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Modification of specificity of T cells for the use in adoptive transfer (CAR- or TCR-redirected T cells) has revo-
lutionized the therapy of liquid tumors and some infectious diseases. However, several obstacles are still hampering
the efficacy of such potent therapy, hence concurrent modification of the function is also required to obtain successful
results. Here we show the use of splice-switching antisense oligonucleotides (SSOs) as a tool to transiently modify
T cell function. We demonstrate the possibility to transfect SSOs and an exogenous TCR into primary human T cells
in the same electroporation reaction, without affecting viability and function of the transfected T lymphocytes.
Moreover, we show that SSOs targeting T cell-specific mRNAs induce the skipping of the targeted exons, and the
reduction of the protein and consequent modification of T cell function. This technical work paves the way to the use
of SSOs in immune cells, not only for the knockdown of the functional isoform of the targeted proteins, but also for
the protein manipulation by elimination of specific domains encoded by targeted exons.
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Introduction

Adoptive T cell transfer is a versatile cell therapy
modality that has the potential to address critical medical

needs from chronic infections to oncology. Through the engi-
neering of effector T cells with specific receptors, in the form of
chimeric antigen receptors (CARs) or classical T cell receptors
(TCRs), one can direct the lytic action of CD8+ T cells against a
specific target. As examples, viral-infected host cells presenting
viral antigens have been targeted by CAR/TCR-redirected
T cells against human immunodeficiency virus, hepatitis B
virus (HBV), hepatitis C virus, human cytomegalovirus, or
opportunistic fungal infections [1–8]. Moreover, cancer cells
have been targeted using CAR/TCR specific for antigens ex-

pressed on the cell of origin (eg, CD19 for B cell leukemia and
lymphoma) [9,10] or targeting specific tumor antigens of self
or viral origins [11–17].

To unleash the full clinical potential of adoptive T cell
therapy beyond liquid tumors, two levels of cell engineering
can be exploited—extrinsic and intrinsic. Extrinsic engineer-
ing, in the form of synthetic receptors, has been the hallmark of
the first-generation CAR/TCR-redirected T cells. The second
generation is differentiated by the modification and/or modu-
lation of T cell endogenous factors, to induce functional fea-
tures of effector T cells that are most propitious for each clinical
application. As an example, for antiviral therapy the cytolytic
activity and inflammatory induction of redirected T cells need
to be cautiously calibrated to avert massive lysis of the infected
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targeted organs, and/or cytokine release syndrome [18]. On the
contrary, in the context of solid tumors, first-generation adop-
tive CAR/TCR-redirected T cells are not equipped to bypass
inhibitory factors in the tumor microenvironment or to specif-
ically reach the target in specific organs. For this reason, efforts
are ongoing to engineer TCR/CAR-redirected T cells with
improved trafficking, secreting immune checkpoint inhibitors
or stimulatory cytokines [19–23].

The molecular tools used in the intrinsic engineering of
T cells for adoptive transfer include gene knock-in with a
lenti/retroviral vector, gene knockout using TALEN or
CRISPR/Cas9 technologies, and suppression of gene ex-
pression with siRNAs or GAPmers [24–27].

Here we propose and demonstrate the feasibility and flexi-
bility of splice-switching antisense oligonucleotides (SSOs)
for the intrinsic modification of T cell functions and to gen-
erate what we define armored redirected T cells (ART cells).
An SSO modulates target transcript splicing by denying access
of specific RNA binding proteins (RNA-BPs) to their splice-
regulatory motifs through steric hindrance. Synthesized as a
short single-stranded ribonucleic acid whose bases and back-
bones are chemically modified, the SSO is directed to bind
complementarily to a pre-mRNA target sequence containing
splicing silencers or enhancers motifs [28,29]. We and others
have demonstrated the flexibility of SSO application in the
suppression of transcript abundance by inducing nonsense-
mediated decay [30], correction of aberrant and mis-splicing
events [31–37], and selection of alternate splicing [38–41].

