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Abstract

Background: Abnormal DNA methylation is well established for breast cancer and contributes to its progression by
silencing tumor suppressor genes. DNA methylation profiling platforms might provide an alternative approach to
expression microarrays for accurate breast tumor subtyping. We sought to determine whether the distinction of the
inflammatory breast cancer (IBC) phenotype from the non-IBC phenotype by transcriptomics could be sustained by
methylomics.

Methodology/Principal Findings: We performed methylation profiling on a cohort of IBC (N = 19) and non-IBC (N = 43)
samples using the Illumina Infinium Methylation Assay. These results were correlated with gene expression profiles.
Methylation values allowed separation of breast tumor samples into high and low methylation groups. This separation was
significantly related to DNMT3B mRNA levels. The high methylation group was enriched for breast tumor samples from
patients with distant metastasis and poor prognosis, as predicted by the 70-gene prognostic signature. Furthermore, this
tumor group tended to be enriched for IBC samples (54% vs. 24%) and samples with a high genomic grade index (67% vs.
38%). A set of 16 CpG loci (14 genes) correctly classified 97% of samples into the low or high methylation group.
Differentially methylated genes appeared to be mainly related to focal adhesion, cytokine-cytokine receptor interactions,
Wnt signaling pathway, chemokine signaling pathways and metabolic processes. Comparison of IBC with non-IBC led to the
identification of only four differentially methylated genes (TJP3, MOGAT2, NTSR2 and AGT). A significant correlation between
methylation values and gene expression was shown for 4,981 of 6,605 (75%) genes.

Conclusions/Significance: A subset of clinical samples of breast cancer was characterized by high methylation levels, which
coincided with increased DNMT3B expression. Furthermore, an association was observed with molecular signatures
indicative of poor patient prognosis. The results of the current study also suggest that aberrant DNA methylation is not the
main force driving the molecular biology of IBC.
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Introduction

Epigenetic changes, in particular DNA methylation, are

recognized as one of the most common forms of molecular

alteration in human cancer [1,2]. Two changes in DNA

methylation patterns are observed in cancer: i) a global

hypomethylation, which has been associated with increased

chromosomal instability, the reactivation of transposable elements

and loss of imprinting; and ii) hypermethylation of CpG islands

located in the promoter regions of tumor suppressor genes, which

has conventionally been associated with transcriptional silencing in

cancer [3,4]. The DNA methylation patterns associated with the

development and progression of cancer have potential clinical use

[5]. First of all, the changes in DNA methylation patterns are

characteristic of cancer cells, specific to the cancer type and occur

at the early stages of cancer development, making them candidate

biomarkers for early and specific cancer detection [6]. Second,

DNA methylation patterns are of potential value for prognosis, as

they might also reflect both the growth advantage and malignant

potential of cancer cells. Third, changes in DNA methylation can

affect genes influencing response to therapy, which makes these

potential markers of clinical response.

Breast cancer is a heterogeneous disease that comes in several

distinct clinical and histological phenotypes. Clinical progression is

difficult to predict using the current prognostic factors and

treatment is therefore not as effective as it should be. Genome-

wide gene expression profiling by complementary DNA micro-

array has been used for accurate tumor subtyping based on a

defined molecular signature [7,8]. DNA methylation profiling

might provide an alternative or complementary tactic to classify

breast cancer and, in this way, provide clinicians with a better

understanding of individual tumor biology and an opportunity to
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personalize patient treatment strategies. Previous studies have

associated DNA methylation patterns with histological patterns of

tumor growth [9,10], histological tumor grade [11–13] and with

hormone receptor and Her2/neu expression [12,14–16]. Using an

array-based platform with more than 800 cancer-related genes,

Holm et al. have recently revealed that the molecular breast

cancer subtypes, especially basal-like, luminal A and luminal B

tumors, harbor specific methylation profiles [17].

In the present study, we undertook methylation profiling using

the Infinium Human Methylation27 BeadChips (Illumina, San

Diego, CA, USA) in a series of breast cancer cases to determine

whether subsets of breast cancer can be distinguished by their

profiles of methylation. In particular, we investigated the

possibility that the inflammatory breast cancer (IBC) phenotype

is characterized by a specific DNA methylation pattern. IBC is a

particularly aggressive manifestation of primary epithelial breast

tumors and affects ,5% of women with breast cancer [18,19].

