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Abstract: Ulcerative colitis (UC) and Crohn’s disease (CD) are characterized by an imbalance between
pro-inflammatory and anti-inflammatory cytokines, interfering with the resolution of inflammation.
Due to the crucial role of cytokines, new insights into their profiles in UC and CD would help to
improve our understanding of pathogenesis and enable the development of new treatment modalities.
We provide an expression profile of cytokines in UC and CD, using bioinformatics approach, and
experimental validation of expression of the selected genes. We retrieved data and analyzed the
cytokine gene expression profiles of UC and CD. From ten genes with inverse expression, common to
CD and UC, BMP8B, LEFTY1 and INSL5 were selected for gene expression experimental validation.
Experimentally, BMP8B and INSL5 were down-regulated in both CD and UC but followed the
bioinformatics trend. The expression of genes LEFTY1 and BMP8B was statistically significant when
comparing UC and CD in colon and the expression of gene LEFTY1 showed statistical significance
when CD in ileum and colon were compared. Using the bioinformatics approach and experimental
validation, we found differences in expression profiles between UC and CD for INSL5, LEFTY1 and
BMP8B. These three promising candidate genes need to be further explored at different levels, such
as DNA methylation and protein expression, to provide more evidence on their potential diagnostic
role in CD and UC.

Keywords: inflammatory bowel disease; ulcerative colitis; Crohn’s disease; inflammatory cytokines;
expression; bioinformatics approach; experimental validation

1. Introduction

Despite significant progress in our understanding of both major forms of inflammatory
bowel diseases (IBD), ulcerative colitis (UC) and Crohn’s disease (CD), many questions
remain unresolved, such as the exact pathogenesis and the reason for different macroscopic,
microscopic, and clinical features of UC and CD [1,2]. Both UC and CD develop as a
result of an interaction between genetic and environmental factors, which promotes an
excessive response of gut-associated immune system against the gut microbiota. The
resulting chronic inflammation is mediated by cytokines, which play a crucial role in
intestinal inflammation and the associated clinical symptoms but may also regulate extra-
intestinal disease manifestations and systemic effects of IBD. The situation is even more
complex as cytokines may play not only a pro-inflammatory role, but also a protective,
regulatory role. It is now believed that in IBD, the imbalance between pro-inflammatory
and anti-inflammatory cytokines interferes with the resolution of inflammation and leads
to chronic disease with progressive tissue destruction [3].

Despite some similarities between CD and UC, the effector pathways including the
cytokine profiles through which tissue injury is mediated are distinct for each disease. Such
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differences may be responsible not only for several clinicopathological dissimilarities that
clearly separate UC from CD, but also for inter-individual variations, including disparate
response to therapeutic agents [1,4]. Clearly, new insights into the cytokine profiles in
UC and CD would not only help to improve our understanding of the pathogenesis of
IBD, but most importantly would enable the development of new treatment modalities.
The aim of the present study is to provide an expression profile of cytokines in UC and
CD, using bioinformatics approach, and experimental validation of the selected cytokine
coding genes.

2. Materials and Methods
2.1. Microarray Data

Four projects, GSE13367 [5], GSE48958 [6], GSE53306 [7] and GSE65114, with samples
of gene expression profiles of UC and three, GSE24287 [8], GSE66207 [9] and GSE100833 [10],
with samples of gene expression profile of CD were obtained from the public functional
genomics data repository—Gene Expression Omnibus database (GEO, http://www.ncbi.
nlm.nih.gov/geo, accessed on 25 January 2019) of The National Center for Biotechnology
Information (NCBI). In case of UC, only active UC samples were selected for our analysis
and are here denoted as UC samples. A total of 47 UC, 226 CD and 247 normal tissue
samples were included in this study (Table 1).

Table 1. Number of samples used in bioinformatics analysis. UC, ulcerative colitis; CD, Crohn’s disease; NA, not applicable.

