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A deep convolutional neural 
network for Kawasaki disease 
diagnosis
Ellen Xu1, Shamim Nemati2 & Adriana H. Tremoulet1*

Kawasaki disease (KD), the most common cause of acquired heart disease in children, can be easily 
missed as it shares clinical findings with other pediatric illnesses, leading to risk of myocardial 
infarction or death. KD remains a clinical diagnosis for which there is no diagnostic test, yet there are 
classic findings on exam that can be captured in a photograph. This study aimed to develop a deep 
convolutional neural network, KD-CNN, to differentiate photographs of KD clinical signs from those of 
other pediatric illnesses. To create the dataset, we used an innovative combination of crowdsourcing 
images and downloading from public domains on the Internet. KD-CNN was then pretrained using 
transfer learning from VGG-16 and fine-tuned on the KD dataset, and methods to compensate for 
limited data were explored to improve model performance and generalizability. KD-CNN achieved a 
median AUC of 0.90 (IQR 0.10 from tenfold cross validation), with a sensitivity of 0.80 (IQR 0.18) and 
specificity of 0.85 (IQR 0.19) to distinguish between children with and without clinical manifestations 
of KD. KD-CNN is a novel application of CNN in medicine, with the potential to assist clinicians in 
differentiating KD from other pediatric illnesses and thus reduce KD morbidity and mortality.

Kawasaki disease (KD) is an acute childhood vasculitis and the leading cause of acquired pediatric heart disease 
in children, and has been reported in all continents and over 60 countries to  date1,2. As a missed or delayed treat-
ment can lead to an increased risk of myocardial infarction or death of a child, there is a need for accurate and 
timely diagnosis of KD to improve patient  outcomes3. However, KD is often misdiagnosed as it shares clinical 
findings with other pediatric  illnesses4. To date, KD remains a disease for which the etiology is unknown and 
there is no specific test for  diagnosis5. KD clinical diagnosis is based on criteria established by the American Heart 
Association (AHA): bilateral conjunctival injection, erythema of lips and oral cavity, polymorphous exanthema, 
erythema/edema of peripheral extremities, and cervical  lymphadenopathy6.

In recent years, Convolutional Neural  Networks7 (CNNs) have achieved state-of-the-art performance on a 
variety of medical  tasks8–10. A key factor contributing to the popularity of deep learning in medicine has been the 
use of scans such as computed tomography (CT) and magnetic resonance imaging (MRI) for  radiology11–14, and 
availability of large, annotated datasets for  dermatology15–17. However, there is a lack of a well-established and 
large image datasets for KD. We explored techniques to apply CNNs towards medical domains with limited  data18.

Given that KD clinical findings are visual onsets and can be captured in a photograph, a deep learning image 
analysis algorithm distinguishing KD from other look-alike illnesses has potential to aid in early diagnosis. In 
this study, we developed a deep convolutional neural network (KD-CNN) for KD diagnosis through clinical 
photographs. As clinicians assess clinical signs independently, CNNs were constructed for each individual KD 
sign. We explored methods to improve model performance given a limited photographic dataset and evaluated 
the potential of deep learning applied towards a challenging diagnosis.

Methods
The study was conducted using binary classification differentiating between acute Kawasaki Disease (KD) clinical 
signs and non-KD images. We used a three-step approach of data acquisition and pre-processing, model develop-
ment and optimization, and statistical evaluation, in order to construct and validate KD-CNN.

Data acquisition. The dataset was curated from two primary sources: (1) downloading publicly available 
retrospective images from the Internet using Google search queries (1510 KD and non-KD images, ~ 74.2% 
of total dataset) and (2) crowdsourcing from parents of KD patients in collaboration with the KD Foundation 
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(525 KD images, ~ 25.8% of total dataset and ~ 51.3% of KD data). In total, 2,035 images were gathered for the 
study (1023 KD and 1012 non-KD). The crowdsourcing campaign was launched in August of 2020 through a 
collaboration with the KD Foundation, who assisted in promotion of the campaign to a large following on social 
media and KD parent Facebook groups. The project was also presented at the virtual 2020 UCSD KD Parent 
Symposium with attendees from 17 countries. The guardians/parents of KD patients scanned a QR code to 
provide informed consent to the KD Foundation and then submitted images online. All photos were uploaded 
and handled in accordance with the KD Foundation’s guidelines and regulations. We obtained explicit informed 
consent approved by the UCSD Institutional Review Board for photos in publications, as applicable (Fig. 1). All 
experimental protocols were approved by the UCSD IRB.

Acute KD patient images for the KD class were curated from both sources, and look-alike disease images for 
the non-KD class were curated from Source 1 (Internet downloads). Images were then sorted into respective 
clinical criteria and further adjudicated by a pediatric KD specialist (A.H.T.) to ensure accuracy of labeled data.