Patients with IBC are often misdiagnosed due to the lack of

knowledge about symptoms. Furthermore, no specific therapies

have been developed for the treatment of IBC. Prognosis therefore

remains dismal, with 5-year survival rates ranging from 30% to

50%. The absence of tailored treatment for IBC is due in part to a

lack of understanding of the biological factors that influence the

IBC disease course and outcome. Elucidating the molecular

characteristics of IBC will help the development of novel

diagnostic tools and innovative, targeted therapies for patients

with IBC. Investigation of methylation in IBC has so far been

restricted to studies focused on individual tumor suppressor genes,

using quantitative methylation-specific PCR [20,21]. These studies

have reported differential methylation of certain genes between

IBC and non-IBC, leading us to consider the possibility of a

unique methylation profile for IBC.

Methods

Patients’ samples
Breast tumor and normal breast tissue samples were retrieved

from the tissue bank of the General Hospital Sint-Augustinus

(Antwerp, Belgium). Clinical and pathological data are stored in a

database in accordance with hospital privacy rules. Specimens

were brought to the pathologists immediately after resection and

part of the tissue was placed in liquid nitrogen and subsequently

stored at 2180uC. A total of 19 patients with IBC and 43 patients

with non-IBC were included in this study. In addition, we

collected 10 normal breast tissues from healthy controls (mean age

36y, range 25–47y). IBC was diagnosed according to the criteria

mentioned in the AJCC (American Joint Committee on Cancer)-

TNM staging system [22]. All patients with IBC showed diffuse

enlargement of the involved breast of sudden onset. There was

erythema and edema of the skin involving more than one third of

the breast. The presence of dermal lymphatic invasion as an

isolated observation was not sufficient for the diagnosis of IBC and

was not necessary for the diagnosis either. Tumor characteristics

are provided in Table 1.

Ethical approval for collection of clinical material was obtained

from the Sint-Augustinus Ethics Committee.

Genomic DNA isolation and quality assessment
DNA extractions from fresh frozen tissues were performed using

the QIAamp DNA Mini Kit (Qiagen, Valencia, Ca) according to

the manufacturer’s instructions. Genomic DNA quality was

assessed by low agarose gel (0.5%) electrophoresis under low

power voltage. Thresholds for genomic DNA quality check were:

a) showing a high molecular band (,40 Kb) in 0.6% agarose gel

low-voltage electrophoresis (3 hrs) and no strong band of low

molecular weight (,2.0 Kb); b) OD260/280 and OD260/230

within a range of 1.0–3.0.

Bisulphite conversion
Bisulphite conversion of genomic DNA was done with the EZ

DNA methylation Kit (Zymo Research, D5002) by following the

manufacturer’s protocol with modifications for the Illumina

Infinium Methylation Assay. Briefly, one microgram of genomic

DNA was first mixed with 5 ml of M-Dilution Buffer and

incubated at 37uC for 15 minutes and then mixed with 100 ml

of CT Conversion Reagent prepared as instructed in the protocol.

Mixtures were incubated in a thermocycler for 16 cycles at 95uC
for 30 seconds and 50uC for 60 minutes. Bisulphite-converted

DNA samples were loaded onto 96-column plates provided in the

kit for desulphonation and purification as instructed in the

protocol. Concentration of eluted DNA was measured using a

Nanodrop-1000. Bisulphite-converted samples were used for chip

analysis as described below without any delay.

Illumina Infinium Human Methylation27 BeadChip
Bisulphite-converted genomic DNA was analyzed using Illumi-

na’s Infinium Human Methylation27 Beadchip Kit (WG-311-1202)

(performed at the DNA Microarray Core, Johns Hopkins

University). Data can be freely downloaded from the web

page http://www.tcrg.be/en/page6/page13/epigenetics.html. The

beadchip contains 27,578 CpG loci covering more than 14,000

human RefSeq genes at single-nucleotide resolution. Chip process

and data analysis were performed by using reagents provided in the

kit and by following the manufacturer’s manual. Briefly, 4 ml of

bisulphite-converted genomic DNA was denatured in 0.014N

Table 1. Tumor characteristics.

