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Abstract: We experimentally investigate the formation of various pulses from a thulium–holmium
(Tm–Ho)-codoped nonlinear polarization rotation (NPR) mode-locking fiber oscillator. The ultrafast
fiber oscillator can simultaneously operate in the noise-like and soliton mode-locking regimes with two
different emission wavelengths located around 1947 and 2010 nm, which are believed to be induced
from the laser transition of Tm3+ and Ho3+ ions respectively. When the noise-like pulse (NLP) and
soliton pulse (SP) co-exist inside the laser oscillator, a maximum output power of 295 mW is achieved
with a pulse repetition rate of 19.85-MHz, corresponding to a total single pulse energy of 14.86 nJ. By
adjusting the wave plates, the fiber oscillator could also deliver the dual-NLPs or dual-SPs at dual
wavelengths, or single NLP and single SP at one wavelength. The highest 61-order harmonic soliton
pulse and 33.4-nJ-NLP are also realized respectively with proper design of the fiber cavity.

Keywords: nonlinear polarization rotation; mode-locking; ultrafast fiber oscillator; soliton pulse;
noise-like pulse; Tm–Ho-codoped fiber

1. Introduction

With the rapid development of ultrafast fiber lasers, increasingly complex ultrafast
dynamics are discovered. The investigation of different ultrafast dynamics not only helps
toward better understanding of the pulse evolution in an optical fiber, but also is use-
ful for designing a mode-locking oscillator. Various ultrafast pulse evolution dynamics
can be investigated theoretically based on the nonlinear Schrödinger equation [1,2], the
coupled/complex Ginzburg-Landau equations [3,4], the Hirota bilinear formula [5], the
Bogoyavlenskii–Schiff equation [6], and the Hirota–Satsuma-Ito equation [7]. The forma-
tion of soliton pulse is a well-known ultrafast dynamics which arises from the balance
between the optical nonlinearity and anomalous chromatic dispersion [8–11]. The soli-
ton pulse (SP) maintains its shape in both temporal (ps or fs) and spectral domain when
propagating inside the fiber oscillator. The symmetrical Kelly sidebands distributed on
the emission spectrum is a typical characteristic of the soliton pulse (see Figure 1a). In
comparison, dissipative soliton is usually realized in the normal dispersion regime, always
featured with a ps-long Gauss or sech shape in time domain and a square spectrum shape
in frequency domain (see Figure 1b) [12–14]. Both of these two basic soliton pulses, SP and
dissipative soliton, can turn into the dissipative soliton resonance (DSR) if large identical
dispersion and high gain are simultaneously introduced into the mode-locking oscilla-
tor [15–18]. The DSR is characterized with a square pulse shape with an ns- or ps-pulse
duration, smooth spectrum profile and large pulse energy (see Figure 1c). Furthermore,
the basic soliton pulse will break into multiple pulses when the intracavity nonlinearity
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is overdriven by a large energy pulse. According to the pulse profiles in time domain,
the pulse can be divided into different types: noise-like pulse (NLP) [19–23], bunched
soliton pulses/optical soliton molecules [24–27] and soliton rain [28], et.al. NLP consists
of a large number of small pulses randomly underlying in the same pulse envelope. Its
spectrum is smooth without any spikes or modulations (see Figure 1d). Bunched soliton
pulses also referred as optical soliton molecules are formed by multiple pulses gathered
equal temporal distance. The typical characteristic of bunched soliton pulse is the inter-
ference fringes on the top of the spectrum (see Figure 1e). Soliton rain comprises three
parts: a high peak pulse called condensed soliton phase similar to NLP with a group of
multiple pulses under the envelope, the drifting pulses named drifting solitons emerging
from the noise background and vanishing until reaching the condensed soliton phase, a
wide noise background which manifests its existence as a small peak on the top of the
spectrum in the frequency domain (see Figure 1f). These different types of pulses (soliton
pulse, DSR, NLP, bunched soliton pulses, etc.) can exist in the harmonic mode-locking
regime, in which the pulse reproduces itself with a multiplication of fundamental pulse
repetition rate, further forming harmonic solitons [29], harmonic dissipative solitons [13],
harmonic bunched solitons [27] and harmonic NLP [30]. Attractively, these pulses also
can co-exist in a same fiber oscillator, which greatly enriches the ultrafast dynamics in a
mode-locking laser. For example, near the zero-dispersion wavelength region of the glass
fiber, two different SPs with non-equal pulse intensity are observed in an Er-doped fiber
oscillator [31]. Additionally, in the Er-doped fiber oscillator, harmonic bunched-solitons
and NLP are simultaneously achieved with a high nonlinear fiber [25]. On the other hand,
fiber oscillators operating above the zero-dispersion wavelength region can provide a
natural anomalous dispersion environment. These fiber oscillators including 2 µm thulium
(Tm)-doped, holmium (Ho)-doped, or Tm–Ho-codoped fiber oscillators provide another
platforms for the investigation of pulse evolution dynamics [32–35]. The large gain of
the Tm-doped fiber mainly is located in the <2000 nm wavelength region, while with the
assistance of Ho3+ ion, the large net-gain can be extended easily to the >2000 nm wave-
length region in a Tm–Ho-codoped fiber, resulting in a broadband wavelength emission
ranging from 1.7 µm to 2.1 µm. Besides that, the dual ions doped ultrafast fiber laser can
provide more abundant pulse dynamics due to the interaction between co-doped ions.
In this work, we fist report the coexistence phenomenon of NLP and SP in a nonlinear
polarization rotation (NPR) mode-locking Tm–Ho-codoped fiber oscillator. The harmonic
soliton pulse and NLP also can be obtained separately with proper design of the fiber
cavity. In the co-existence regime, a maximum average output power of 295 mW is realized
with a pulse repetition rate of 19.85 MHz, resulting in a pulse energy of 14.86 nJ. The
dual-NLPs or SPs at two different wavelengths, or single NLP and SP at one wavelength,
are also obtained respectively by adjusting the wave plates. Moreover, harmonic soliton
mode-locking with 61-order pulse is also realized by increasing cavity length. The physical
formation mechanism for the coexistence of different mode-locking pulses is analyzed.

