analogue scale (VAS) by 5 mm (range −2 to 14; P =

.001) at month 6 and 8 mm (−29 to 18; P = .0230)
at month 12. In the third study, avotermin significantly
improved total scar scores at all concentrations versus
placebo (mean improvement: from 14.84 mm [95% CI 5.5–
24.2] at 5 ng/100 μL per linear cm to 64.25 mm [49.4–79.1]
at 500 ng/100 μL per linear cm). Nine [60%] scars treated
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with avotermin at 50 ng/100 μL per linear cm showed 25% or
less abnormal orientation of collagen fibres in the reticular
dermis versus five [33%] placebo scars. After only 6 weeks
from wounding, avotermin at 500 ng/100 μL per linear cm
improved VAS score by 16.12 mm (95% CI 10.61–21.63).

Similarly, in another Phase II clinical study, intradermal
administration of ilodecakin was well tolerated, and at
concentrations of 5 ng/100 μL and 25 ng/100 μL per linear cm
wound margin, resulted in statistically significant improve-
ments (P < .05) in scar appearance with multiple endpoints
compared with controls at 12 months postwounding.

Taken together, the results of these clinical studies
have demonstrated that acute, local applications of both
avotermin and ilodecakin have the potential to provide
an accelerated and permanent improvement in scarring in
humans.

5. Understanding the Mechanisms of Action of
Prophylactic Scar Improvement Therapies

Following cutaneous injury, numerous interacting and
dynamic molecular and cellular events are initiated. These
include a series of cascades involved in amplification,
induction, repression, feed-forward, and feed-back processes
that result in a series of sequential and temporal microen-
vironments within the wound, with which resident cells
and those infiltrating the wound interact (Figure 5). The
molecular and cellular behaviour of the wound is dependent
on the composition of the tissue microenvironment at
any one time. Therefore, any alteration of the molecu-
lar or functional behaviour of cells (e.g., by appropriate
therapeutic modulation) results in changes to subsequent
wound microenvironments and ultimately affects the tissue
response. In wound healing and scarring, like embryonic
development, the system contains a number of pathways
exhibiting multiple redundancy which gives robustness to
the system. If minor pathways are therapeutically modulated,
whilst subsequent microenvironments may be rerouted,
they nevertheless result in a scarring phenotype. However,
modulation of a major pathway that alters multiple microen-
vironments synergistically, results in significant alterations
and a major “rerouting” of the healing response, leading
to the propagation and amplification of a phenotype of
improved scar appearance (Figure 5). From our studies in
a range of pre-clinical species, we have identified a number
of key pathways that are central to generating a scarring
response. Our use of human volunteers, in an experimental
medicine context, has also rapidly allowed us to confirm
which of these identified pathways are relevant in man and
hence identify and progress new therapeutics into the clinical
arena.

6. Summary

The reduction of scarring represents a clear medical need.
Currently, there are no registered pharmaceuticals for the
prophylactic improvement of scarring, and no single therapy
is accepted universally as the standard of care. The spectrum

of healing following wounding ranges from the ability to
completely regenerate tissue through to the formation of
hypertrophic and keloid scars. Importantly, a number of
studies have demonstrated that all mammalian organisms
retain the ability to heal via both regenerative and scar-
forming processes. This is the key in terms of being able to
therapeutically modulate the healing response in adults and
reduce the severity of subsequent scarring.

Our approach to the development of therapies has
focused on agents for the prophylactic reduction of scarring.
This has been significantly aided by our extensive studies,
comparing and understanding the molecular processes and
scarring phenotypes in pre-clinical models, as well as our
pioneering use of human volunteers both in longitudinal
scarring studies and in an experimental medicine context
which has rapidly allowed us to confirm which of the
identified pathways are relevant in man. The translation
of findings in the rat pre-clinical model to man has been
shown in suitably designed and controlled prospective and
randomised clinical trials.

In terms of the mechanisms of action, the prophylactic
administration of scar improvement therapeutics results in
significant alterations and a major “rerouting” of the healing
response, resulting in the propagation and amplification of
a phenotype of improved scar appearance, by virtue of a
change in the architecture of the deposited collagen.

The understanding of the scientific basis of scar-free and
scar-forming healing and our pioneering approach to the
development of therapies have allowed the identification and
progression of new treatments. We have demonstrated that
the development of pharmaceuticals for prophylactic scar
improvement, that are additive to good surgical technique, is
achievable, resulting in new therapies with a sound scientific
basis and clear evidence of effectiveness in robust clinical
trials.
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