Clinicopathological
features IBC (N = 19)

Non-IBC
(N = 43) P-value

Patients’ ages (y) 0.978

Mean 59,6 59,7

Range 45–79 30–89

Tumor stage ,0.001

I 0 (0%) 12 (28%)

II 0 (0%) 16 (37%)

III 12 (63%) 12 (28%)

IV 7 (37%) 3 (7%)

Histological tumor grade 0.049

Well 0 (0%) 9 (21%)

Moderate 7 (37%) 18 (42%)

Poor 12 (63%) 16 (37%)

Estrogen receptor 0.608

Positive 12 (63%) 30 (70%)

Negative 7 (37%) 13 (30%)

Progesterone receptor 0.479

Positive 7 (37%) 20 (46%)

Negative 12 (63%) 23 (54%)

HER2 amplification 0.270

Positive 8 (42%) 12 (28%)

Negative 11 (58%) 31 (72%)

doi:10.1371/journal.pone.0012616.t001
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sodium hydroxide, neutralized and amplified with kit-provided

reagents and buffer for 20–24 hours at 37uC. Samples were

fragmented. 12 ml of each sample was loaded onto a 12-sample

chip and the chips were assembled into a hybridization chamber as

instructed in the manual. After incubation at 48uC for 16–20 hours,

chips were washed with wash buffers provided in the kit and

assembled and placed into a fluid flow-through station for primer-

extension reaction and staining with reagents and buffers provided in

the kit. Polymer-coated chips were image-processed in Illumina’s

iScan scanner. Data were extracted using BeadStudio v3.0 software.

Methylation values for each CpG locus are expressed as a beta (b)-

value, representing a continuous measurement from 0 (completely

unmethylated) to 1 (completely methylated). This value is based on

following definition and calculation:

b-value = (signal intensity of methylation-detection probe)/

(signal intensity of methylation- detection probe + signal intensity

of non-methylation-detection probe).

As a positive control for methylation analysis, we used Human

HCT116 methylated DNA (Cat# D5014-2, Zymo Research). As

a negative control for methylation analysis, Human HCT116

DKO DNA (DNA methyltransferase double knock-out cells

(DNMT1 and DNMT3b), prepared by Core Facility) was used.

Replicate samples (N = 3) were included to assess inter-array

reproducibility.

Data analysis
Data were analyzed using Bioconductor in R (http://www.

bioconductor.org). Sixty-eight CpG loci for which the detection p-

value was .0.05 in 25% of samples were excluded from analysis as

were 28 CpG loci showing a b-value of ,0.5 in the Human

HCT116 methylated DNA sample and 4,067 CpG loci showing a

mean b-value of .0.2 in the Human HCT116 DKO DNA

samples. Analysis was subsequently restricted to the remaining

23,496 CpG loci (12,956 genes), 18,742 located within CpG

islands and 4,754 located outside of these regions.

Unsupervised hierarchical clustering analysis with the Euclidean

distance and complete linkage algorithm was used to create a

heatmap with associated dendrogram. A Prediction Analysis of

Microarrays (PAM) and a two-sided t-test were used to identify

differentially methylated CpG loci. Selection of the most

significantly differentially methylated CpG loci between samples

was based on (1) a b-value difference of .0.17 [23] and (2) a P-

value of ,0.0001. Functional characteristics of genes of interest

were examined with a gene set enrichment analysis using

hypergeometric testing for KEGG pathways.

Gene expression profiling
Gene expression profiling of these breast tumors (N = 57) was

performed as previously described [24]. Briefly, extracted RNA

was hybridized onto the Affymetrix HGU133 plus 2.0 array in

collaboration with the VIB Micrarray Facility (UZ-Gasthuisberg,

Leuven, Belgium). Perfect match fluorescence intensities were

background-corrected, mismatch-adjusted, normalized and sum-

marized to yield log2-transformed gene expression data using the

GCRMA algorithm. A pairwise Pearson correlation analysis was

used to assess the association between methylation levels and gene

expression levels.

Results

Unsupervised hierarchical clustering of normal breast
tissues and breast tumors

DNA methylation levels were measured using the Illumina

Infinium HumanMethylation27 BeadChips in breast tumor

samples from 19 patients with IBC and 43 patients with non-

IBC and in normal breast tissue samples from 10 healthy women.

Unsupervised hierarchical cluster analysis of the 1,000 most

varying b-values (largest s.d.) of the breast tumor (N = 62) and

normal breast tissue samples (N = 10) separated samples into three

distinct groups (average silhouette width 0.165, P,0.00001): one

group consisting of 11 tumor samples (blue color bar in Figure 1),

one group consisting of 39 tumor samples (red color bar in

Figure 1) and one group that included all 10 normal samples and

12 tumor samples (green color bar in Figure 1). The normal breast

tissue samples showed little variation in methylation profiles, with

a mean s.d. of b-value of 0.02. The three sample clusters

significantly differed in mean b-values (P,0.00001). The low b
group (green color bar in Figure 1) had a mean b-value of 0.25, the

intermediate b group (red color bar in Figure 1) had a mean b-

value of 0.38 and the high b group (blue color bar in Figure 1) had

a mean b-value of 0.52. Of the 1,000 most varying CpG loci, 835

were located within a CpG island (dark grey color bar in Figure 1)

and 165 were located outside of a CpG island (grey color bar in

Figure 1). Within the low and intermediate b groups, mean b-

values for CpG loci outside a CpG island were significantly higher

than mean b-values for CpG loci within a CpG island

(P,0.00001) (Figure 2). In contrast, within the high b group,

mean b-values for CpG loci outside a CpG island were

significantly decreased (P,0.00001).