Specifically, we designed and validated novel SSOs modu-
lating the splicing of three T cell-specific genes, namely
interferon-g (IFN-g), perforin (PRF), and granzyme B (GZMB),
for the targeted intrinsic engineering of cytotoxicity and cy-
tokine production of primary human T cells. We demonstrate
that SSOs can be efficiently transfected into primary human
T cells concurrently with a synthetic TCR mRNA to create
ART cells. This work paves the way for the development of a
wider array of SSOs modulating T cell-relevant genes in
different ways, which are key to improve adoptive T cell
immunotherapy.

Materials and Methods

Institutional review board

Approval: IRB No. H-17-023E issued by National Uni-
versity of Singapore (NUS). All patients gave written in-
formed consent.

Ficoll-Paque blood separation

Peripheral blood mononuclear cells (PBMCs) from heal-
thy donors were obtained from full blood using Ficoll-Paque
(GE Health Care, Chicago, IL) centrifugation. Ficoll-Paque
(10 mL) was placed at the bottom of a 50 mL Falcon tube and
blood was slowly layered above. After being centrifuged
(600 g for 30 min at 18�C, no brakes), a layer of PBMCs
would be visible and collected for further experiments.

T cell activation and expansion from PBMCs

Frozen PBMCs were thawed adding 14 mL of warm
Hanks’ balanced salt solution (HBSS; ThermoFisher Scien-
tific, Waltham, MA) in a dropwise manner. After wash (427
RCF, 5 min, room temperature [RT]), PBMCs were cultured

in AIM-V medium (ThermoFisher Scientific) supplemented
with human AB serum (Sigma-Aldrich, St. Louis, MO) at a
concentration of 1.5–2 · 106 cells/mL. T cells were activated
adding 50 ng/mL of anti-CD3 (eBioscience, San Diego, CA)
and 600 IU/mL of recombinant human interleukin-2 (rhIL-2;
Miltenyi Biotec, Bergisch Gladbach, Germany).

Resting T cells were separated from PBMCs using the pan
T cell isolation kit (Miltenyi Biotec) 1 day after thawing.
Resting T cells were cultured in AIM-V supplemented with
2% AB serum and 100 U/mL rhIL-2.

HBV-specific TCR mRNA production

We derived the TCR construct from a pUC57-s183cys
b2Aa vector that we had previously made, and subcloned it
into the pVAX1 vector [42]. The plasmid was propagated and
purified from Escherichia coli using the One Shot Top10
E. coli kit (ThermoFisher Scientific), purified using QIAGEN
EndoFree Plasmid Maxi Kit (Qiagen, Hilden, Germany), and
linearized using the XbaI restriction enzyme (New England
Biolabs, Ipswich, MA). The linearized DNA was used to
produce the TCR mRNA using the mMESSAGE mMA-
CHINE T7 Ultra kit (ThermoFisher Scientific) following the
manufacturer’s instructions.

Splicing-modifying antisense oligonucleotides

SSOs were synthesized by Integrated DNA Technologies
(Coralville, IA) with a phosphorothioate backbone and 2¢-O-
methyl ribose modifications in each position. The SSOs were
resuspended in water at a final concentration of 1 mM or 500mM
and kept frozen at -20�C. The SSOs were added in the elec-
troporation mix together with the T cells (and the TCR mRNA,
eventually) in electroporation buffer at the desired concentration.

Detailed information about the utilized SSOs are given
in ‘‘Modifying T lymphocytes function with Antisense Oli-
gonucleotides (ASOs) for personalized immune therapy’’
(PCT/SG2018/050313; 10201705285S (IMC/Z/09724); fil-
ing date June 27, 2017; priority date June 27, 2016; licensed
to IMMUNOA Pte Ltd on September 14, 2018).

Electroporation

T cells were transfected using electroporation method using
the 4DNucleofector� System (Lonza, Basel, Switzerland).
T cells were washed twice with phosphate-buffered saline (PBS)
and electroporated using the P3 Primary Cell 4D-Nucleofector�

X kit following the manufacturer’s instructions with a custom-
ized electroporation program. Electroporated T cells were then
resuspended in warm AIM-V medium supplemented with 10%
AB serum and 100 U/mL rhIL-2.

