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Abstract

Recent advances in nucleic acid sequencing technology are creating a diverse landscape for the analysis of horizon-
tal transfer in complete genomes. Previously limited to prokaryotes, the availability of complete genomes from close
eukaryotic species presents an opportunity to validate hypotheses about the patterns of evolution and mechanisms
that drive horizontal transfer. Many of those methods can be transported from methods previously used in
prokaryotic genomes, as the assumptions for horizontal transfer can be interpreted as the same. Some methods,
however, require a complete adaptation, while others need refinements in sensitivity and specificity to deal with the
huge datasets generated from next-generation sequencing technologies. Here we list the types of methods used for
horizontal transfer detection, as well as theirs strengths and weakness.
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Horizontal Gene Transfer and its Detection

Horizontal transfer can be defined as the exchange of

genetic material between species without the aid of any

form of sexual mechanism (Gilbert et al., 2009). This phe-

nomenon is widely documented in prokaryote species and

plays a special role in prokaryotic and eukaryotic evolution

and adaptation (Biémont and Vieira, 2006; Silva et al.,

2004). Prokaryotes usually perform horizontal transfer of

genetic material through Type IV secretion systems (Juhas

et al., 2008), conjugation (Weinert et al., 2009), transfor-

mation (Fall et al., 2007) or transduction (Zaneveld et al.,

2008), all being biological mechanisms that ease the ex-

change of DNA. There are many cases of horizontal trans-

fer documented for eukaryotic species as well (Keeling and

Palmer, 2008), although with a lower frequency than in

prokaryotes, due to the lack of a well defined biological

process for the exchange of genetic material between euka-

ryotic lineages without a sexual mechanism.

However, genetic elements like transposable ele-

ments (TEs) are capable of encoding enzymes that permit

the integration of their DNA sequences into specific re-

gions of the genome (Schaack et al., 2010). This character-

istic enables transposable elements to insert themselves

into different hosts, without the aid of special biological

mechanism for DNA transfer. Several processes have been

suggested in horizontal transfer of TEs in eukaryotes. For

example, direct transfer of episomes (O’Brochta et al.,

2009) or some retrotransposons capable of generating viral

particles (Kim et al., 1994). Also, transposable elements

can putatively explore events like virus infections (Dupuy

et al., 2011) and parasite mediated transfer (Gilbert et al.,

2010) from one host to another.

Horizontal acquisition of genes is an important force

in evolution, with examples of influence in the evolutionary

history of many species (Gurudatta and Corces, 2009; Zhou

and Wang, 2008). Of special importance is the acquisition

of pathogenicity islands in prokaryotic species (Gal-Mor

and Finlay, 2006), as those cases of horizontal transfer can

promote the development of new pathogenic bacteria

strains. Thus, the accessibility of accurate and precise

methods to quickly identify horizontally transferred genes

is of crucial significance to the study and broad comprehen-

sion of the processes that have shaped genomes. However

the first challenge a researcher faces when identifying hori-

zontal transfer events in whole genomes, and specifically in

the case of transposable element horizontal transfer analy-

sis, is the annotation of TE sequences (Flutre et al., 2011).

Currently many methodologies are applied for TE annota-

tion, however, there are no established ontologies like the

Gene Ontology (Ashburner et al., 2000) that greatly help
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the automated curation and annotation of large-scale

datasets (Plessis et al., 2011).

Before the large availability of genome sequencing,

the support for horizontal transfer detection was sparse, re-

lying on standard molecular biology hybridization proto-

cols or a small number of sequences (Clark et al., 2002;

Daniels et al., 1990). As genome sequencing technology

progressed, the era of complete genomes brought a great

opportunity for large-scale analysis of horizontal transfer

events, where a big volume of data could be explored to de-

velop new theories and analysis about the nature of this in-

tricate evolutionary process (Ragan, 2009).

Initially, restrained in its ability to compute and pro-

cess large quantities of data from full genome projects, in-

direct methods of detection for horizontal transfer were de-

veloped (Ragan, 2001). These methods relied on the

detection of differential compositional patterns from nucle-

otide sequences (Putonti et al., 2006). They were based on

the premise that sequences that have been transferred hori-

zontally from a distinct donor to a new host would harbor a

different nucleotide composition (Rocha et al., 2006). This

would allow one to infer horizontal transfer in a certain re-

gion of the genome if its nucleotide composition statisti-

cally differs from the genome’s average nucleotide compo-

sition. These methods, called surrogate methods, proved to

be useful in identifying pathogenicity islands in proka-

ryotic genomes. However, they cannot be widely applied

without a careful analysis of the results, since they tend to

produce a large number of false positives and false nega-

tives (Azad and Lawrence, 2011). The availability of com-

parative methods that use phylogenetic inference and tree

incongruence greatly expanded the set of tools for horizon-

tal transfer, adding specificity but also increasing the com-

putational costs for each analysis (Lyubetsky and V’yugin,

2003). With the recently developed next-generation se-

quencing technologies and the low cost for complete ge-

nome sequencing genome sequence data is even more rea-

dily available. These data can now be used for a data-driven

discovery of horizontal transfer, where the phenomenon

can be modeled through the use of massive datasets bonded

with exploratory and machine learning techniques.