Supervised analysis of methylation in breast tumors vs.
normal breast tissues

To identify the CpGs showing the most significant tumor-

specific changes in methylation relative to normal controls, a mean

b-value was determined for all 62 breast tumor samples and

compared with the corresponding mean b-value in the normal

breast tissue group. Using the criteria of P,0.00001 and Db
.0.17, 1,353 CpG loci (corresponding to 1,134 genes) were

identified (Table S1). For 1,037 of these CpG loci (77%) a

significant increase in methylation was observed in the group of

breast tumors. Thus, 316 CpG loci showed significant loss of

methylation in breast tumors relative to normal breast tissues.

CpG loci outside of CpG islands were significantly over-

represented in the group showing loss of methylation in breast

tumors (76% versus 18%; P,0.0001, Fisher’s exact test). To

determine the biological relevance of the differentially methylated

genes, we performed a gene set enrichment analysis using

hypergeometric testing for KEGG pathways. Genes differentially

methylated between normal breast tissues and breast tumors were

related to focal adhesion (P,0.0001), extracellular matrix receptor

interaction (P = 0.0025), pathways in cancer (P = 0.0049), cyto-

kine-cytokine receptor interaction (P = 0.0066) and ether lipid

metabolism (P = 0.0099) (Table 2).

Unsupervised hierarchical clustering of breast tumors
Unsupervised hierarchical cluster analysis of 500 most varying

b-values (largest s.d.) separated breast tumor samples into two

distinct groups (average silhouette width 0.235, P,0.0001)

(Figure 3). We refer to these clusters as low b (N = 49) and high

b (N = 13) tumor groups. These groups showed a mean b-value of

0.314 and 0.513, respectively (P,0.0001). The high b tumor

group was significantly enriched for breast tumor samples from

patients with distant metastasis and poor prognosis (as determined

by the 70-gene prognostic signature [25]) when compared to the

low b tumor group (P x2 = 0.026 and P x2 = 0.049, respectively).

Furthermore, the high b tumor group tended to be enriched for

IBC samples (54% and 24% of samples in the high and low b
tumor groups, respectively, were from IBC patients, P x2 = 0.087)

DNA Methylation Profiling
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Figure 2. Box plots of methylation values (b) in the low, intermediate and high b groups according to the location of a CpG locus
within a CpG island (light grey) or outside a CpG island (dark grey). Within the low and intermediate b groups, mean b-values for CpG loci
outside a CpG island were significantly higher than mean b-values for CpG loci within a CpG island. Within the high b group, mean b-values for CpG
loci outside a CpG island were significantly decreased.
doi:10.1371/journal.pone.0012616.g002

Figure 1. Hierarchical clustering of methylation values (b) from 1,000 CpG loci from 62 breast tumor and 10 normal breast tissue
samples. Columns represent samples; rows represent CpG loci. Color represents methylation level b from 0 to 1 as per color bar (red = low
methylation level; blue = high methylation level). Vertical color bar indicates location of CpG locus within the CpG island (dark grey) or outside of
CpG island (grey). Top horizontal color bar indicates sample cluster. Samples separated into three distinct groups: a group consisting of 11 tumor
samples (blue), a group consisting of 39 tumor samples (red) and a group including all normal breast tissue samples (light green) and 12 tumor
samples (dark green).
doi:10.1371/journal.pone.0012616.g001
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Table 2. Biological function of genes differentially methylated between normal breast tissues and breast tumors.