Usually, 5–10 · 106 cells were electroporated in each re-
action. The TCR mRNA was added at 2 mg/106 T cells; SSOs
were added at different concentrations ranging from 0.15 to
0.5 femtomoles/T cell.

Cell line culture

HepG2.2.15 were cultured in Dulbecco’s modified Eagle’s
medium (DMEM; ThermoFisher Scientific) supplemented
with 10% v/v heat inactivated fetal bovine serum (FBS;
ThermoFisher Scientific), 2% v/v penicillin/streptomycin,
1% v/v MeM nonessential amino acids (ThermoFisher Sci-
entific), 1 mM sodium pyruvate (ThermoFisher Scientific),
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and 200mg/mL Geneticin reagent (ThermoFisher Scientific)
to select for transgene expressing cells. THP-1 cells are
cultured in Roswell Park Memorial Institute Medium (RPMI;
ThermoFisher Scientific) supplemented with 10% v/v heat
inactivated FBS and 1% v/v penicillin/streptomycin.

Real-time cytotoxicity assay

The cytotoxicity assays were performed using the xCEL-
Ligence� RTCA DP (ACEA Biosciences, Inc., San Diego,
CA) following the manufacturer’s specifications. In brief, 105

HepG2.2.15 cells/180 mL were seeded in the specific plate
(in their growth medium) and were let to adhere for 24 h. At
the time of effector addition, 150mL of medium were re-
moved and replaced with T cells resuspended in AIM-V 2%
AB serum, at a fixed effector:target (E:T) ratio. The acqui-
sition was started at the seeding of the targets and continued
for 48 h after T cell addition; the impedance measurements
were acquired every 15 min. The Cell Index is a measurement
of the impedance measured in each well, and the Normalized
Cell Index was obtained by normalizing the Cell Index of
each well to the Cell Index at a specific time point (the sweep
before T cell addition); the area under the curve (AUC) was
obtained using the GraphPad 7 algorithm (San Diego, CA).

Coculture experiments (PD-L1 detection)

Experiments of coculture were performed using TCR-
redirected T cells specific for S183–191 peptide of HBV
envelope. THP-1 cells were resuspended at 2 M/mL in
medium and s183–191 peptides were added at a concen-
tration of 1 mg/mL, at room temperature; after 1 h, the su-
pernatant was removed, and the cells were carefully rinsed
twice with warm HBSS. HBV-specific TCR-redirected T
cells were cocultured with the targets in AIM-V 2% AB
serum for 5 h at different E:T ratios. The supernatants of the
coculture were then collected and transferred onto other
THP-1 cells for 8 h. The THP-1 cells were then collected
and stained for the presence of PD-L1.

Surface and intracellular staining

After culture, cells were collected and washed once (427
RCF, 3 min, 4�C) with PBS in 96-well plated (V-bottomed).
Live/dead staining was performed in PBS for 10 min at RT,
followed by two washes with cold PBS; MHC-I dextramer
staining was performed in staining buffer (SB; PBS supple-
mented with 1% bovine serum albumin [BSA]; Sigma-
Aldrich) and 0.1% sodium azide (Sigma-Aldrich) at RT for
15 min followed by one wash in SB; surface staining was
carried out in SB for 30 min on ice, followed by two washes
and 20 min of fixing and permeabilization using Cytofix/
Cytoperm solution (BD, Franklin Lakes, NJ) on ice; finally,
intracellular staining was performed in Permwash buffer (PBS

supplemented with 1% BSA, 0.1% sodium azide, and 0.1%
saponin; Sigma-Aldrich) for 30 min on ice. After intracellular
staining, the sample was washed twice in Permwash buffer,
and resuspended in PBS supplemented with 1% formaldehyde
for flow cytometry acquisition. The samples were acquired on
LSRII (BD), and analyzed using Kaluza (London, United
Kingdom) or FlowJo (Ashland, OR) software.