GEO Project Samples Normal UC CD Platform

GSE13367 17 9 8 NA Affymetrix Huma Genome U133 Plus 2.0 Array
GSE48958 15 8 7 NA Affymetrix Human Gene 1.0 ST Array
GSE53306 28 12 16 NA Illumina HumanHT-12 WG-DASL V4.0 R2
GSE65114 28 12 16 NA Affymetrix Human Gene 2.0 ST Array
GSE24287 72 25 NA 47 Agilent Whole Human Genome Microarray 4x44K G4112F
GSE66207 33 13 NA 20 Illumina HiSeq 2500

GSE100833 327 168 NA 159 Affymetrix HT HG-U133+ PM Array Plate

2.2. Data Processing

For all projects, the original data files were downloaded and further normalized
in R language (https://www.r-project.org/, accessed on 25 January 2019). For projects
based on Affymetrix arrays (GSE13367, GSE48958, GSE65114 and GSE100833) package
“affy” [11] was used to convert CEL files into expression data using the robust multichip
average function, which performs background correction and normalization in one step.
For projects based on other arrays (GSE53306, GSE24287), package “limma” [12] was
used to perform background correction and normalization between arrays. After data
normalization, a gene filter was used to remove probes that had an intensity of less than 100
in more than 20% of samples in each project. For project GSE66207, the matrix of already
normalized counts was downloaded and used as was.

Differentially expressed genes (DEG) were identified on probe level using “limma”
package in R for each individual project. We constructed two contrast matrices (UC
compared to normal and CD compared to normal) for each GEO project. The cut-off
conditions were set to adjusted p-value < 0.05 and logFC > 0.5.

The list of 456 cytokines was obtained from the ImmPort portal (http://www.immport.
org/immport-open/public/reference/genelists, accessed on 18 October 2019) and over-
lapped with the genes from analyzed GEO projects (Table S1).

2.3. Functional Analysis

For functional analysis and construction of protein-protein interactions (PPI) network,
the Search Tool for the Retrieval of Interacting Genes (STRING) database [13] and Gene-
Trail [14] were employed. In this study, we constructed PPI networks of DEGs for both
comparisons. The PPI network was visualized under the cut-off of interaction score of 0.4.

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://www.r-project.org/
http://www.immport.org/immport-open/public/reference/genelists
http://www.immport.org/immport-open/public/reference/genelists
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Besides constructing PPI networks, STRING database enables functional and pathway
enrichment analysis. STRING offers integrative tools for uncovering the biological meaning
behind large sets of genes. Gene ontology (GO) analysis including biological process
(6168 processes), molecular function (758) and cellular component (1550), as well as Kyoto
Encyclopedia of Genes and Genomes (KEGG) Pathways [15], were conducted for selected
DEGs with GeneTrail2 and STRING. Pathway analyses were conducted by GeneTrail2,
where given dataset is compared to 310 pathways according to BioCarta, 280 from KEGG
Pathways, 1300 from Reactome and 106 from PharmGKB database. In addition, 853 drug
targets from DrugBank and Phenotype data (704) from NIA-Phenotypes were included in
our study. The statistical significance threshold was set at p < 0.05. Over-representation
analysis (ORA) as an enrichment algorithm with FDR adjustment method was used for
determining the number of statistically significant categories [14].

2.4. Patients and Tissue Samples

Our study included endoscopic biopsies collected during routine ileocolonoscopies
from 31 patients with UC and 25 patients with CD. We collected 27 samples of CD, 35 sam-
ples of UC, and 22 samples of the normal mucosa. All of the fresh tissue samples were fixed
in formalin and embedded in paraffin. Paraffin blocks were cut into sections and stained
with hematoxylin and eosin for histopathological assessment, which was performed by
experienced pathologists. Patients’ characteristics are presented in Table 2.

Table 2. Clinical characteristics of patients. n, number of samples; F, female; M, male.

n F/M Average Age

Crohn’s disease 27 14/13 42 ± 19
• Colon 13 8/5 43 ± 19
• Ileum 14 6/8 42 ± 19
Ulcerative colitis
• Colon 15 9/6 49 ± 17
Normal mucosa 22 17/5 44 ± 22
• Colon 10 8/2 44 ± 24
• Ileum 12 9/3 44 ± 22