Next, we will present the methods discussed above in

more detail, also including a section on large-scale data vi-

sualization for horizontal transfer analysis.

Horizontal Transfer Analysis in Whole
Genomes

Surrogate methods for detection of horizontal transfer

events can be defined as those that do not employ the con-

struction of phylogenetic trees or other direct phylogenetic

analysis (Ragan, 2001). Although surrogate methods pres-

ent advantages in large-scale analysis of horizontal trans-

fer, they have major drawbacks, especially the high rate of

false positives that this kind of method can return. Errors of

this type can be traced to the breaking of assumptions of the

method. It has been demonstrated that intragenomic varia-

tion of codon bias can be large enough to be confounded

with true significant variation that otherwise would be at-

tributed to horizontal transfer (Guindon and Perrière,

2001). Moreover, it has been suggested that both codon

bias and base compositional indexes, common indexes

used in surrogate methods, are poor indicators of horizontal

transfer (Koski et al., 2001). Surrogate methods can, how-

ever, be used when a quick scan for horizontal transfer is

needed, but insufficient genome data are available for com-

parison. This is the case for a new genome with no closely

related species genomes sequenced. In this particular case,

comparative methods could not be applied with a high level

of confidence, since the lack of paralogous/orthologous

data can lead to mistaken results of horizontal transfer

(Capy and Gibert, 2004). One remaining weakness of sur-

rogate methods is related to the power of resolution over the

time since the occurrence of the horizontal transfer. Genes

that were introgressed will slowly acquire the host genome

codon usage and compositional values in a phenomenon

called amelioration (Marri and Golding, 2008). This will

lead to a masking of compositional differences, reducing

the sensitivity of surrogate methods (Becq et al., 2010). It

also has been suggested that for successful integration and

maintenance of genes in the host genome after a horizontal

transfer event, both the recipient genome and the trans-

ferred genes must have codon bias compatibility (Medra-

no-Soto et al., 2004). This is a valid assumption for hori-

zontal transfer of bacterial genes; however, its importance

for the successful expression of TE genes remains to be ac-

cessed.

Specific software implementations exist for different

approaches of horizontal transfer identification via surro-

gate methods. The Alien-Hunter software (Vernikos and

Parkhill, 2006) uses Interpolated Variable Order Motifs

(IVOMs) to explore compositional biases for detection of

horizontal transfer. This method employs variable order

motif distributions to capture more reliably the local com-

position of a sequence compared with fixed-order methods

(Vernikos and Parkhill, 2006). It is assumed that the ge-

nome has a reasonably constant background sequence com-

position, derived from uniform mutational pressure over

the complete genome. Thus, atypical sequences are inferred

as horizontally transferred if the present window of analy-

sis over the genome induces the current HMM to change

from the “typical” to “atypical” state. Clustering of proxy

variables from sequence composition has also proved to be

an effective alternative to discrete modeling through hid-

den Markov models. The entropic clustering method (Azad

and Lawrence, 2007) uses the Jensen-Shannon divergence

measure as a variable for posterior clustering of all genes in

the genome in analysis, allowing identification of horizon-

tal transferred sequences based on the dissimilarity of the

cluster distributions.
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However, it is also possible to use more flexible ap-

proaches in the identification of horizontal transfer using

nucleotide and codon bias data. This can be achieved by the

independent calculation of compositional indexes for each

gene in the genome (or in a sliding window fashion), be it

nucleotide indexes or codon bias values, and run the statis-

tical analysis in a separate framework. The EMBOSS suite

of software contains specific software implementations

both for nucleotide indexes and codon bias calculations,

and can be easily integrated in complex pipelines. The

INCA (Supek and Vlahovicek, 2004) system is a user-

friendly graphical software program that allows the calcu-

lation of many codon bias parameters, also allowing the de-

termination of sequence clusters via the self-organizing

maps machine learning method (Wang et al., 2001). The re-

sults of the independent codon bias and nucleotide indexes

calculations can then be submitted to statistical analysis us-

ing the R system or other statistical frameworks.