RNA extraction and polymerase chain reaction

RNA extraction was performed using RNeasy Plus Micro
kit (Qiagen) following the manufacturer’s instructions. After
extraction, the RNA was quantified using NanoDrop and
was retro-transcribed using the cDNA iScript synthesis kit
(BioRad, Hercules, CA). Polymerase chain reaction (PCR)
experiments were performed to assess the effect of SSOs in
skipping the target exon. Primers flanking the target exon
were designed to obtain products of different sizes upon
treatment with the specific SSO.

After PCR amplification, the products were run on an
agarose gel (2%) and stained with SYBR Safe DNA Gel Stain
(ThermoFisher Scientific) according to the manufacturer in-
structions. The gel was then imaged, and the images were an-
alyzed using ImageJ software (NIH). The Percentage Spliced
In was calculated after having analyzed the luminosity of the
bands in the gel.

Antibody list

CD3 (Biolegend, San Diego, CA), CD274 (BD), CD8 (BD),
GZMB (BD), PRF (Diaclone, Besançon, France), tumor ne-
crosis factor-a (BD), IFN-g (ThermoFisher Scientific), s183–
191 MHC-I dextramer (Immudex, Copenhagen, Denmark),
and live/dead fixable stain kit (ThermoFisher Scientific).

Results

TCR mRNA and SSOs can be concurrently
electroporated into T cells with no adverse effect

To test our approach of concurrent extrinsic and intrinsic
engineering to modulate specificity and function of primary
human T cells, respectively, we electroporated in the same
reaction an mRNA coding for a cognate-specific TCR and
SSO (Fig. 1a).

T cell specificity can be transiently modified by electro-
porating an mRNA encoding for an exogenous TCR. We utilized
an mRNA coding for a TCR specific for HBV epitopes restricted
by HLA-class I molecule A0201; we had previously demon-
strated that these mRNA-electroporated T cells transiently ex-
pressed HBV-TCR up to 72 h. The HBV-TCR expressing T cells
were observed to lyse HCC cells expressing HBV antigens or
inhibit HBV replication both in vitro and in vivo [4,42,43].

‰

FIG. 1. (a) Schematic idea of generation of ART cells. (b) Representative staining of T cells electroporated (top left),
electroporated with HBV-specific TCR (top right), electroporated with a FAM-tagged scrambled SSO (bottom left) and with
both transfectants (ART cells, bottom right). (c) Percentage viability of T cells mock electroporated or electroporated with
scrSSO. (d) HBV-TCR expression in T cells electroporated with TCR mRNA or TCR mRNA and scrSSO. (e) Killing
ability (xCELLigence RTCA) of T cells electroporated with TCR mRNA alone or TCR mRNA and scrSSO. (f) Expression
of TLR-induced genes upon mock electroporation or electroporation of scrSSO 24 h after transfection (normalized to the
expression of nonelectroporated T cells). ART cells, armored redirected T cells; TCR, T cell receptor; HBV, hepatitis B
virus; n.s., not significant; SSO, splice-switching antisense oligonucleotide. Color images are available online.
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To assess the efficiency of SSO delivery in primary human
T cells, an FAM-tagged SSO with a scrambled nontargeting
sequence (scrSSO) was co-electroporated with the HBV-
TCR mRNA [11]. An average of 70% cotransfection effi-
ciency was achieved (Fig. 1b).

Of note, the concurrent transfection of HBV-TCR mRNA
(TCR for short) and scrSSO does not impinge on the ex-
pected biophysical and biological properties of each other.
The kinetics of HBV-TCR transfection (Supplementary
Fig. S1a) and scrSSO transfection (Supplementary S1b) were
not affected. Of importance, viability (Fig. 1c), TCR protein
expression as assessed by MHC multimer staining in flow
cytometry (Fig. 1d), and T cell antiviral activity as measured in
a 2D killing assay (Fig. 1e) were not affected. The concomi-
tant mRNA TCR and scrSSO electroporation was efficient
not just on activated proliferating T cells but also in resting
human primary T cells (Supplementary Fig. S1e, f). Moreover,
scrSSO does not induce an elevation of TLR-related proin-
flammatory genes usually upregulated in the presence of naked
nucleic acids (Fig. 1f) [44] up to 72 h after electroporation
(Supplementary Fig. S1c, d).