2.5. RNA Isolation and Reverse Transcription

When available, ten 10 µm thick sections were cut from each paraffin block for RNA
isolation, which was performed with All Prep DNA/RNA FFPE Kit according to the
manufacturer’s instructions (Qiagen, Hilden, Germany; cat. no. 80234). Concentration of
RNA was measured on NanoDrop-1000 (Thermo Fisher Scientific, Waltham, MA, USA).
Reverse transcription of RNA was conducted using OneTaq RT-PCR Kit (New England
Biolabs, Ipswich, Massachusetts, USA; cat. no. E5310S) according to the manufacturer’s
instructions, with half reaction volume. Each reaction contained 3 µL of total RNA with
concentrations of 125 ng/µL, 1 µL 60 µM Random Primer Mix, 5 µL 2X M-MuLV Reaction
Mix and 1 µL 10X M-MuLV Enzyme Mix. After the RNA and Random Primer Mix were
mixed and incubated for 5 min at 70 ◦C, Reaction and Enzyme Mix were added and whole
reactions was further incubated for 5 min at 25 ◦C, 60 min at 42 ◦C and 4 min at 80 ◦C.

2.6. Preamplification and Quantitative Real Time PCR

After the reverse transcription, cDNA was pre-amplified using TaqMan PreAmp
MasterMix (Thermo Fisher Scientific, cat. no. 4488593), according to manufacturer’s
instructions. Briefly, 10 µL reactions contained 2.5 µL of cDNA, 2.5 µL of 0.2X pooled
TaqMan GeneExpression Assays (Thermo Fisher Scientific, cat. no. 4331182) (Table 3)
and 5 µL 2X TaqMan PreAmp MasterMix. Pooled TaqMan GeneExpression Assays were
diluted to 0.2X using TE buffer solution (Sigma Aldrich, Burlington, MA, USA; cat. no.
93302-500ML). Preamplification reaction conditions were: 10 min at 95 ◦C and 10 cycles
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of 15 s at 95 ◦C and 4 min at 60 ◦C. Preamplification reactions were diluted 15-fold to a
final volume of 150 µL. Each 10 µL qPCR reaction contained 4.5 µL of diluted preamplified
cDNA, 5 µL 2X FastStart Essential DNA Probe Master (Roche, Basel, Switzerland; cat. no.
06924492001) and 0.5 µL TaqMan GeneExpression Assay (Table 3). All qPCR reactions
were performed in duplicates on Rotor-Gene Q (Qiagen). Cycling conditions were: 2 min
at 50 ◦C, 10 min at 95 ◦C and 40 cycles of 15 s at 95 ◦C and 1 min at 60 ◦C.

Table 3. TaqMan Gene Expression Assays used in experiment. bp, base pairs.

Gene Assay ID Product (bp)

B2M Hs99999907_m1 75
IPO8 Hs00183533_m1 71

BMP8B Hs01629120_s1 105
INSL5 Hs00193884_m1 119

LEFTY1 Hs04235412_sH 109

2.7. Statistical Analysis of qPCR

To calculate the relative gene expression, Cqs were obtained as average of duplicates
for each sample. To obtain ∆Cq, a geometric average of Cqs of reference genes (IPO8 and
B2M) was deducted from gene of interest (BMP8B, LEFTY1 and INSL5). All statistical
analyses were performed using SPSS analytical software ver. 24, (SPSS Inc., Chicago, IL,
USA) with cut-off p ≤ 0.05. For group comparison, a statistically significant difference was
calculated using ∆Cq and Mann–Whitney test.

3. Results
3.1. Differentially Expressed Genes in Ulcerative Colitis and Crohn’s Disease

Data from each microarray were separately analyzed to obtain differentially expressed
genes (DEGs) for each comparison, UC compared to normal, and CD compared to normal.
The resulting gene list was overlapped with 456 cytokines and used for further analysis.
We identified 201 statistically significant differentially expressed cytokine-coding genes in
UC and 36 in CD tissue samples (Table S2). There were 28 genes differentially expressed
common to both UC and CD when compared to normal. In addition, we identified unique
DEGs in each group, 173 in UC and eight in CD.

Most of the genes were up-regulated in both groups (Figure 1), although we observed
some differences between gene expression profiles among the groups. Among 28 common
DEGs, we focused on 10 DEGs where all probes exhibit inverse regulation between CD and
UC groups. From largest to smallest difference between groups, these DEGs are presented
in Table 4.