Figure 1. The typical pulse shapes and spectral profiles for conventional soliton (a), dissipative soliton (b), dissipative
soliton resonance (DSR) (c), noise-like pulse (NLP) (d), bunched solitons (e), and soliton rains (f).
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2. Results and Discussion

The NLP and SP coexisted mode-locking operation is realized by carefully adjust-
ing wave plates at the pump power above 1.2 W. The power performance is recorded as
Figure 2a. As the pump power scales up, the fiber laser gradually evolves from the contin-
uous wave (cw) regime to the Q-switched mode-locking (QML) regime and finally to the
dual-pulse coexisted mode-locking regime. The maximum average output power reaches
to 292 mW at the pump power of 4.23 W. Figure 2b shows the spectrum of NLP locates
at a short wavelength (~1947 nm) and possesses a smooth profile with a bandwidth of
~22 nm. The small spikes riding on the NLP spectrum are attributed to the absorption of
water vapor in air. The long emission spectrum, which is the spectrum of SP verified by
the symmetrically distributed Kelly sidebands, locates around ~2010 nm with a spectral
bandwidth of about 5 nm. The typical mode-locking pulse train is shown as inset of
Figure 2b, giving a pulse-to-pulse fluctuation of about 12%, which is deteriorated by
the instable NLP mode-locking. For further estimating the stability of the mode-locking
operation, the radio frequency (RF) spectrum is measured for different scanning ranges
shown in Figure 2c. The RF spectrum of SP is overwhelmed by the RF spectrum of NLP,
which possesses a wide width and two sidelobes at the bottom of the fundamental fre-
quency. The fundamental frequency is 19.85 MHz with a signal-to-noise ratio (SNR) of 70 dB,
matching well with the fiber cavity length. In a broad RF spectrum range up to 2 GHz,
the RF spectrum (inset of Figure 2c) shows a broad comb of harmonics with a SNR higher
than 40 dB. The pulse auto-correlation trace is also featured with the characteristic of the
NLP, which consists of a narrow femtosecond spike and a hundred picoseconds pedestal
(Figure 2d) [22,30]. The cross-section of the pedestal in the auto-correlation trace increases as
the pump power scales up, implying the simultaneous increasing of the pulse energy of NLP.