KEGG pathway KEGG id Genes P-value

Focal adhesion 04510 CD1D, CD8A, CD9, IL11RA, THPO, ITGA4, EPO, CD33, TPO, CD34, IL1A, FCGR1A, KIT,
CSF2, CD37

,0.0001

ECM receptor interaction 04512 FLT4, PDGFRB, LAMA1, CCND1, LAMA2, COL11A2, RELN, ACTN2, PARVG, COL1A2,
BCL2, LAMA4, COL5A2, ITGA4, CCND2, PAK7, COL1A2, PGF, PPP1CC, COL6A3, FLT1,
COL6A2, ITGA8, MYLK, EGFR, THBS4, CCND2, COL5A3, COL11A1, PRKCG

0.0025

Pathways in cancer 05200 LAMA1, LAMA2, COL11A2, RELN, COL1A2, SV2A, LAMA4, COL5A2, ITGA4, COL6A3,
COL6A2, ITGA8, THBS4, COL5A3, COL11A1

0.0049

Cytokine-cytokine receptor interaction 04060 FLT4, LEP, TNFRSF10D, CX3CL1, IL11RA, PF4V1, TNFRSF10D, TNFRSF1B, ACVR1,
TNFRSF18, CD40, CCL1, CXCL6, CCL18, TNFRSF8, EPO, TNFSF11, TPO, CCL7, FLT1,
EGFR, CCL13, IL23A, INHBC, IL1A, TNFSF8, KIT, CSF2, TGFBR1, XCL1

0.0066

Ether lipid metabolism 00565 AKR1B1 0.0099

doi:10.1371/journal.pone.0012616.t002

Figure 3. Hierarchical clustering of methylation values (b) from 500 CpG loci from 62 breast tumor samples. Columns represent
samples; rows represent CpG loci. Color represents methylation level b from 0 to 1 as per color bar (red = low methylation level; blue = high
methylation level). Samples separated into two distinct groups: a high b group consisting of 13 breast tumor samples (red dendrogram) and a low b
group consisting of 49 breast tumor samples (blue dendrogram). Bottom horizontal bar indicates the distribution of samples according to the
genomic grade index of Sotirou et al. [26] (black fill = grade 3, no fill = grade 1, grey fill = unknown), the 70-gene prognostic signature of van ’t Veer
et al. [25] (black fill = poor prognosis, no fill = good prognosis, grey fill = unknown), M status (black fill = positive, no fill = negative) and tumor
subtype (black fill = IBC, no fill = non-IBC).
doi:10.1371/journal.pone.0012616.g003
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and samples with a high genomic grade index [26] (67% and 38%

of samples in the high and low b tumor groups, respectively, had a

high genomic grade index, P x2 = 0.100). There was no difference

between the two tumor groups with regard to age, tumor stage,

histological grade or ER, PR and HER2 expression.

To investigate whether the difference in methylation profiles

between breast tumors is related to differences in the DNA

methyltransferase (DNMT) machinery, we compared the expres-

sion levels of DNMT1, DNMT3a and DNMT3b mRNAs

between the high b and low b groups of breast tumors (Figure

S1). We observed increased mRNA expression levels of DNMT3b

in the high b group of breast tumors (P = 0.034), with a mean

expression level of 5.76 in the low b tumor group and 6.52 in the

high b tumor group. Also for DNMT1, higher mRNA expression

levels were observed in the high b tumor group, but this difference

did not reach statistical significance (P = 0.088). No difference in

DNMT3a expression between the two groups of breast tumors was

measured (P = 0.620). The difference in DNMT3b expression

between the high b and low b groups of breast tumors became far

more modest when the mRNA expression levels were normalized

according to those of the cell proliferation marker PCNA

(P = 0.060).

We used Prediction Analysis of Microarrays (PAM) to classify

low b and high b breast tumors by their methylation profile. PAM

builds a classifier based on a ranking of CpG loci using a penalized

t-statistic and then determines the misclassification error rate

through 10-fold cross-validation. The optimal classifier included

16 CpG loci (corresponding to 14 genes) (Figures S2 and S3).

Genes in the classifier were NIP, CHGA, OSR1, GFRA3, KLK10,

SSTR1, EFCPB2, PPARG, PRKAR1B, ABCG2, FGF5, PLTP,

GRASP and PAX7. Adding more genes to the classifier increased

the error rate, whereas fewer genes did not have enough power to

discriminate between classes. This CpG loci set showed excellent

performance, classifying 47 of 49 low b and 13 of 13 high b tumor

samples correctly for an overall success rate of 97%.

Biological relevance of differentially methylated genes in
high vs. low b breast tumors

Next, to identify differentially methylated genes between the

high b group of breast tumors (N = 13) and the low b group of

breast tumors (N = 49), we compared the mean b-values in both

groups for each CpG locus. We then determined their biological

relevance by performing a gene set enrichment analysis using

hypergeometric testing for KEGG pathways. Using the criteria of

P,0.0001 and Db .0.17, this analysis resulted in the identifica-

tion of 450 CpG loci (corresponding to 366 genes) (Table S2).