Comparative methods rely on the existence of evolu-

tionary related sequence data to identify horizontal transfer

of genes in a determined species or group of species. This

group of methodologies include phylogenetic and tree anal-

ysis, phylogenomic approaches and statistical analysis of

phylogenetic indexes.

Local alignment similarity searches provide a quick

and relatively inexpensive (in computational terms) way to

identify related sequences in different databases. This prop-

erty was explored to develop a method of horizontal trans-

ferred genes where simple assumptions are taken into

account (Shi et al., 2005). First, for a group of species, all

genes are searched against each other in the different spe-

cies of the dataset. From the results, only hits with an

e-value of less than 1e-20 and with the following five hits

homologous to the searched taxon are retained. Second, all

of its homologs (of the hit selected in the previous step) are

from a distant taxon, or the e-value of the closest homolog

from a distant taxon is significantly lower than the e-value

of the closest homolog not from the distant taxon (Shi et al.,

2005). This method uses the e-value as a proxy variable to

compare putative horizontally transferred DNA from dif-

ferent genomes, assuming the e-value as an indicator of

similarity.

The DarkHorse method (Podell and Gaasterland,

2007) also employs local alignment similarity searches as

its start point for horizontal transfer detections in genomic

scale. However, this methodology uses a specific metric to

compare different horizontally transferred gene candidates,

instead of the default e-value. This metric is called “lineage

probability index” or LPI and represents the likelihood that

the current gene under search was horizontally transferred

taking into consideration the similarity of the gene with dis-

tant taxa and also the other genes in the dataset in relation to

different taxa.

More recently a method based on phylogenetic dis-

tances (Distance Method) was introduced to avoid dealing

with the intrinsic bias introduced in the process of local

alignment similarity search (Wei et al., 2008). In this meth-

odology all phylogenetic distances from a gene family are

calculated from different species, forming a dataset of all-

against-all distance pairs. The distances are then analyzed

to identify horizontal transfer through the comparative

analysis of distances values between pairs of species ac-

cording to a pre-defined species phylogeny. The method as-

sumes that between pairs of species from the same branch

of the three, all genes must have smaller distance values be-

tween each other than with other species in the tree. By

transversing the tree and comparing all distances for the

different pairs of species, the Distance Method can identify

putatively transferred genes if the distances between taxa

from other branches of the tree are smaller than with spe-

cies within the same branch.

Comparative methods proved to be more sensitive

and specific (Poptsova and Gogarten, 2007). However, it is

important to note that to work efficiently, comparative

phylogenetic methods need a robust phylogenetic tree from

the species under analysis as a reference. If this requirement

cannot be met, surrogate methods can be applied in con-

junction to provide additional support to the results,

although a complete phylogenetic validation should be pre-

ferentially used if possible (van Passel et al., 2004).

A comprehensive analysis of multiple eukaryotic

genomes can generate many megabytes of data, if not

gigabytes. This is also true for the analysis of multiple

horizontal transfer events, especially if using comparative

methodologies. To tackle the problem of identifying data

signals that lead to the identification of horizontal trans-

fer, the use of large scale data analysis is imperative. Data

clustering is the assignment of data points into subset

classes, where the intraclass similarities are statistically

more significant than the interclass similarities. Cluster

analysis is thus a form of unsupervised learning, where no

prior knowledge is used for the determination of the

classes. There are two fundamental types of cluster analy-

sis, one that employs a hierarchical approach and another

that employs a partition approach to the data classifica-

tion. Hierarchical methods find successive clusters by

seeding the actual cluster with previous classified data.

When no cluster is available, like in the initial round of

clustering, each data point is considered an initial cluster.

The algorithm then progresses by agglomerating similar

data points based on metrics derived from distance mea-

sures between the data points. This kind of hierarchical

clustering is called bottom-up, where each data point

starts as a cluster and is fused with other data points as the

cycles of clustering progress. It is also possible to use

top-bottom approaches, where the whole dataset is ini-

tially considered as a single cluster and is progressively

separated into small clusters, where the analysis of each

data point identifies its separation based on distance mea-

sure metrics.
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Hierarchical clustering analysis of large datasets is

