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Abstract: This paper presents a fully integrated 0.18 µm CMOS Low-Dropout (LDO) Voltage
Regulator specifically designed to meet the stringent requirements of a battery-operated impedance
spectrometry multichannel CMOS micro-instrument. The proposed LDO provides a regulated
1.8 V voltage from a 3.6 V to 1.94 V battery voltage over a −40 ◦C to 100 ◦C temperature range,
with a compact topology (<0.10 mm2 area) and a constant quiescent current of only 7.45 µA
with 99.985% current efficiency, achieving remarkable state-of-art Figures of Merit (FoMs) for the
regulating–transient performance. Experimental measurements validate its suitability for the target
application, paving the way towards the future achievement of a truly portable System on Chip (SoC)
platform for impedance sensors.

Keywords: CMOS analog integrated circuits; low dropout regulator (LDO); impedance spectroscopy;
sensor array

1. Introduction

Many emerging sensor technologies, especially those based on bio and nano-materials, rely on
Impedance Spectroscopy (IS) to evaluate their activity, i.e., the sensor information is obtained from
its impedance extraction over a specific interval of stimulus frequencies [1–3]. However, despite the
versatility and the promising applications of the newest impedance sensors—from environmental
monitoring [4] to molecular diagnosis [5–7] or DNA or proteins microarrays [8,9]—their potential use
outside the specialized laboratories is hindered by the lack of suitable on-chip electronic interfaces
that allows preserving levels of resolution, accuracy and reliability comparable to those of the bulky
laboratory instruments, but with a miniaturized system powered by limited energy sources. In addition,
the trend towards the integration of sensor arrays to permit multi-parameter sensor fusion and improve
measurement accuracy imposes even more demanding design restrictions on the electronic circuits of
the IS interface.

Typically, these sensor output signals present a low signal-to-noise ratio (SNR), making necessary
the use of special techniques for the extraction of the information [9–11]. One appropriate low-voltage
low-power (LVLP) compatible measurement solution is the use of the Frequency Response Analysis
(FRA) or lock-in amplifier-based (LIA) technique that allows using basically two quadrature phase
mixers to extract the magnitude and phase information of very small sensor signals at a reference
frequency f0 even in noisy environments [12]. In addition, one of the key aspects to achieve a truly
portable sensing device is the implementation of a System-on-Chip (SoC) solution, integrating in a
single die the actuation system, the read-out electronics and an efficient power management unit.
This involves CMOS fabrication: with the actual nanometric CMOS technologies, the cost is reduced,
the level of integration is noticeably increased, and the integrity of the output signal is maintained,
achieving in this way more robust, compact and cheaper solutions.
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Therefore, to extend the use of miniaturized sensor arrays to applications in which the portability
and the ease of use are critical, it is necessary the development of Application Specific Integrated
Circuits (ASICs) that respond to the specific electronic interface challenges associated with CMOS
compatible impedance sensor systems. Following this research line, Figure 1 shows the block diagram
of a battery-operated impedance spectrometry multichannel micro-instrument based on the FRA
technique. The actuation system is a high-resolution wide-range (from ~300 Hz to ~300 kHz) digitally
programmable analog sinusoidal oscillator [13], which provides the stimulus to the variable impedance
and the corresponding quadrature control signals to the read-out electronics. The read-out channel
consists of a pre-conditioning amplifier followed by a dual-phase Lock-In Amplifier, which extracts
the real and imaginary parts of the impedance [14]. Taking a further step to achieve a complete on-chip
measurement solution, this work presents the design and characterization of a fully integrated low
dropout regulator (LDO), which is the essential core block in the power management unit [15–18].
It must provide, from a 3.6 V LiPo battery—i.e., a short-lived source of energy delivering a decreasing
voltage level as it discharges over time—a stable, noise-free, accurate and load-independent 1.8 V
power supply voltage for the whole multichannel excitation and readout system.