Table 4. Differentially expressed genes with inverse regulation in ulcerative colitis and Crohn’s
disease. CD, Crohn’s disease; UC, ulcerative colitis; logFC, logarithm of fold change.

Gene CD UC Difference

logFC p-Value logFC p-Value logFC

INSL5 −1.26 0.015 3.22 <0.001 4.48
VIP −1.23 0.003 2.77 <0.001 4.00

FAM3B 2.35 0.002 −0.72 0.002 3.07
NTS 2.08 0.012 −0.81 0.003 2.89

LEFTY1 −1.38 0.043 0.92 0.001 2.30
SEMA6D 0.83 0.005 −0.77 0.013 1.60

FGF2 −0.66 0.010 0.90 0.003 1.56
SEMA3A −0.66 0.022 0.82 <0.001 1.48

EREG −0.62 0.047 0.81 0.004 1.43
BMP8B 0.57 0.017 −0.79 0.007 1.36
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3.2. Functional Enrichment Analysis

To obtain a better understanding of cytokine functions in UC and CD, we performed
a functional enrichment analysis for each group and their union (Table 5). The analysis
of gene ontology (GO), pathways, drug targets and associations with phenotypes was
performed for 201 differentially expressed genes in UC and 36 in CD, and all the results for
all terms can be viewed in Table S3.
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Table 5. The union of functional enrichment analysis of cytokines differentially expressed in ulcerative
colitis and Crohn’s disease. UC, ulcerative colitis; CD, Crohn’s disease; NA, not applicable; *, number
of significant categories.

Category Number of Available
Categories UC * CD * Union *

Gene ontology (GO)

Biological processes 6168 1322 100 1323
Cellular component 758 4 NA 4
Molecular functions 1550 41 14 41

Pathway analysis

BioCarta pathways 310 22 NA 22
KEGG pathways 280 61 6 61

Reactome pathways 1300 47 2 47

Phenotype

NIA-Phenotypes 704 129 NA 129

3.2.1. Biological Processes

Our CD and UC sets of differentially expressed cytokine-coding genes were compared
with GeneTrail2 GO knowledgebase, which contains 6168 biological processes, 758 cellular
components and 1550 molecular functions. We found 1322 significant biological processes
in UC and 100 within the CD DEGs dataset. Overall, 1323 biological processes were
significant in at least one dataset, with the most significant biological processes in both
datasets: positive regulation of behavior, positive regulation of chemotaxis, regulation of
leukocyte migration.

The INSL5 gene is included in three biological processes: feeding behavior, positive
regulation of behavior and regulation of feeding behavior. The LEFTY1 gene is included in
the following biological processes: heart morphogenesis and transforming growth factor-β
receptor signaling pathway. Biological processes for gene BMP8B include: BMP signaling
pathway, cartilage development, connective tissue development and response to BMP
and cellular response to BMP stimulus. In addition, genes LEFTY1 and BMP8B share six
biological processes, namely: pathway restricted SMAD protein phosphorylation, positive
regulation of pathway restricted SMAD protein phosphorylation, positive regulation of
transmembrane receptor protein serine threonine kinase signaling pathway, regulation of
pathway restricted SMAD protein phosphorylation, positive regulation of transmembrane
receptor protein serine threonine kinase signaling pathway and SMAD protein signal
transduction.

3.2.2. Cellular Components

A total of four cellular components were found to be significant, all of them in the UC
dataset: secretory granule lumen, platelet α-granule lumen, platelet α-granule and Golgi
lumen. In the CD dataset, there was no significant term for cellular component.

3.2.3. Molecular Functions

A total of 41 molecular functions were significant in at least one of the compared
datasets; 14 of them were found as significant in both datasets. The top five molecular
functions significant in both datasets are: chemokine activity, chemokine receptor binding,
growth factor receptor binding, heparin binding and chemoattractant activity.

The INSL5 gene is not included in any molecular function from the list, while the
LEFTY1 gene is included in transforming growth factor-β receptor binding molecular
function. The BMP8B is included in four molecular functions, named BMP receptor
binding, receptor serine threonine kinase binding, transforming growth factor-β receptor
binding and transmembrane receptor protein serine threonine kinase binding.