Figure 2. (a) Output power versus pump power. cw: continuous wave, QML: Q-switched mode-
locking, ML: mode-locking. (b) Output laser spectrum in the NLP and SP coexisted mode-locking
regime. Inset: typical mode-locking pulse train at the time scale of 20 µs. (c) The radio frequency
spectral at the scanning ranges of 1.5 MHz. Inset: 2 GHz. (d) The pulse auto-correlation traces under
different pump powers, P: pump power.

In order to separately investigate the SP, a filter is utilized to move away the NLP
in the short wavelength region (<2000 nm). The performances of the SP are shown in
Figure 3. After the filter, the intensity of NLP is reduced remarkably, but the intensity
of SP is almost unchanged relatively (see Figure 3a). Figure 3b shows the measured SP
trains at the time scales of 2 µs and 20 µs. The pulse-to-pulse fluctuation is reduced from
12% (see Figure 2b) to 5%. The RF spectrum in Figure 3c shows the SNR of fundamental
frequency is 49 dB and there is no obvious NLP induced sidelobes. The inset of Figure 3c
indicates the SNR of the harmonic combs is still larger than 20 dB at the 2 GHz scanning
range. The measured SP auto-correlation trace shown in Figure 3d has a pedestal with a
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~20 ps duration, arising from the residual NLP (see Figure 3a). Assuming a sech2 pulse
shape, the pulse duration is determined to be 1 ps (inset of Figure 3d). The time-bandwidth
product is evaluated to be 0.353, approaching to the Fourier transformation limited value
of 0.315. By carefully rotating wave plates at the maximum pump power, the SPs at one
wavelength (1966.6 or 2003.5 nm) or dual-wavelengths (1933.1 and 2004.1 nm), NLPs at one
wavelength (1990.0 nm) or dual-wavelengths (1950.4 and 2006.5 nm), and the coexisted
SP and NLP at dual wavelengths (1937.2 and 1998.0 nm) are also observed as shown in
Figure 4. The wavelength spacing of the dual center wavelengths is always around 60 nm
in different mode-locking regimes. Among these regimes, the maximum average output
power of 512 mW is realized for the single NLP mode-locking at 1990.0 nm, resulting in a
pulse energy of 25.8 nJ.

Figure 3. (a) The initial spectrum (gray line) and filtered spectrum (blue line). (b) The SP trains at the
time scales of 2 and 20 µs. (c) The RF spectrum of SP at the scanning ranges of 1.3 MHz and 2 GHz
(inset). (d) The SP auto-correlation trace. Inset: the SP auto-correlation trace fitted by the sech2 function.

Figure 4. The output spectrum under different average output powers evolutions at the maximum
pump power. The number marks the central wavelength of the emission spectrum. Single wavelength
for single SP (a), (b) and single NLP (f), dual-wavelengths for dual-SPs (c) and dual-NLPs (e), and
the coexisted SP and NLP (d).