Design guidelines are to optimize the size and especially the power consumption to satisfy these
critical constraints of portable on chip devices, while keeping a suitable regulating performance for
our application specifications: output voltage Vout = 1.8 V for battery-compatible input voltages
VBAT = 3.6 V–2.1 V, with a maximum load current of 50 mA over a 100 pF maximum capacitive load.
Under these design terms, the LDO can supply up to 10 sensor signal-processing blocks, each block
consisting of the respective excitation and readout systems. Besides, to obtain in the future a complete
SoC measurement system, the whole design has been implemented in the same low cost CMOS process
as [13,14], the UMC 0.18 µm 1P-6M CMOS technology, which provides transistors with 1.8 V–3.3 V
nominal supplies, MIM (Metal-Insulator-Metal) capacitors (CPOX = 1.0 fF/µm2), and a high resistive
polysilicon (HRP) layer (Rsquare = 1039 Ω/sq.).
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Key design considerations for LDO regulators include stability, line/load regulation, line/load
transient and power supply rejection (PSR). Conventional LDOs use an off-chip capacitor in the µF
range at the output, both to guarantee stability and to minimize output voltage variations in the
transient response. However, internal compensation is needed to attain a fully integrated solution
that minimizes size and cost. Besides reliable on-chip compensation, operation with low quiescent
current is mandatory to prolong the battery cycle. Nonetheless, a low quiescent current unavoidably
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slows the LDO transient responses, dominated by the slew-rate characteristic at the gate of the pass
transistor. Finally, high precision regulation requires high loop gain, i.e., the use of high gain error
amplifiers. Thus, for very low supply LDOs, a multi-stage error amplifier has to be employed. However,
the compensation network of a fully integrated LDO with a multi-stage amplifier is not trivial, requiring
advanced compensation techniques, such as damping factor control [19], Q-reduction [20] or enhanced
multipath nested Miller [21]. Therefore, the challenge in CMOS LDO design is to achieve stability with
reasonable on-chip compensation capacitance and minimum quiescent current while exhibiting good
static regulating performance and fast transient behavior, since trade-offs between these parameters
are interrelated.

In particular, with our design specifications, we have adopted a strategy that relies on using the
simplest high-gain error amplifier, a telescopic structure which will be detailed next, to achieve good
regulating performance and PSR while simplifying stability to the two-pole case, with a minimum-area
minimum-quiescent-current solution, our two critical design requirements. To overcome the trade-off
between power consumption (low quiescent current) and transient response, different techniques have
been proposed, but they involve increasing the current and the circuit complexity of the resulting
topology, thus degrading the power efficiency. For instance, the LDOs in [22,23] use current Miller
amplification, i.e., a current amplifier in series with a capacitor that creates an auxiliary fast loop both to
improve the transient response and to achieve internal frequency compensation. Adaptive techniques
detect load variations through a relatively small current sensing transistor MS in parallel with the power
pass transistor. It generates a scaled copy of IL, that is next adequately injected directly at the gate of
the pass transistor [24] or added to the bias current of the error amplifier, which is thus biased with a
small fixed bias current plus an adaptive bias current proportional to IL [25,26]. The associated circuit
topology is simple, and thus compact. However, the transient improvement is only effective during
transitions from low to high currents, but not for the opposite conversion, while the quiescent current
becomes proportional to IL, increasing when the LDO is active. Alternatively, dynamic techniques rely
on the employment of auxiliary current boosting paths to improve the transient behavior, which are
only active during transient periods but that remain off in steady state. Therefore, the system can
operate with reduced quiescent current, and then the charging/discharging current at the gate of the
power transistor [27] or the biasing current of the error amplifier are increased momentarily [28–30].

Hence, the dynamic technique is the one exhibiting better current efficiency. That is why this
paper applies this approach to achieve an internally compensated LDO regulator with enhanced time
response thanks to the introduction of a novel dynamic current boosting bias circuit. Over other
proposals based on this technique [27–30], this scheme manages to work with no additional quiescent
current and minimal additional circuitry, thus resulting in an ultralow power LDO with very
competitive static and dynamic regulating performances.

Some preliminary simulation results were presented in [31,32]. This paper is organized as follows:
Section 2 describes the LDO regulator design. Section 3 reports the experimental characterization.
Section 4 validates its application within the micro-instrument in Figure 1, designed for portable
impedance measurement, and that includes a set of 10 SoC channels. Finally, in Section 5, conclusions
are drawn.