Genes 2021, 12, 1477 7 of 14

3.2.4. Pathway Analysis

We performed pathway analysis according to the three well-known databases: Bio-
carta, KEGG and Reactome. We found 22 significant molecular pathways according to
Biocarta, 61 according to KEGG and 47 according to Reactome in at least one group of
differentially expressed cytokine-coding genes (Supplementary Table S2). Most of the
pathways are associated with cytokines. The top three pathways from each database
include: cytokines and inflammatory response, erythrocyte differentiation pathway and
cytokine network (Biocarta), chemokine signaling pathway, cytokine-cytokine receptor
interaction and TGF-β signaling pathway (KEGG), chemokine receptors bind chemokines,
Gα (i) signaling events and peptide ligand-binding receptors (Reactome). The INSL5 gene
is included in Gα (i) signaling events and relaxin receptors pathway according to Reactome
database. The LEFTY1 and BMP8B genes are included in KEGG pathway TGF-β signal-
ing (Figure 2). In addition, gene BMP8B is included in Hippo signaling pathway (figure
not shown).

Genes 2021, 12, x FOR PEER REVIEW 7 of 14 
 

 

functions significant in both datasets are: chemokine activity, chemokine receptor bind-
ing, growth factor receptor binding, heparin binding and chemoattractant activity. 

The INSL5 gene is not included in any molecular function from the list, while the 
LEFTY1 gene is included in transforming growth factor-β receptor binding molecular 
function. The BMP8B is included in four molecular functions, named BMP receptor bind-
ing, receptor serine threonine kinase binding, transforming growth factor-β receptor bind-
ing and transmembrane receptor protein serine threonine kinase binding. 

3.2.4. Pathway Analysis 
We performed pathway analysis according to the three well-known databases: Bio-

carta, KEGG and Reactome. We found 22 significant molecular pathways according to 
Biocarta, 61 according to KEGG and 47 according to Reactome in at least one group of 
differentially expressed cytokine-coding genes (Supplementary Table S2). Most of the 
pathways are associated with cytokines. The top three pathways from each database in-
clude: cytokines and inflammatory response, erythrocyte differentiation pathway and cy-
tokine network (Biocarta), chemokine signaling pathway, cytokine-cytokine receptor in-
teraction and TGF-β signaling pathway (KEGG), chemokine receptors bind chemokines, 
Gα (i) signaling events and peptide ligand-binding receptors (Reactome). The INSL5 gene 
is included in Gα (i) signaling events and relaxin receptors pathway according to Reac-
tome database. The LEFTY1 and BMP8B genes are included in KEGG pathway TGF-β sig-
naling (Figure 2). In addition, gene BMP8B is included in Hippo signaling pathway (figure 
not shown). 

 
Figure 2. Genes mapping to KEGG pathway for TGF-β signaling pathway (hsa04350) [5] with included LEFTY1 and 
BMP8B genes (red labels). 

3.2.5. Phenotypes 
There were 129 significant phenotypes in at least one dataset (UC, CD). The Gen-

eTrail2 software was unable to find any phenotypes based on CD dataset due to a small 
number of genes differentially expressed in CD tissue. The top phenotypes significant in 
UC dataset were asthma, disease progression, hepatitis B, acute disease, hypertension, 
lupus erythematosus and inflammation. Inflammation phenotype contains ten genes from 

Figure 2. Genes mapping to KEGG pathway for TGF-β signaling pathway (hsa04350) [5] with included LEFTY1 and BMP8B
genes (red labels).

3.2.5. Phenotypes

There were 129 significant phenotypes in at least one dataset (UC, CD). The GeneTrail2
software was unable to find any phenotypes based on CD dataset due to a small number
of genes differentially expressed in CD tissue. The top phenotypes significant in UC
dataset were asthma, disease progression, hepatitis B, acute disease, hypertension, lupus
erythematosus and inflammation. Inflammation phenotype contains ten genes from our
lists: CSF3, IL10, IL1A, IL1RN, IL6, LTA, MIF, NAMPT, SPP1 and TNF. Comparing our
datasets with available phenotype data for acute disease, we found 10 genes in common:
CAT, CXCL12, IFNG, IL10, IL1A, IL1B, IL1RN, IL6, MIF, TNF and VEGFA.