By slightly changing the parameter of the laser cavity with increasing the cavity length
to ~25.4 m, the soliton harmonic mode-locking and NLP mode-locking are also realized,
respectively. As the pump power scales up from 0.23 W to 4 W, the fiber oscillator can
operate in cw regime, soliton harmonic mode-locking (HML) regime and NLP mode-
locking regime. These different regimes can be easily distinguished from the emission
spectra, which are shown in Figure 5a. In the soliton HML regime, the pulse repetition
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rate can reach to 497.15 MHz, corresponding to the 61-order of the fundamental pulse
repetition rate. This is the highest soliton order compared with the previously reported
Tm–Ho-codoped HML fiber oscillators. The pulse duration is 2.29 ps by assuming a sech2

pulse shape (inset of Figure 5b) and RF spectrum shows a SNR of 41 dB (see Figure 5c).
In NLP mode-locking regime, the dual-wavelengths with a spacing also around ~60 nm
are observed, and the central wavelengths approach to that in Figure 2b. The broader
pedestal of NLP in Figure 5b indicates a much higher pulse energy (33.4 nJ) than that in
Figure 2d. The RF spectrum in Figure 5d shows more obvious sidelobes at the bottom
of the fundamental frequency with a SNR of 51 dB. It should be noted that the limited
resolution of the instruments for charactering ultrafast pulses, the output instability of the
fiber oscillator itself, and the environmental fluctuations can result in some uncertainties
for the measured ultrafast pulse performances. In addition, the phase noise uncertainty
can be precisely measured as that investigated in Reference [36].

Figure 5. (a) The emission spectra under different pump powers. (b) The measured autocorrelation
traces under different pump powers. Inset: the SP auto-correlation trace fitted by the sech2 function
at 61-order HML regime. The RF spectra of the 61-order soliton (c) and the NLP (d) at the scanning
range of 26.1 MHz and 1.8 MHz. HML: harmonic mode-locking.

In the experiment, dual wavelength operations are always achieved in different mode-
locking regimes. The dual wavelength operation could arise from the spectral filter effect in
the birefringent fiber or the emissions of Tm3+ and Ho3+ ions in the Tm-Ho-codoped active
fiber. The period of spectra filter ∆λ induced by birefringence can be expressed as [37]:

∆λ =
λ2

LBm + n2PLcos(2θ)/Ae f f
(1)

where λ is the emission wavelength, L is the length of birefringent fiber, Bm = nx − ny is the
modal birefringence, nx and ny are the refractive index for different polarizations, n2 is the
nonlinear refractive index, P is the instantaneous power of the laser, θ is the angle depending
on the rotation of wave-plates, and Aeff is the effective mode area. In the experiment, the
SMF can function as the birefringent fiber as Reference [37] so that the calculated modal
birefringence Bm is 4.9 × 10−6 and the nonlinear refractive index n2 is 2.7 × 10−20 m2/W [37].
According to the experimental results, we set λ = 1950 nm, P = 0.1 W, Aeff = 254 µm2, and ∆λ
≈ 60 nm, while a proper θ is unable to be solved with the experimental cavity length L of
10.4 m or 25.4 m. Therefore, we believe that the dual-wavelength emission is independent
of the spectral filter effect in the SMF-based birefringent fiber. Moreover, we find that the
dual-wavelength emission only is observed when the pump power exceeds a certain value as
shown in Figure 5. This is a main characteristic of Tm–Ho-co-doped laser which requires a
high pump power for energy transfer between Tm3+ and Ho3+ ions to emit dual wavelengths.
The formation mechanism for dual-wavelength emission is different from those reported
methods [30,38–44].



Molecules 2021, 26, 3460 6 of 9

The emission and absorption spectra of Tm3+ and Ho3+ ions are shown in
Figure 6a. Although the gain wavelength region of the Tm3+ ion is partly overlapped
with the absorption of Ho3+ ion, there still exists net gain in the wavelength region below
2000 nm. With the assistance of Ho3+ ion, the large net-gain can be extended to above
2000-nm wavelength region in a Tm–Ho-codoped system. The ion transition processes in
the Tm–Ho-codoped active fiber are simplified as shown in Figure 6b. The Tm3+ ions at
the ground state of 3H6 are excited to the upper energy level 3F4 by the 1560-nm pumping
laser. When the pump power is low, most of the Tm3+ ions at the energy level of 3F4 will
return to the 3H6 accompanied by the laser emission in the short wavelength region below
2000 nm (laser emission 1 in Figure 6b). The energy transition between 3F4 in Tm3+ ion and
5I7 in Ho3+ ion can be ignored so that only one wavelength emission can be observed under
weak pump power. As the pump power scales up, the energy level of 3F4 in the Tm3+ ion
is strongly occupied, which results in a large energy transition between Tm3+ ion and Ho3+