2. Proposed LDO Design

Figure 2a shows the basic topology of a CMOS LDO regulator. It consists of an error amplifier
(EA), a resistive feedback network and a PMOS transistor acting as the pass device between the input
voltage VBAT and the regulated output voltage Vout that powers the load, modeled through RL//CL.
The feedback resistors R1–R2 sample variations on Vout due to variations on the input voltage and/or
load current. This sampled voltage Vfb is compared to a voltage reference Vref, and the amplified
difference continuously drives the pass transistor gate so that the output voltage is kept constant
according to the relationship
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Vout ≈
(

1 +
R1

R2

)
Vref, (1)

Based on this architecture, the proposed fully integrated internally compensated LDO voltage
regulator is shown in Figure 3. The voltage reference Vref is an external 1.2 V reference.
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2.1. LDO Core

With our design specifications (Vref = 1.2 V; Vout = 1.8 V) from Equation (1) and assuming a static
current of 4 µA flowing through resistances R1–R2 when IL = 0 (Ifb = Vout/(R1 + R2) = 4 µA), as a
trade-off between low power consumption and moderate resistance values, it results R1 = 150 kΩ and
R2 = 300 kΩ. They are implemented as active resistances using three identical PMOS transistors in
diode configuration (M0, Figure 3) instead of as passive resistances to optimize area.

The size of the PMOS pass transistor is set to 9 mm/340 nm to guarantee operation in saturation,
in the first order of approximation, for the maximum load current (50 mA) preserving a dropout
voltage of Vdo = VDS,MP = 300 mV. Minimum transistor length (L = 0.34 µm for 3.3 V MOS transistors)
is used to reduce the parasitic capacitance at the pass transistor gate: Cg ~12 pF (no load) and ~20 pF
(maximum load).

The EA is a telescopic NMOS input differential pair Operational Transconductance Amplifier
(OTA), which provides high gain—comparable to that of a two-stage topology—with the simplest
single-stage OTA. In this way, high precision regulation can be achieved minimizing power
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consumption and relaxing the system stability. It drains a total current consumption of 2.5 µA
(2 µA for the differential pair plus 0.5 µA to generate the cascode bias voltages VB3 and VB4 through
diode-connected transistors). Its DC gain AEA is above 97 dB over the nominal battery supply
operating range (2.1 V–3.6 V), and it renders a gain-bandwidth product GBW > 149 kHz with a phase
margin PM = 89.6◦ considering a load capacitance equal to Cg.

2.2. Stability

Since the LDO regulator structure is based on a negative feedback control loop to establish the
constant output voltage, an important aspect is to ensure stability under all the operating conditions,
that is, for all the voltage supply and load current ranges. Conventional LDOs add an off-chip
capacitor in the order of ~µF at the regulator output that, besides settling the dominant pole, improves
the transient response. These are called external compensated LDOs, because capacitances of such
magnitude (µF) cannot be integrated within a reasonable area. Therefore, for SoC solutions, a different
strategy must be used.

In our case, using as EA a single stage OTA (Figure 2b), the corresponding PMOS linear
regulator is a second-order system. It presents a dominant pole associated to ROTA and Cg,
where ROiTA ≈ [(gm2ro2ro3||gm4ro4ro1)] is the OTA output resistance (parameters having their usual
meaning) and Cg is the gate capacitance of the pass transistor,

fPEA ≈ 1
2π

1
ROTACg

, (2)

The non-dominant pole is associated to the output LDO node and can be expressed as

fPOUT =
1

2π
1

ReqCL
≈ 1

2π
IL

VoutCL
, (3)

where Req ≈ [(R1 + R2)||RoP||RL] ≈ RL is the equivalent output load resistance, RoP the output
resistance of the pass transistor and CL the load capacitance.

It is clear that, for high load currents, POUT increases moving towards higher frequencies and
renders a stable system, but for low load currents POUT gets closer to the dominant pole, reducing the
phase margin below the limit that guarantees stability. Thus, a cascode compensation technique, using
a single Cc = 9.5 pF MIM capacitor (Figure 3) is adopted to accomplish pole splitting and stabilize the
system, with the criteria of preserving a phase margin PM above 60◦ (Figure 4). This approach has been
preferred over the classical Miller compensation technique, which requires a Cc = 11 pF, Rc = 17.5 kΩ
network to attain the same 60◦ phase margin at IL = 0; besides, the Miller solution exhibits for load
currents IL > 0.1 mA a further overcompensated phase margin response (Figure 5).
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2.3. Transient Response

The combination of a low load capacitor in the LDO output node and the use of minimum
quiescent currents to drive the large capacitor Cg at the gate of the power transistor overall results in
voltage peaks and large settling times for the transient response. To improve this transient behavior
without jeopardizing the quiescent current, a dynamic current bias boosting circuit (CBBC), shown in
grey in Figure 3, is proposed. It consists of undershoot/overshoot (US/OS) detection circuits, with the
corresponding US/OS driving circuits.