Genes differentially methylated between the low b and the high b

group of breast tumors appeared to be mainly related to focal

adhesion (P = 0.006), galactose metabolism (P = 0.0106), cytokine-

cytokine receptor interaction (P = 0.0126), Wnt signaling pathway

(P = 0.0221), fructose and mannose metabolism (P = 0.0289),

chemokine signaling pathway (P = 0.0332) and pyruvate metabo-

lism (P = 0.0407) (Table 3).

Supervised analysis of methylation in IBC versus non-IBC
To identify genes differentially methylated between IBC and

non-IBC, we compared the mean b- value in IBC with the mean

b-value in non-IBC for each CpG locus. Using the criteria of

P,0.0001 and Db.0.17, only four CpG loci (corresponding to

four genes) were identified. For all CpG loci, methylation values

were increased in IBC in comparison to non-IBC. These included

TJP3 (tight junction protein-3), MOGAT2 (monoacylglycerol O-

acyltransferase 2), NTSR2 (neurotensin receptor 2) and AGT

(angiotensinogen).

Reproducibility and correlation of array results with
qMSP results

There was an excellent inter-array correlation between replicate

DNA samples obtained from two breast tumors and a Human

HCT116 DKO DNA sample (mean r2 = 0.974; range 0.948–

0.992).

We compared quantitative methylation values studied by the

Infinium methylation array with previously established methyla-

tion values by qMSP in 60 breast tumor samples [20]. This was

done for five genes (APC, RASSF1A, TWIST, RARb2 and DAPK),

which corresponded to 33 CpG loci on the Infinium methylation

array. For 25 CpG loci, we observed significant positive

correlations between methylation values by the Infinium methyl-

ation array and by qMSP (Figure 4).

Correlation with gene expression
We were able to correlate methylation results with gene

expression profiles for 6,605 unique genes in 57 breast tumor

samples. We performed a Pearson correlation analysis to evaluate

correlations between methylation levels from 12,400 CpG loci and

gene expression data from 10,494 probe sets (corresponding to

these 6,605 genes). This analysis resulted in 19,884 correlation

coefficients (range: (20.83)2(+0.65)) (Figure 5). A significant

(P,0.004, FDR,0.01) inverse correlation was observed for 6,229

of the correlated pairs and a significant positive correlation was

observed for 1,534 of the correlated pairs. Overall, a significant

correlation (either positive or negative) between methylation

results and gene expression level was observed for 4,981 of

6,605 genes (75%).

Table 3. Biological function of genes differentially methylated between the low b and the high b group of breast tumors.

KEGG pathway KEGG id Genes P-value

Focal adhesion 04150 COL6A2, CCND2, COL1A2, COMP, MYL9, SHC3, FLT1, COL11A2 0.0060

Galactose metabolism 00052 AKR1B1, PFKP 0.0106

Cytokine-cytokine receptor interaction 04060 TNFRSF10D, KIT, CXCL5, CNTFR, CXCL12, CXCL2, CXCL6, CXCL3, CX3CL1, FLT1 0.0126

Wnt signaling pathway 04310 CCND2, SFRP5, SFRP1, TCF7, SFRP2, FZD2 0.0221

Fructose and mannose metabolism 00051 AKR1B1, PFKP 0.0289

Chemokine signaling pathway 04062 CXCL5, ADCY4, LYN, CXCL12, CXCL2, GNG4, CXCL6, SHC3, CXCL3, CX3CL1 0.0332

Pyruvate metabolism 00620 LDHB, AKR1B1, ACOT12 0.0407

doi:10.1371/journal.pone.0012616.t003
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Discussion

High throughput methylation profiling platforms such as the

Illumina Infinium methylation assay enable extensive methylation

profiling of human tumors for a large number of genes. In the

present study, we used this approach to assess the methylation

profiles in a set of breast tumors and normal breast tissues.

Unsupervised hierarchical cluster analysis of methylation values

for the 1,000 most varying CpG loci (based on s.d.) identified three

distinct groups for which mean methylation values significantly

differed. Sample segregation was based primarily on the gain of

methylation within CpG islands and the loss of methylation

outside CpG islands relative to normal breast tissues. This is

supportive of the basic theory that CpGs located within CpG

islands in normal cells are unmethylated, whereas CpGs located

outside CpG islands are methylated with the inverse pattern

occurring in tumor cells [4]. A number of genes with higher

methylation levels in tumor samples than in normal tissue samples

proved to be involved in cancer pathways. We did not observe a

perfect separation of normal breast tissue samples from breast

tumors as a number of breast tumor samples clustered together

with the normal breast tissue samples. Since we used whole tumor

samples, this finding might be due to a confounding effect of non-

neoplastic tissue on the methylation level measured in these

samples.