Data pre-processing. We applied data augmentation techniques to create a larger training dataset and 
improve model invariance. Augments were generated from a range of randomly selected values, instead of 
fixed-value affine and photographic transformations (e.g., flipping on the horizontal or vertical axis, 90-degree 
rotations, constant changes in contrast and brightness), which introduced an additional factor of randomness 
between augments. Each of the following three augments was applied once on the original data, using randomly 
selected values in the range of valid transformations: rotations from − 90° to 90°, brightness adjustments from 50 
to 100% (original brightness), and zooming from 50% zoomed in to 100% (original dimensions).

Overview of KD-CNN. We developed KD-CNN, an 18-layer convolutional neural network, for classifica-
tion of KD clinical criteria. KD-CNN takes in a photograph of a patient sign as input and outputs a probability of 
the sign resembling that of KD versus a look-alike disease. The KD-CNN model development process is shown 
in Fig. 1.

Model architecture. There are two main components of the KD-CNN model architecture: a pre-trained 
VGG-16 model with transfer learning, and additional fully connected layers fine-tuned for classification on the 
KD and non-KD dataset. To compensate for a small dataset, transfer learning with pre-trained VGG-16 was used 
to instantiate model weights for efficient  training19. Initial layers of the network were frozen for low-level feature 
representation, while the final fully connected layers were used for KD classification feeding into the decision-
making step. All models were constructed sequentially using Tensorflow and  Keras20,21. KD-CNN predictions 
were compared with the ground truth of labeled classes using categorical cross entropy loss and batch stochastic 
gradient descent (SGD) with the Adam  optimizer22. A second additional fully connected layer provided greater 
degrees of freedom for fine-tuning with KD and non-KD data, hereby referenced as VGG16+.

Model optimization. Hyperparameters of mini-batch size and steps per epoch, number of epochs, and 
learning rate were optimized for more efficient model training. We used a small mini-batch size of 4 samples 
and a default Keras learning rate of 0.001 to trade-off between fast convergence and overshooting minima. To 
prevent overfitting, we applied regularization steps of early stopping and  dropout23,24. Early stopping with call-
backs of loss and accuracy (maximum of 50 epochs and patience of 5) automatically searched for an optimal 
halting place during training, instead of manually configurating the number of training epochs. A dropout layer 
of rate 20% was added before the final VGG16 + fully connected layer to prevent too much co-adaptation. A 
combination of downsampling the majority class and an adaptive weighted loss function was implemented on a 
per-criteria basis to help reduce class  imbalance25,26, e.g., for the Peeling class which had a proportion of 1:4 KD 
to non-KD images and Extremities class which had 1:2 KD to non-KD images.

Figure 1.  Dataset selection and KD-CNN development diagram. Example images and total number of samples 
per class, labeled as “KD” and “Non-KD,” are shown for each clinical sign.
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Suppose z is the predicted output from the model for a true class label y over all classes j . Then the weighted 
loss function WL

(

z , y
)

 is calculated as follows:

where the weighting factor αy is inversely proportional to the effective number of samples per class. The weighting 
factor with ny number of samples for the class y and N total number of samples is calculated as:

where y is either the KD or non-KD class.

Statistical methods and evaluation. We evaluated KD-CNN performance using tenfold cross valida-
tion, typically a less biased and less optimistic performance estimate compared to a single realization of a train-
test  split27. Each sample was used in nine separate folds for training and one time for testing (90–10 train-test 
split), and performance was measured on previously unseen samples during testing. Other methods used to 
evaluate model performance were area under the receiver operating characteristic curves (AUC)28, confusion 
 matrices29, and true class probability (TCP)  charts30. TCP charts plot a distribution of raw probability predic-
tions by removing the final softmax activation, instead of the typical maximum class probability (MCP) output 
of binary classifications. Samples which were incorrectly classified with high probability (> 70% threshold) based 
on TCP were flagged for human review to further examine misclassified images. From the confusion matrix, 
additional metrics not dependent on prevalence used to evaluate model performance were sensitivity, specificity, 
and diagnostic odds ratio (DOR)31.

Results
The KD-CNN dataset gathered from Internet sources and crowdsourcing is shown in Table 1.

We built the KD-CNN model and evaluated optimization techniques through the statistical methods shown 
in Fig. 2. Each clinical sign model was constructed trained and evaluated independently.

From the tenfold cross validation testing results, KD-CNN achieved a median AUC of 0.90 (IQR 0.10) with a 
sensitivity of 0.80 (IQR 0.18) and specificity of 0.85 (IQR 0.19) to distinguish between children with and without 
clinical manifestations of KD (Table 2). Based on the Diagnostic Odds Ratio, which measures the effectiveness 
of a diagnostic test independent from prevalence where a higher score is indicative of better performance (> 1 is 
considered a useful test), the performance of individual sign models (in decreasing order) is Extremities (DOR 
136.52), Eyes (55.68), Mouth (35.37), Lymph (19.49), Body (12.28), and Peeling (9.53).