The undershoot (US) detection circuit is a quasi-floating gate PMOS transistor MQFP. Its gate
voltage is tied to a DC biasing voltage VBP through large resistive elements RLarge—implemented
using two series reverse biased PMOS diodes—and to the output node through a small valued MIM
capacitor CQF = 1 pF. In this way, under quiescent conditions, the MQFP gate voltage takes the value
VBP, which is fixed to a value VSG = (VBAT–VBP) = 350 mV < |VTHP|= 0.72 V that keeps MQFP in
the cut-off region. When the output voltage suddenly decreases, capacitor CQF transfers the output
voltage undershoot to the MQFP gate, making VSG > |VTHP| and the transistor enters the on region.
The generated current is copied through the current mirror M8, adding extra bias current to the error
amplifier that speeds the discharge of capacitance Cg. When Vout is approximately regulated back to
its nominal value, MQFP returns to the off region.

Similarly, the overshoot (OS) detection circuit is a quasi-floating gate NMOS transistor MQFN,
with the gate voltage set to a DC biasing voltage VGS = VBN = 300 mV < VTHN = 0.59 V through
RLarge, and connected to the output node through CQF. In steady state, MQFN is off, but when the
output voltage suddenly increases, the overshoot will couple through CQF, triggering on the transistor.
The generated current is added to the bias current of the EA, helping to charge the gate capacitance
Cg and, as a result, Vg is increased to reduce IL. Besides, MQFN is replicated and the current mirror
M6-M7-M7’ sinks extra current at the output, helping to discharge the path formed by (R1 + R2) and CL.

Both VBP and VBN are generated from the same bias branches used to generate the cascode bias
voltages to add no extra current. Therefore, the total quiescent current in steady state is only 7 µA
(0.5 µA from the reference current Iref + 4 µA from the feedback network +2 µA from the EA + 0.5 µA
to generate all biasing voltages).

Compared to previous proposals based on the dynamic technique [27–30], the main advantage of
the proposed current bias boosting circuit (CBBC) is that it effectively improves the transient response
both with simpler circuitry (<4% of the total chip, including both CQF) and with no additional ground
current, therefore not degrading the system power consumption and size. More in detail, the LDO
in [27] makes use of a simple differential pair as error amplifier, with triple transient improved loops;
it achieves similar regulating performances, exhibiting comparable FoMs, but with a quiescent current
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3.6 times greater and twice the area. Output voltage spikes detection based on RC high pass filtering
is implemented in [28]; however, this requires large capacitance and resistance values: the area of
the HPF is more than half of the total chip area. The LDO in [29] uses a combination of a low power
simple differential pair EA and two high-speed comparators to dynamically increase the bias current
of the EA. However, to achieve a settling time of 200 ns, the comparators need 20.6 µA of the total
26 µA quiescent current, severely degrading the power consumption performance. A current-reused
dynamic biasing circuit in the output of a two-stage EA using an NMOS-pass transistor to improve the
load transient response with no extra current is implemented in [30]. However, this quiescent current
is as high as 130 µA, and this solution needs a charge-pump voltage doubler driven by an external
clock to bias this output stage allowing a drop-out voltage of 200 mV.

3. Experimental Validation

Figure 6a shows a microphotograph of the integrated LDO regulator. Its active area is
362 × 283 µm2, mostly occupied by the power PMOS transistor. A specific PCB was designed
(Figure 6b) to complete its static, dynamic and high frequency (PSR) characterization.
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Figure 6. (a) Detail of the integrated LDO regulator (CB: Core (without MP) + Bias); and (b) LDO
PCB test.

3.1. Static Behavior

Figure 7 shows the measurement setup (Figure 7a shows the block diagram and Figure 7b shows a
photograph of the experimental setup) for the characterization of the main static parameters: Vin–Vout

characteristic and drop-out voltage, quiescent current, line regulation LNR (circuit capacity to keep the
specified output voltage in the range of input voltages) and load regulation LDR (circuit capacity to
keep the specified output voltage under different load conditions). A DC Power Supply 3631A from
Array (Array Electronic Headquarters, Nanjing, China) sets the 1.2 V reference voltage. To emulate
different load currents (0, 1 µA, 10 µA, 100 µA, 1 mA, 10 mA and 50 mA) ,an array of six commuted
resistances placed at the output of the LDO are used, each of them activated through a respective
low impedance NMOS transistor IRFML8244 (RDS(on),max = 41 mΩ) from IR (International Rectifier
Headquarters, El Segundo, California, USA) acting as switches with their gates connected to the digital
outputs of a Data Acquisition Card (DAQ) USB-6008 from NI (National Instruments Headquarters,
Austin, TX, USA).