The term ‘CpG island methylator phenotype’ or ‘CIMP’ was

first used to describe a distinct subset of colorectal tumors that

display high rates of concordant methylation of specific genes [27].

Subsequently, a similar phenotype has been described for a wide

range of neoplasms including tumors of the ovary [28], bladder

[29], prostate [29], stomach [30], liver [31], pancreas [32],

esophagus [33] and kidney [34], as well as melanoma [35],

neuroblastomas [36], leukemias [37] and lymphomas [38]. In

some tumor types, such as hepatocellular carcinoma, melanoma,

neuroblastoma or leukemia, CIMP has been shown to be

associated with disease progression or poor patient survival

[35,36,39,40]. In colorectal cancer, the role of CIMP in prognosis

depends on the microsatellite instability screening status [41]. In

particular, the CIMP-high and microsatellite stable tumors show a

poor prognosis. Evidence for a CIMP phenotype among breast

Figure 4. Analysis of correlation between methylation values from qMSP and the Infinium methylation array for five genes in 60
breast tumor samples. These five genes were represented by 33 CpG loci on the Infinium methylation array (y-axis). Pearson correlation values
between methylation values from qMSP and the Infinium methylation array are shown on the x-axis, with negative values representing inverse
correlations and positive values representing positive correlations. Significant correlation (P,0.01) are indicated in blue.
doi:10.1371/journal.pone.0012616.g004
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cancer only recently emerged from a methylation profiling study

analyzing a set of breast cancer cell lines [42]. The authors

observed concurrent methylation-dependent silencing of a number

of genes in breast cancer cell lines expressing a hypermethylator

phenotype. Moreover, the hypermethylation defect in these breast

cancer cell lines was related to aberrant overexpression of

DNMT3b. These observations are in agreement with our data

in clinical samples of breast cancer. In this study, unsupervised

hierarchical cluster analysis of the methylation values of 500 CpG

loci revealed two groups of breast tumors that possess different

methylation signatures: high methylation and low methylation

breast tumors. A set of 16 CpG loci (14 genes) correctly classified

97% of samples into the low or high methylation group of breast

tumors. The high methylation group of breast tumors was more

frequently associated with poor prognosis, as determined by the

70-gene prognostic signature of van ’t Veer et al. [25]. Moreover,

these breast tumors showed increased DNMT3b mRNA levels.

These observations combine to suggest that a subset of breast

tumors could display a CIMP, although this needs to be validated

in an independent data set. Supervised analysis of the low and high

methylation group of breast tumors revealed several differentially

methylated genes implicated in different biological processes such

as focal adhesion, cytokine-cytokine receptor signaling, chemokine

signaling pathway, Wnt signaling pathway and metabolic

processes. Interestingly, some of these genes have been previously

associated with CIMP in other tumor types, such as p73, GSTP1,

SOCS-1, CACNA1G, CRABP1, NEUROG1 and RUNX3 [39,43,44].

Moreover, for other highly methylated genes, loss due to

epigenetic silencing has been previously implicated in aggressive

tumor biology. For example, methylation of the Wnt antagonists

SFRP5 and SFRP1 in breast cancer is an independent risk factor

for adverse patients survival [45,46]. The CXCL12 chemokine

binds to the CXCR4 receptor and contributes to survival,

proliferation, and migration of malignant cells. Breast cancer cells

lacking expression of CXCL12 but exhibiting CXCR4 can

metastasize to target organs that secrete CXCL12 [47]. Epigenetic

silencing of CXCL12 has been shown to increase the metastatic

potential of mammary carcinoma cells [48]. CpG hypermethyla-

tion of COL1A2 has been shown to contribute to proliferation and

migration activity of human bladder cancer [49]. The promoter

methylation status of CCND2 is associated with poor prognosis in

human epithelial ovarian cancer [50].

We were interested to compare the methylation profiles of IBC

and non-IBC, as little information is available on this topic. At the

global level, we did not find evidence for a discriminating

methylation profile. IBC samples did seem to be overrepresented

in the group of tumors showing high methylation values, but this

observation did not reach statistical significance and thus needs to

be further investigated on a larger sample population. For only

four genes (TJP3, MOGAT2, NTSR2 and AGT), methylation values

were significantly higher in IBC than in non-IBC. TJP3 functions

in maintaining tight junction integrity and in transducing

regulatory signaling events in patients with primary breast cancer

[51]. Loss of tight junction plaque molecules in breast cancer is

associated with a poor prognosis. MOGAT2 is involved in dietary

fat absorption from the small intestine. NTSR2 belongs to the G

protein-coupled receptor family and binds the ligand neurotensin.