In addition, Crohn Disease and Colitis were also found to be significant phenotypes
based on UC datasets. The phenotype named Colitis contains seven DEGs from our lists:
IL10, IL11, IL1B, IL1RN, IL6, MIF and TNF. Within the phenotype named Crohn Disease,
nine genes from UC datasets were included: CCL2, IL10, IL16, IL1B, IL1RN, IL23A, IL6, MIF
and TNF.
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3.2.6. Protein-Protein Interactions Network

The STRING database was used to study the proteome organization of differences
between UC and CD and to construct protein-protein interaction (PPI) networks. Figure 3
represents a network of genes differentially expressed in our analysis. In the whole
network, the top five hubs are AGT (40 interactions), PF4 and PPBP (39 interactions), SAA1
(37 interactions) and CXCL1 (31 interactions).
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3.3. Experimental Results

To test our bioinformatics analysis, we selected three genes among ten that expressed
inverse regulation among CD and UC groups, for further experimental validation with
quantitative polymerase chain reaction (qPCR). We selected INSL5, which had the largest
difference in logFC among UC and CD (∆logFC = 4.49), BMP8B with the smallest difference
in logFC among CD and UC (∆logFC = 1.37), and LEFTY1, where the difference between
UC and CD was somewhere in the middle (∆logFC = 2.30) (Table 1).

Our experimental results show that BMP8B and INSL5 are both down-regulated
in both CD compared to normal (BMP8B logFC = −1.21, p < 0.001; INSL5 logFC = −2.26,
p = 0.048), and UC compared to normal (BMP8B logFC = −1.74, p < 0.001; INSL5
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logFC = −2.05, p = 0.008), while LEFTY1 expressed low difference in expression (CD
logFC = 0.18, UC logFC = −0.15), which was not significant. The difference in expression
between CD and UC was significant in case of BMP8B (logFC = −0.53, p = 0.010), while
expression in LEFTY1 and INSL5 was not significant for this comparison (Figure 4a).
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Figure 4. Expression of BMP8B, LEFTY1 and INSL5 of (a) Crohn’s disease compared to normal (blue),
ulcerative colitis compared to normal (green) and ulcerative colitis compared to Crohn’s disease
(yellow), (b) Crohn’s disease in colon compared to normal colon (violet), ulcerative colitis in colon
compared to normal colon (light blue) and Crohn’s disease in ileum compared to normal ileum (gray),
(c) ulcerative colitis in colon compared to Crohn’s disease in colon (orange), Crohn’s disease in ileum
compared to Crohn’s disease in colon (red); lines represent error; *** p < 0.001, * p < 0.05; CD, Crohn’s
disease; UC, ulcerative colitis; N, normal mucosa; CDC, Crohn’s disease in colon; UC, ulcerative
colitis in colon; NC, normal colon mucosa; CDI, Crohn’s disease in ileum; NI, normal ileum mucosa.

When dividing the samples based on location, either colon or ileum, further compar-
isons were made, e.g., CD in colon (CDC) compared to normal colon (NC), UC in colon
(UC) compared to NC and CD in ileum (CDI) compared to normal ileum (NI). In the
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colon, the expression of BMP8B and INSL5 was in both comparisons CDC compared to NC
(BMP8B logFC = −1.93, p < 0.001; INSL5 logFC = −2.26, p = 0.048) and UC compared to NC
(BMP8B logFC = −2.25, p < 0.001; INSL5 logFC = −2.05, p = 0.008) down-regulated, while
LEFTY1 was up-regulated in CDC compared to NC (logFC = 1.40) and down-regulated in
UC compared to NC (logFC = −1.01) but in neither case the expression was significant. In
the ileum, INSL5 was not expressed in any group, not even in the NI. We observed the de-
creased expression of both BMP8B (logFC = −0.67, p = 0.041) and LEFTY1 (logFC = −2.02)
in CDI compared to NI (Figure 4b).