Firstly, a DPO4104 Oscilloscope from Tektronix is used to corroborate the proper behavior of the
integrated LDO. Figure 8a shows the static Vin–Vout performance for IL = 50 mA. Secondly, automatized
measurements were accomplished to perform a complete Vin–Vout characterization over different
load currents. The input voltage VBAT is provided by a Source Measure Unit 2336B (SMU) from
Keithley (Keithley Instruments Headquarters, Cleveland, OH, USA) that allows, for each input VBAT,
the simultaneous measurement of the quiescent current. The output voltage is measured with a Digital
Multimeter of 6 1/2 digits 34410A from Agilent Technologies (Agilent Technologies Headquarters,
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Santa Clara, CA, USA). Tests have been performed in a range of temperatures that spans from −40 ◦C
to 100 ◦C in 20 ◦C steps, using a thermal chamber FITOTERM 22E from Aralab (Aralab Headquarters,
Sintra, Portugal). Figure 8b presents the obtained results, with a sweep of the supply voltage from
1.5 V to 3.6 V in 0.01 V steps, at room temperature (20 ◦C) for different load currents (from 0 to
50 mA). The LDO regulator provides a constant output voltage of 1.8 V for input voltages >1.94 V
(Vdo = 140 mV) with an error <4% for the worst case, corresponding to maximum load current. Next,
in the range of −40 ◦C–100 ◦C in 20 ◦C steps, this same characteristic is measured for the most critical
state, i.e., at maximum current. Results are shown in Figure 8c. The Vdo remains over 140 mV and,
in the linear region, the output voltage experiences a maximum variation of 20 mV over the 140 ◦C
temperature range (~143 µV/◦C).
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linear region). The variation of the output voltage through all the operating range for the worst case 
(IL = 50 mA) provides a LNR = 0.081 mV/V. Figure 10b presents the LNR behavior over temperature. 
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Figure 8. Vin–Vout characteristic: (a) oscilloscope caption at IL = 50 mA; (b) different current loads;
and (c) different temperatures with maximum load current (50 mA).

The measured quiescent current of the system over Vbat is shown in Figure 9a. Its average value
is 7.45 µA, with a negligible difference (~70 nA) between the minimum and maximum battery voltage.
Figure 9b shows the quiescent current against the battery voltage range for different temperatures.
The value is kept constant at each temperature over the battery supply, increasing at a rate of
~32 nA/◦C.
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The Line Regulation (LNR) is the static variation at the output voltage ∆Vout due to a static
variation of the input voltage ∆Vin. It is typically specified by

LNR =
∆Vout

∆Vin
(mV/V) = 100

∆Vout

∆Vin

1
Vout

(%/V), (4)

Figure 10a presents the LNR performance (basically a zoomed version of Figure 7b in the LDO
linear region). The variation of the output voltage through all the operating range for the worst case
(IL = 50 mA) provides a LNR = 0.081 mV/V. Figure 10b presents the LNR behavior over temperature.
Load Regulation, defined as the static variation at the output voltage ∆Vout due to the static variation
of the load current ∆IL, is typically specified by

LDR =
∆Vout

∆IL
(mV/mA) = 100

∆Vout

∆IL

1
Vout

(%/mA), (5)



Sensors 2018, 18, 1405 10 of 17

Figure 11a presents the LDR for different input voltages within the operating range of the LDO
regulator. The worst case (Vin = 2.0 V) provides a LDR = −0.82 mV/mA. Figure 11b presents the
behavior over T.
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3.2. Dynamic Behavior