Generation of ART cells with reduced IFN-c
secretion capacity

IFN-g is a proinflammatory cytokine secreted mainly by
Th1-type T cells. Besides playing roles in antiviral function
[45], IFN-g can promote activation-induced cell death of T
cells [46] and is the main inducer of both PD-L1 and PD-L2
expression [47], and thus participates in inducing an immu-
nosuppressive environment [48,49].

Exon 2 of IFNG codes for part of the ‘‘interferon-g do-
main’’ (the specific cytokine domain), and we hypothesized
that its exclusion will result in the expression of a shortened
IFN-g protein with attenuated cytokine function. We de-
signed and synthesized an SSO to induce specific IFN-g exon
2 skipping (Fig. 2a) and transfected through electroporation
on activated primary human T cells, at three different con-
centrations. Figure 2b shows the temporal exon skipping
efficiencies after transfection: exon 2 was skipped as early as
6 h after electroporation, and the level of exon skipping, as
well as the duration of the effect, are dose dependent (as the
skipping is reduced faster with lower doses of SSOs) (Sup-
plementary Fig. S2c). At all the tested IFN-g SSO concen-
trations, cell viability and TCR expression in primary human
activated T cells were not affected (Supplementary S2a, b)
while inducing skipping of exon 2 (Fig. 2c) 24 h after trans-
fection (0.25 femtomoles/T cell). Similarly, viability and
TCR expression are not affected by the SSO transfection
in resting TCR-redirected T cells (Supplementary Fig. S2d, e)
in the presence of IFNG exon 2 exclusion (Supplementary
Fig. S2f).

Next, we tested using flow cytometry whether the alter-
ation induced by IFN-g SSO would lead to a reduction of
IFN-g 24 h after transfection with 0.25 femtomoles/cell
(Fig. 2d). We then assessed the ability of the T cells super-
natant to induce PD-L1 expression in a monocytic cell line
(THP-1) [50]. IFN-g ART cells resulted in monocytes pro-
ducing up to 40% less PD-L1 protein when cultured with
supernatants derived from activated IFN-g ART cells (Fig. 2e,
f), demonstrating a functional difference compared with the
scrSSO controls.

Generation of ART cells with reduced cytotoxic activity:
PRF and GZMB

To further test the ability of SSOs to modulate essential
T cell functions, we designed SSOs to suppress the ex-
pressions of PRF1 and GZMB. For the former, the PRF SSO
induces the skipping of exon 2b where the translation start
codon resides, whereas the GZMB SSO induces exon 3
skipping that generates a frameshifted transcript (Fig. 3a);
in both cases, no protein product is expected from the
respective resultant transcripts. We quantified the exon
skipping efficiency of each SSO 24 h after electroporation
as PSI, shown in Fig. 3b and d. Intracellular cytokine
staining (ICS) of PRF and GZMB ART cells shows a re-
duction of the respective proteins (Fig. 3c, e and Supple-
mentary Fig. S3e). Again, both PRF and GZMB SSOs do
not affect T cell viability (Supplementary Fig. S3a, b) and
TCR expression (Supplementary Fig. S3c, d) compared
with the controls, but inhibit their cytolytic ability (Fig. 3f, g)
in T cells cotransfected with both the SSOs. Of importance,
modulation of T cell function with SSOs was not demon-
strated only on T cells of healthy individuals but on T cells
of patients with inherent pathology (ie, chronic hepatitis B
infection) (Fig. 3h, i, and Supplementary Fig. S3f).

Discussion

To engineer ART cells with definite function and spec-
ificity, we decided to utilize fully chemically modified
splicing-modulating SSOs over siRNA, GAPmer, shRNA,
and CRISPR/Cas9 approaches, for the following reasons:
(i) superior selectivity and stability, (ii) multimodality,
(iii) limited immunogenicity, and (iv) clinical compati-
bility owing to their transient nature and their success in
clinic [36 37,51,52]. Thanks to their versatility, SSOs
could be explored in other cell types also used in adoptive
transfer (such as NK cells or dendritic cells) to further ame-
liorate cell-based therapeutic approaches. The manipulation
ex vivo of cells used for adoptive cell transfer is relatively
straightforward. In fact, high numbers of PBMCs can be
easily obtained through phlebotomy and they can be expanded
in vitro for several days before reinfusion into the patient.
During the expansion phase, concurrent modifications can be
implemented for intrinsic engineering of these cells: from
redirection, to the boosting of their function using cytokines or
other drugs [53,54].