Several reports implicate neurotensin in numerous detrimental

functions linked to neoplastic progression of several cancer types,

including pancreatic, prostate, colon and lung cancers [52]. AGT

is involved in the suppression of tumor growth and metastasis

[53,54]. The overexpression of human AGT decreases angiogen-

esis and prevents tumor sinusoids from remodeling and arterial-

ization, thus delaying tumor progression in vivo [54]. Interestingly,

several studies have indicated that, compared with non-IBC

samples, IBC samples show increased angiogenesis. Histologically,

increased vascular density and high fractions of proliferating

endothelial cells have been observed in clinical IBC samples

[19,55]. Using qRT-PCR, we demonstrated that mRNA levels of

several angiogenic growth factors and their receptors were higher

in clinical IBC samples when compared to non-IBC samples [56].

In two previous studies that focused on methylation of individual

tumor suppressor genes in IBC, we observed increased methyla-

tion frequencies for two genes, APC and RARb2, by using

quantitative methylation-specific PCR [20,21]. Also in this study,

higher methylation levels for these genes were measured in IBC

samples, but this difference did not meet our selection criteria for

differential methylation.

We observed a high level of correlation between methylation

and expression levels. Using the GoldenGate Methylation Cancer

Panel I from Illumina, O’Riain et al. observed a significant

correlation between methylation values and reduced gene

expression in follicular lymphoma for up to 28% of CpG loci

[57]. Holm et al. recently studied correlations between methyla-

tion status and gene expression in breast cancer by using a similar

technique [17]. They reported that a highly significant fraction

(72%) of the expression-methylation pairs showed inverse

correlation between relative methylation levels and expression

levels. Thus, these results are very similar to ours.

In summary, this study suggests the existence of a CIMP in a

subset of clinical samples of breast cancer. Breast tumors

displaying a CIMP also showed increased expression of DNMT3b.

Further studies are necessary to elucidate the mechanisms

underlying this phenotype and to demonstrate the potential

clinicopathological implications of a CIMP in breast cancer.

Patients with breast cancer displaying a CIMP might benefit

significantly from a targeted demethylation treatment as an

adjunct to standard chemotherapeutic regimens. The results of

the current study also suggest that aberrant DNA methylation is

not the main force driving the molecular biology of IBC. More

research needs to be done to fully understand the biological factors

that influence the IBC disease course and outcome.

Figure 5. Analysis of correlation between methylation level
and gene expression in 57 breast tumor samples. Pearson
correlation values between methylation level and mRNA expression
level are shown on the x-axis, with negative values representing inverse
correlations and positive values representing positive correlations.
Significant correlations (P,0.004, FDR,0.01) are indicated in blue.
doi:10.1371/journal.pone.0012616.g005
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Supporting Information

Figure S1 Box plots of mRNA expression levels for DNMT3B

and DNMT1 in the high b and low b groups of breast tumors. In

the high b group of breast tumors, higher mRNA expression levels

for DNMT3B and DNMT1 were observed in comparison to the

low b group of breast tumors.

Found at: doi:10.1371/journal.pone.0012616.s001 (0.09 MB TIF)

Figure S2 Results of PAM analysis. The 62 breast tumor

samples (x-axis) are plotted against the probabilities to belong to

either class high b (green) or low b (red). For each sample, two

small circles are plotted: the red one showing the probability that

this sample belongs to the low b group of breast tumors and the

green one that it belongs to the high b group of breast tumors. The

classifier correctly predicted 47 of 49 low b and 13 of 13 high b
samples for an overall success rate of 97%.

Found at: doi:10.1371/journal.pone.0012616.s002 (0.12 MB TIF)

Figure S3 Box plots of methylation levels in the low b and high

b groups of breast tumors for the 16 CpG loci belonging to the

classifier identified by PAM analysis.

Found at: doi:10.1371/journal.pone.0012616.s003 (0.14 MB TIF)

Table S1

Found at: doi:10.1371/journal.pone.0012616.s004 (0.24 MB

XLS)

Table S2

Found at: doi:10.1371/journal.pone.0012616.s005 (0.09 MB

XLS)
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