Discussion
We developed a convolutional neural network that can distinguish with high sensitivity and specificity between 
the clinical signs of KD and signs of other pediatric illnesses through patient photographs. KD-CNN is the first 
application of deep learning to the diagnosis of KD, achieving an overall AUC of 0.90. While deep learning has 
been previously investigated for the detection of skin disorders using  photographs15–17, there are few studies 
applying deep learning for clinical diagnosis of pediatric diseases. A few studies have been conducted for neural 
networks for KD assessment and  prediction32–34. To our knowledge, our study is the first to develop image-based 
deep learning methods for KD.
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Table 1.  Number of samples per clinical criteria in the KD-CNN dataset (prior to augmentation). Examples of 
search terms for Internet queries included “Kawasaki disease strawberry tongue,” “Kawasaki disease red eye,” 
“Kawasaki disease anterior cervical lymphadenopathy,” “Kawasaki Disease rash” for KD data and “hand foot 
mouth disease,” “scarlet fever,” “fifth disease,” “toxic shock syndrome,” “staphylococcal scalded skin syndrome” 
for non-KD data. Erythema and peeling are separated as clinical criteria to distinguish acute KD and subacute 
progressions for early diagnosis. Crowdsourced data was from 14 countries: US, France, Croatia, Slovakia, 
Albania, Philippines, Denmark, Canada, Mexico, UK, Indonesia, New Zealand, Australia, and Brazil. a The 
same datasets were used for both Erythema of peripheral extremities and peeling of peripheral extremities for 
non-KD, thus leading to a total of 1012 unique images.

Clinical criteria Tag KD Non-KDa Total

1. Polymorphous rash Body 258 251 509

2. Bilateral conjunctival injection Eyes 157 165 322

3. Erythema of peripheral extremities Extremities 176 320 496

4. Peeling of peripheral extremities Peeling 79 320 399

5. Cervical anterior lymphadenopathy Lymph 74 78 152

6. Changes in the lips and oral cavity Mouth 277 198 475

Total 1023 1012 2035
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KD-CNN utilizes photographs of patient clinical features, which can be easily taken on a smartphone device, 
to classify KD from look-alike diseases. We used an innovative combination of Internet downloads and crowd-
sourcing from parents of KD patients for data collection. Given the lack of a pre-existing dataset and publicly 
available images on the Internet alone, we leveraged unique crowdsourcing methods to incorporate data from 
a variety of different geographical locations and generalize across a larger population. To improve model train-
ing, we applied pre-training and transfer learning to inherit weights from VGG-16, and added second fully 
connected layer (VGG16 + architecture) to allow greater fine-tuning on the KD and non-KD dataset. Additional 
layers beyond VGG16 + did not yield significant improvement in performance, most likely due to the limited 
data available to train models of increasing complexity and the advent of overfitting. Since some clinical signs 
included a greater proportion of non-KD images than KD, an adaptive weighted loss function was created to 
mitigate class imbalance, through applying class weights proportional to the relative number of samples per class.

There are both strengths and limitations to this study. A primary limitation is the size of the dataset, given 
the absence of a well-established and pre-existing image database for KD. The uncommon nature of the disease 
prevented collection of a high volume of images, such as thousands of samples per class typical for deep learning 
studies. Furthermore, despite the geographical diversity of crowdsourced data, the exact demographic informa-
tion and breakdown of the patient population such as race was not collected, which limited our ability to assess 

Figure 2.  Examples of types of model evaluation used in each fold of cross validation: (a) true class probability 
chart, (b) area under the curve of receiver operating characteristic, (c) confusion matrix.

Table 2.  Summary of tenfold cross validation results across KD clinical criteria.

Body Eyes Extremities Peeling Lymph Mouth Median

Accuracy 0.75 (0.05) 0.84 (0.10) 0.90 (0.05) 0.73 (0.08) 0.79 (0.08) 0.84 (0.05) 0.82 (0.14)

Sensitivity 0.77 (0.13) 0.79 (0.22) 0.78 (0.19) 0.7 (0.19) 0.77 (0.13) 0.88 (0.07) 0.80 (0.18)

Specificity 0.72 (0.12) 0.89 (0.07) 0.95 (0.05) 0.73 (0.29) 0.79 (0.17) 0.78 (0.11) 0.85 (0.19)

AUC 0.83 (0.07) 0.92 (0.05) 0.97 (0.04) 0.79 (0.09) 0.85 (0.06) 0.91 (0.04) 0.90 (0.10)

DOR 12.28 55.68 136.52 9.53 19.49 35.37 27.43
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association of patient characteristics with model predictions. Additional testing with well-characterized patient 
data from, as well as greater investigation into potential algorithmic bias, will help further validate KD-CNN 
during our next stage of research. Development of a composite score integrating multiple patient photographs, 
demographic information, and initial laboratory values would also be worth exploring in future work.

Conclusion
KD-CNN is a novel application of CNN image classification for KD clinical sign diagnosis. This study highlights 
methods of data crowdsourcing and deep learning methodologies towards new applications of AI and provides 
support that a deep learning algorithm can help distinguish between photographs of the clinical signs of KD 
and other pediatric illnesses.

Data availability
The de-identified datasets (images and pseudocode) used in this study are available from the corresponding 
author upon reasonable request.
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