commonplace in many fields of biology today like expres-

sion analysis of microarray and RNA-seq data. However,

this technique can be successfully exploited in the analysis

of whole genome horizontal transfer datasets if the analysis

considers each gene as a data point. In this manner, if a gene

has a fixed number of variables associated with it, where

such variables are indicators of phylogenetic or evolution-

ary events, those genes can be grouped through the cluster-

ing of one or more of those variables. It is important to con-

sider the variance of the variables used for analysis and also

the scale of each variable prior to the use of more than one

as a group. If there are significant differences between the

variables, a normalization step must be considered before

the hierarchical clustering. There are many implementa-

tions of clustering analysis in software ranging from com-

plete statistical packages like SPSS or SAS to specific li-

brary packages for the R platform. However, much of the

analysis in whole genome horizontal transfer analysis

needs to be integrated in a pipeline fashion, where flexibil-

ity is a positive characteristic in a software implementation

of hierarchical clustering. In this form, the most useful soft-

ware platforms to implement this kind of analysis are pro-

gramming libraries. The Python programming language is

considered one of the most flexible and user-friendly mod-

ern languages, with multi-paradigm programming capabili-

ties and also clean syntax. Besides the availability of biol-

ogy-centered programming libraries like Biopython (Cock

et al., 2009), PyCogent (Knight et al., 2007) and Corebio,

the Python language has many large-scale data analysis li-

braries, including for hierarchical clustering. One of the

most documented and maintained data analysis library co-

mes from the SciPy project, with the scipy-cluster plug-in.

This library has implemented more than twenty clustering

methods, including complete linkage, ward clustering and

the centroid/UPGMC algorithm. Those can be quickly im-

plemented in a pipeline alongside other statistical methods

allowing for great flexibility in the large-scale analysis of

genetic horizontal transfer. The R platform also contains a

large number of programming libraries with different clus-

tering methods. One advantage of the R platform is the pos-

sibility to prototype specific statistical analysis in inte-

grated graphical interfaces like Rkward and R-Studio,

before integration in the pipeline. The R libraries can also

be conveniently accessed from the Python environment

using the RPy library, making the two technologies very

suitable for building large pipelines with many integrated

complex statistical analyses. To conduct an exploratory

analysis using hierarchical clustering it is also useful to

have a graphical interface where it is possible to test differ-

ent kinds of distance measures and normalizations in a sam-

ple of the data that is being analyzed. This kind of analysis

can be conveniently performed in the HCE-Explorer soft-

ware. This tool provides an interactive graphical user inter-

face to explore large datasets before and after the hierarchi-

cal clustering analysis. Also, there are options to compare

different runs of clustering, depending on the comparison

of the parameters used for the analysis. This software was

initially developed for the analysis of gene expression data;

however, any dataset can be loaded if it conforms to the

standard data format used by HCE-Explorer. This mainly

consists of rows describing the main data point with vari-

able values in the respective columns and can be loaded in

the CSV data file format. Although only Windows binaries

are available, the HCE-Explorer can run on Unix systems

under the Wine platform.

Visualization of large-scale datasets can be a power-

ful tool to help identify patterns of horizontal transfer in

genomic data. Although a young subject, many approaches

from other fields of science can be applied to the visualiza-

tion of horizontal transfer, such as graph analysis. Graph vi-

sualization is specially suited for the analysis of large-scale

horizontal transfer because of the inherently high connec-

tion of data points, namely, the genes in a horizontal trans-

fer analysis. These data points are not expected to behave in

a tree-like fashion as observed in tree reconstruction phylo-

genetic analysis, since the variables accounting for genes

that were subjected to horizontal transfer should reproduce

the characteristics of transfer from one species to another.

In a graph, data points that represent genes that have under-

gone horizontal transfer should connect more distinctly

than data points that have not been horizontally transferred.

Using variables like phylogenetic distance, one should ex-

pect to have connections between data points from distant

species as an indicator of putative horizontal transfer. This

kind of analysis can provide instant visual information

about the patterns of organization of the genes that have un-

dergone horizontal transmission. This kind of visualization

was well employed in the analysis of the horizontal transfer

events in the genomes of Mycoplasma synoviae and

Mycoplasma gallisepticum, where a cluster of genes that

had undergone horizontal transfer was clearly seen in a

graph visualization of genes as data points, and the local se-

quence similarity score as a graph e.g. measure (Vascon-

celos et al., 2005). Two specific software programs imple-

ment useful methods for large-scale graph visualization.

The Phylographer software program is a graphical environ-

ment that allows for flexible large-scale graph construction,

with a simple data file specification where each gene can be

considered as a node and any kind of variable can be attrib-

uted as an edge. This flexibility allows for the use of either

similarity or phylogenetic variables as e.g. connection data.