ion. So other than the laser emission in short wavelength region, the transition from the
energy level 5I7 to the energy level 5I8 of Ho3+ ions generates another laser emission above
2000 nm (laser emission 2 in Figure 6b). It should be noted that for the coexisted pulses at
dual wavelengths, the laser emission in short wavelength region always possesses a large
gain compared with that in the long wavelength region due to the low concentration of
Ho3+ ions. For example, as shown in Figures 2b, 4e and 5a, under strong pump power,
the SP or NLP with a low pulse energy is formed at a long wavelength via the emission
transition in Ho3+ ion, while the formed pulse at short wavelength accumulates a large
energy due to the large gain, which facilities the formation of large energy NLP. However,
in Figure 4b–d, we find that the SP and NLP with large energies are also formed around
2000 nm. We believe this is attributed to the co-interaction of Tm3+ and Ho3+ ions in this
wavelength region (see Figure 6a).

Figure 6. (a) The absorption and emission cross section of Tm3+ and Ho3+. (b) The simplified
energy diagram of Tm–Ho-codoped gain fiber pumped at 1560 nm. ET: energy transition, ME:
multi-phonon emission.

3. Materials and Methods

The schematic diagram of the Tm–Ho-codoped mode-locking fiber oscillator is shown
as Figure 7. The pump source is a continuous wave 1562-nm Er-doped fiber laser amplifier
(FLA), which delivers a maximum output power of 4.23 W with a power instability of
0.3% measured within 60 min. The pumping laser is guided into the Tm–Ho-codoped fiber
ring cavity by a wavelength division multiplex (WDM). The fiber ring cavity consists of a
4.3 m long Tm–Ho-codoped single mode active fiber (Coractive, SM-TH512, 23 dB/m at
1570 nm, −56 ps2/km at 1900 nm, CAN), a polarization independent isolator (PI-ISO), a
group of NPR free-space optical components, and a 5.4 m long passive single-mode fiber
(Nufern, SMF-28e, −67 ps2/km at 1900 nm, USA). The NPR optical component includes
two quarter-wave plates, a half-wave plate, and a polarization beam splitter (PBS). The PBS
simultaneously functions as both polarizer and output coupler. Considering the pigtail
fiber of all optical components inside the fiber cavity, the total length of the fiber ring cavity
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is close to 10.4 m. The mode-locking operation can be realized by carefully adjusting the
wave plates. The output pulse train is detected by an InGaAs PIN detector (EOT, ET-5000,
USA) and observed with an oscilloscope (Tektronix, DPO 4102B-L, USA).

Figure 7. Schematic diagram of the Tm–Ho-codoped fiber oscillator. FLA: fiber laser amplifier;
PI-ISO: polarization-independent isolator; WDM: wavelength division multiplex; THDF: Tm–Ho-
codoped fiber; SMF: single-mode-fiber; PBS: polarization beam splitter; λ/2: half-wave plate; λ/4:
quarter-wave plate.

4. Conclusions

In this work, first we observe the coexisted noise-like pulse and soliton pulse in the
thulium–holmium-codoped ultrafast fiber oscillator. By carefully adjusting the wave plates,
the coexisted noise-like pulse and soliton pulse can involve into the formation of dual-
noise-like pulses or dual-soliton pulses at dual-wavelengths and single noise-like pulse or
single soliton pulse at one wavelength. A 61-order harmonic soliton pulse and the 33.4-
nJ-noise-like pulse are also realized respectively by prolonging the fiber oscillator length.
We believe the dual-wavelength emissions are attributed to the transitions of Tm3+ and
Ho3+ ions respectively of the gain fiber. The coexisted NLP and SP at different wavelengths
depend on the different gain under a strong pumping power.
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