The dynamic behavior of the LDO regulator is tested at room temperature (T ~20 ◦C).
To characterize the transient load regulation (Figure 7, in green), the output voltage variation is
measured for a current step from minimum to maximum load current, at a specific input voltage.
That current step is obtained through an AFG310 Arbitrary Function Generator from Tektronix
(Tektronix Headquarters, Beaverton, OR, USA) used to provide a square signal that opens and closes
the NMOS transistor switch connecting the output voltage with a load current of 50 mA, switching in
this way from 0 to 50 mA. The output voltage variation is captured with the oscilloscope. Figure 12
shows the oscilloscope screenshot for a current step from 0 to 50 mA (trise = 0.5 µs) with an input
voltage of VBAT = 3.6 V. The regulated output voltage with the dynamic CBBC (Figure 12a) shows
an OS/US of ~480 mV/~400 mV with settling times of 2.5 µs/2.0 µs, respectively. Compared to the
transient load regulation without the dynamic enhancement circuit, it shows an improvement of two
orders of magnitude in the settling times and an important reduction on the OS/US voltage variations.
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Figure 12. Load transient behavior: (a) with dynamic CBBC (green) output voltage and (purple)
ON/OFF (50 mA/0 mA) of the switch that allows load current through; (b) US zoomed image;
and (c) OS zoomed image.

Characterization of the transient line regulation (Figure 7, in blue) sets an input voltage step
within its linear range, at a specific load current. Figure 13 shows a screenshot of the transient line
regulation for an input voltage step from 2.2 V to 3.2 V with a load current of 50 mA. The regulated
output voltage shows an US (Figure 13a) of ~700 mV and a settling time of 20 µs, while the OS
(Figure 13b) presents a voltage variation of ~600 mV and settling time of 4 µs.
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3.3. Power Supply Rejection (PSR)

Finally, the PSR measures the capacity of the LDO regulator to reject ripple, of various frequencies,
injected at its input [33]

PSR =

∣∣∣∣20 log10

(
Vout

Vin

)∣∣∣∣, (dB) (6)

Figure 14 shows the PSR value at no load condition for an input signal of 0.1 V amplitude and
1 kHz frequency over a supply voltage of 2.8 V (green) and an output voltage centered at 1.8 V (purple).
The FFT (red) shown in Figure 14a corresponds to the input signal (green) and the one in Figure 14b to
the output signal (purple). A drop of ~48 dB in the 1 kHz signal is measured. Figure 14c shows the
PSR for different frequencies for no load and maximum load current.

Note that, since the PSR largely depends on the feedback gain [34],

AFb =
AEA(

1 + s/ωPEA

) R2

R1 + R2
(7)
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at low frequency; since AEA is high, the low frequency supply rejection is good as expected. However,
beyond the frequency of the error amplifier pole ωPEA , the feedback gain reduces and the PSR
consequently degrades. The LDO is designed to work into a Lab-on-Chip micro-instrument directly
powered by batteries, being the main interference expected from load transients (activation and
deactivation of the different signal processing blocks supplied with the LDO regulator). Thus, the PSR
has not been considered a critical design issue while more relevance is given to good DC regulation,
fast transient response, ultra-low current and reduced area consumption.
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Table 1 summarizes the main characteristics of the presented LDO regulator and compares the
experimental results with other measured CMOS designs, with similar specifications. The proposed
regulator attains within an area of 0.10 µm2 better overall line and load regulation with a reduction
of the power consumption while it keeps similar time response parameters, operating for a range
of temperatures from −40 ◦C to 100 ◦C. To better evaluate the performance of different designs,
two figures-of-merit (FoM) are defined. The first one is expressed as

FoM1 =
CL ∗ LNR ∗ LDR ∗ Iq

1000 ∗ IL,max
(s) (8)

compares the regulation performance-power efficiency trade off, where CL (pF), LNR (mV/V),
LDR (mV/mA), Iq (µA) and IL,max (mA) are the output capacitor, the line and load regulation,
the quiescent current and the maximum load current. The factor 1000 is introduced to have FoM1

dimensioned in (s).
The second figure-of-merit is a widely adopted FoM [21,35] to evaluate the transient performance:

FoM2 =
Tsettle ∗ Iq

IL,max
(s) (9)



Sensors 2018, 18, 1405 13 of 17

Table 1. Comparison of CMOS Capacitorless LDO regulators.