A drawback of the Phylographer software is the need for

the TK/TCL platform and a less user-friendly interface than

most modern packages for graph visualization. However,

large graphs (more than 60,000 nodes) can be built in a mat-

ter of hours in a high-end workstation, producing a light-

weight interactive interface that allows the manipulation of

both nodes and edges and identification of dissimilar graph

regions. A more modern system for graph visualization is
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the Gephi system, used extensively in the graph analysis

community and under active development. The Gephi sys-

tem is an open-source suite built in the Java language and is

capable of multiple graph visualization layouts, including

the arbitrary mapping of variables over node and e.g. prop-

erties. This system allows for more information to be added

to the graph than the Phylographer software does. One ex-

ample would be the mapping of gene length over node

color, phylogenetic distance over e.g. width and GC con-

tent over node color. That kind of graph would allow for a

complete picture of three different variables and their rela-

tionship with putative horizontal transferred genes, provid-

ing useful insights in the development of posterior specific

analysis. The Python language also provides many libraries

that can be effectively used to integrate large-scale graph

visualization with analysis pipelines like the NetworkX and

the python-graph libraries.

As a complex biological phenomenon, horizontal

transfer is modulated and influenced by a number of vari-

ables, many unknown and inaccessible with our current set

of tools. This lack of knowledge about the specific factors

that drive a specific event can be partially overcome by

massive datasets derived from analysis of the phenomenon.

These datasets can be created by attaching specific vari-

ables to each gene in the analysis, in many related genomes

and an integrated search for differential patterns of gene

evolution carried out over the complete dataset. If evolu-

tionary assumptions for horizontal transfer like small

phylogenetic distance between distance species, low dS

rates in genes in relation to the core genes in the complete

genome and codon bias (as in surrogate methods) are taken

into account, a specific model of horizontal transfer can be

derived from an initial exploratory clustering analysis. This

initial model can be supplied to supervised machine learn-

ing methodologies to identify similar patterns of genes in

genomes of related species. This approach has the advan-

tage of the use of real evolutionary signals, represented as

the variables attached to each gene in the genome, in a large

dataset to build a model that most closely represents hori-

zontal transfer.

Figure 1 presents an organogram representation of

methods used for inference of horizontal transfer in com-

plete genomes.

Conclusions

Large-scale horizontal transfer analysis is a recent de-

velopment, being fueled mainly by recent developments in

sequencing technology. With the availability of large

datasets of genomic sequences, many hypotheses about

horizontal transfer of sequences between distant species

could be elucidated, as well as the development and testing

of new hypotheses regarding the specific evolutionary pat-

terns of sequences that have undergone horizontal transfer.

The methods employed for such analysis have

evolved at the same rate as data has accumulated. However,

many of these lack implementation or have implementa-

tions that are not user friendly. This means more expense

1082 Methods for horizontal transfer detection
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and time spent in the process of analyzing large-scale

datasets, a laborious and time consuming endeavor per se.

Additionally, the lack of a strong community built around

the data and methods for analysis of horizontal transfer of

transposable elements hinder the development of more ad-

vanced tools like common ontologies, essential for an effi-

cient system of data communication. These issues need to

be addressed in order to allow effective use of the available

data and empower the development of more efficient lar-

ge-scale analysis of horizontal transfer events.

From the methods presented to identify horizontal

transfer, it is clear that surrogate methods should be em-

ployed only if no data are suitable for the use of compara-

tive methods. Surrogate methods lag behind comparative

methods in terms of resolution and specificity. Compara-

tive methods, however, although more specific and with

more power to identify old horizontal transfer events, re-

quire higher computational resources for their application

on a complete genome scale and increase the complexity of

large-scale analysis. Additionally, comparative methods

should be applied only when a complete set of putative

orthologs are available for the gene family or TE family un-

der analysis.

As a whole, the field of methodologies for large-scale

horizontal transfer analysis is in its infancy with many ex-

citing developments under way. Many improvements are

needed especially in the automation of TE annotation and

in the sensitivity and specificity of the current methods to

identify horizontal transfer events. Some of the drawbacks

can be addressed with the development of specific machine

learning implementations for horizontal transfer detec-

tions, as those methodologies can make use of hidden fea-

tures of evolutionary variables from complete genome

datasets to identify the subtle differences between genes in-

herited vertically or horizontally more accurately.

However, with the growing availability of complete

genomes and the growing importance of the understanding

of horizontal transfer as a force in the evolution of many

species, the methodologies under development should

quickly develop into fully established standards. Together

with the growing datasets of genomic information, mature

methods for horizontal transfer identification could help es-

tablish a new way of thinking about the long-term evolution

of species.
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