The advantage of our cotransfection protocol is evi-
dent when considering its practicality in a clinical setting,
where substantial and subsequent manipulations of the
samples could lead to higher risk of contamination and/or
loss of the sample itself. The choice of transfection (over
transduction) offers an advantage with regard to safety.
Transient redirection is safer for the patient, as the speci-
ficity receptor is lost within few days, with lower risk of
collateral effects [8]. After the exogenous specificity re-
ceptor is lost, T cells still maintain their natural receptor;
therefore, any stable functional modification induced
would alter indefinitely their function against the natural
targets. Another advantage of an SSO lies in its non-
catalytic action, which does not require a functional RNAi
machinery or RNase H activity, unlike siRNA and GAP-
mer, respectively [40]. Given the patient variability,
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potential deregulation of the two endogenous cellular
factors in exhausted primary T cells and cytotoxicity ef-
fects from dose-induced saturation of these factors [55,56],
anticipating the efficacy and the toxicity of both siRNA and
GAPmer is not straightforward.

Our data showed that SSO-mediated intrinsic engineering
of primary human T cells from healthy donors and chronic
hepatitis B patients does not impinge on the ART cell via-
bility and TCR expression, as well as T cell antiviral or
cytotoxic function mediated by the extrinsic engineering.

‰

FIG. 3. (a) Schematic of PRF1 (perforin) and GZMB genes. (b) PSI of exon 2 from PRF mRNA in ART cells elec-
troporated with either scrSSO or PRF SSO. (c) Flow cytometry staining of PRF in PRF ART cells and control. (d) PSI of
exon 3 of GZMB upon electroporation of GZMB SSO. (e) Flow cytometry staining of GZMB in GZMB ART cells and
control. (f) Representative curves of killing obtained in the xCELLigence� system with PRF, GZMB or PRF+GZMB ART
cells. (g) Summary of four different cytotoxicity experiments. (h) Skipping of exon 2 of PRF mRNA in T cells obtained
from chronic hepatitis B patients and transfected with PRF SSO. (i) Flow cytometry staining of PRF in PRF ART cells from
CHB patients. *p < 0.05, **p < 0.01, ***p < 0.001. GZMB, granzyme B; PRF, perforin. Color images are available online.

FIG. 2. (a) Schematic of IFNG gene. (b) Exon skipping measured at 6–12–18–24–48–72 h after transfection with IFN-g SSO
(0.15–0.25–0.5 femtomoles/cell). (c) PSI (Percentage Spliced In) of exon 2 of IFN-g mRNA 24 h after electroporation of scrSSO
or IFN-g SSO. (d) Mean fluorescence intensity of IFN-g in T cells electroporated with scrSSO or IFN-g SSO. (e) Schematic of the
experiment: HBV-specific ART cells (transfected with scrSSO or IFN-g SSO) were incubated with THP-1 cells presenting the
specific HBV peptide (E:T ratio = 1:10 or 1:100). After incubation, the supernatants were collected and placed onto new THP-1
cells. After 8 h of culture, the expression of PD-L1 (induced by IFN-g) was measured (f) PD-L1 expression on THP-1 cells
cultured in supernatants deriving from (e). **p < 0.01. E:T, effector:target; IFN-g, interferon-g. Color images are available online.
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On the contrary, we were able to modify immune-modulatory
and cytotoxic functions of ART cells targeting IFN-g, PRF,
and GZMB production singly and in combination, and in
conjunction with extrinsic engineering.

In summary, this work is a technical demonstration that
targeted intrinsic engineering of immune cells for adop-
tive immunotherapy is possible with splice-switching
oligonucleotides. This work paves the way for more ap-
plications in the field, as well as, a clinical translation of
the technology.
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