Parameter This Work [18] 2012 [22] 2007 [25] 2012 [26] 2016 [27] 2011 [29] 2016 [30] 2018 [36] 2015

CMOS Tech. (µm) 0.18 0.35 0.35 0.35 0.18 0.35 0.35 0.18 0.065
Vin (V) 1.94–3.6 2.0–2.4 3 2.5–4 1.5–1.8 1.642–5 3.7 1.6–1.8 1.2
Vout (V) 1.8 1.073 2.8 2.35 1.2 1.5 3.25 1.4–1.6 1

Vdo (mV) @ IL,max (mA) 140 @ 50 47 @ 0.5 200 @ 50 150 @ 100 300 @ 50 142 @ 100 300 @ 50 200 @ 50 150 @ 10
Iq (µA) 7.45 35.7 65 7–17 2.4–242 27 26 130 50–90

CLoad (pF) 100 30 100 100 100 100 100 50 140
Line Regulation (mV/V) 0.081 39 ~23 1 12.3 1.046 - 0.857 37.1

Load Regulation (mV/mA) −0.82 13 ~0.56 0.08 0.14 0.0752 ~2.86 0.248 1.1
Full load ST (µs) <2.5 - 15 ~0.15 (a) ~1.6 1 0.2 (b) 0.04 (c) 0.00115

PSR (dB) @ 1 kHz
-48 -38.1 @ -57 - <-33 @ −60.6 ~-40 -70 <-21

10 MHz 1 MHz
Temp. range (◦C) -140 37 - - - - - - -

Area (mm2) 0.10 ~1 0.29 0.064 0.03 0.2 0.098 0.023
FOM1 (fs) 0.989 1.086 × 106 1674.4 0.56–1.36 8.27–833.45 2.123 - 28567–51421

FOM1
† (fs) 0.989 - 1674.4 4.56–11.07 8.27–833.45 2.123 - 28567–51421

FOM2 (ns) 0.37 - 19.5 0.011–0.026 0.077–7.74 0.27 0.104 0.00575–0.01
FOM2

† (ns) 0.37 - 19.5 0.086–0.21 0.077–7.74 0.27 - 0.00575–0.01
FOM1

† xFOM2
† (ps)2 0.366 - 32650.8 0.392–2.325 0.64–6451 0.573 - 164.26–514.21

(a) IL: 50 µA—max; (b) IL: 0.1 mA—max; (c) IL: 9 mA–40 mA; (†) FoM1,2 with the α factor applied.
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In both cases, the smaller is the FOM value, the better is the performance metric. Besides, an α

correction factor as proposed in [29] is introduced in both FoMs (FOMi
† in Table 1)

α =
Iq + IL,min

Iq
(10)

to take into account the minimum load current at which the LDO must operate, thus including the
IL,min requirement into Iq. In this way FoM1

† properly evaluates the regulation performance with the
effective power consumption and FoM2

† the transient response for a full load transition. According to
Table 1, the proposed LDO achieves really competitive FoMs, rendering the best regulating–transient
performance trade-off over a wide temperature range.

4. Micro-Instrument Application

To show the functionality of the proposed LDO regulator, the micro-instrument shown in Figure 1
was emulated, as shown in Figure 15a. The setup (Figure 15b) includes 10 CMOS lock-in based
signal-processing (SP) blocks, each of them encapsulated in a 24-pin dual in line (DIL-24) package,
consisting of one quadrature signal generator and a dual readout system. All of them are biased to
1.8 V using the proposed LDO regulator, encapsulated in a separate DIL-24 package (Figure 15a, down).
Two DAQ USB-6212 from National Instruments emulate the impedance sensor signals and recover the
corresponding output signals (Vx and Vy) provided by the 10 dual-channel LIAs. They also provide
the clock signal required to configure the 12-bit registers that set the oscillators frequencies, sent in
daisy chain.Sensors 2018, 18, x  14 of 16 
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Each individual processing IC presents a current consumption of ~2 mA, and can be individually
activated and deactivated to verify the dynamic LDO output voltage behavior. Figure 15c shows the
results achieved, when Vbat = 2.1 V, for the sequential activation (every 0.9 s) of the 10 circuits in the
array, up to a total current consumption of ~20 mA. The proposed LDO regulator is perfectly capable
of providing the demanded current while keeping a stable supply voltage, validating the suitability of
the proposal for the target application.

5. Conclusions

This paper has presented an output capacitorless Low Dropout Regulator integrated in a
1.8 V–0.18 µm CMOS technology, capable of supplying a constant 1.8 V voltage to bias the excitation
and readout channels of an array of sensors. The LDO regulator was specifically designed to meet the
critical requirement conditions of battery-operated micro-instruments, such as low area (<0.10 mm2)
and low power consumption (7.45 µm constant quiescent current, with 99.985% current efficiency),
achieving remarkable state-of-art FoMs for the regulating–transient performance. This paves the way
towards the achievement of miniaturized multichannel IS systems to the scale necessary for hand-held
and point-of-care applications.
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