Further comparisons were made between the different disease states in different
locations. We observed a difference between the expression of UC compared to CDC in
gene LEFTY1 (logFC = −2.42, p < 0.001), while the expressions of BMP8B (logFC = −0.32)
and INSL5 (logFC = 0.21) were not statistically significant. In ileum, INSL5 was not
expressed, BMP8B expression increased (logFC = 1.01, p = 0.002) and LEFTY1 expression
decreased (logFC = −4.79, p < 0.001) when comparing CD in different locations, CDI to
CDC (Figure 4c).

4. Discussion

In this study, we analyzed the gene expression profiles of UC and CD according to
seven GEO projects. We identified 201 statistically significant differentially expressed
cytokine-coding genes in UC and 36 in CD tissue samples. We identified 28 genes common
to UC and CD, and 10 genes which exhibit inverse regulation in UC and CD. Among those
10 genes, 3 of them FGF2, NTS and VIP, were previously associated with IBD [16–22].

According to the difference in expression, we selected three genes for further experi-
mental validation, INSL5 with the highest difference in expression between UC and CD,
BMP8B with the smallest difference in expression, and LEFTY1, which was the fifth gene
with the highest difference in expression among UC and CD groups.

According to our bioinformatics analysis, INSL5 was up-regulated in UC and down-
regulated in CD. Our experiment showed that INSL5 was down-regulated in both CD and
UC groups, more in CD than in UC, confirming the trend of expression from bioinformatics
study. Furthermore, we discovered that INSL5 was not expressed in the ileum, not even in
the normal ileum.

INSL5 belongs to the insulin family, which includes insulin, insulin-like growth factors,
relaxin and the insulin-like (INSL) peptides [23,24]. The insulin gene superfamily hormones
regulate cell growth, metabolism, and tissue-specific functions [25]. The INSL5 gene is
expressed in various tissues, including the gastrointestinal tract [24]. However, reports
on the presence of both INSL5 and its receptor RXFP4 in multiple peripheral tissues
including the colon, placenta, heart, spleen, brain, prostate, kidney, bone marrow and liver
implicate the involvement of this ligand receptor system in a broad spectrum of biological
functions [24]. Increased levels of enteroendocrine cells (EECs) have been reported in
the ileum from patients with CD [26–28] as well as in animal models of colitis [29–31].
Thanasupawat et al. revealed differentially expressed INSL5 in EECs located within RXFP4
immuno-positive colonocytes [32].

The second gene we selected was LEFTY1, which was up-regulated in UC and down-
regulated in CD, according to our bioinformatics analysis. The experiment showed a small
deregulation in both CD and UC groups compared to the normal, but the difference was
not significant. Interestingly, LEFTY1 showed significant deregulation in expression when
the disease states were compared to each other. It was down-regulated when UC was
compared to CD in the colon and down-regulated when CD in the ileum was compared to
CD in the colon. The expression of LEFTY1 could be used to distinguish between UC and
CD in the colon and between CD in the colon or ileum.

The third gene selected for further analysis was BMP8B, which was down-regulated
in UC and up-regulated in CD according to our bioinformatics analysis. Experimental
results show a down-regulation of BMP8B in both CD and UC groups, more in UC than
in CD, confirming the trend of our bioinformatics analysis. The expression of BMP8B
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was significantly down-regulated when UC was compared to CD. The further division of
samples based on the location revealed the same pattern, the expression of BMP8B was
down-regulated in both colon and ileum, more in UC than in CD. When comparing the
different disease states, we discovered that the expression of BMP8B was down-regulated
when UC was compared to CD in the colon and significantly up-regulated when CD in
the ileum was compared to CD in the colon. The expression of BMP8B could distinguish
between CD in the colon or ileum.

The left-right determination factor (LEFTY) and bone morphogenetic protein 8b
(BMP8B) are part of the TGF-β superfamily and influence TGF-β signaling which has an
important role in maintaining mucosal immunity homeostasis in the bowel [33] and has
been shown to be dysregulated in IBD [34]. Therefore, TGF-β signaling has been suggested
as a potential therapeutic target in IBD. Recently, a phase II clinical trial has been published
showing promising results in achieving remission in active CD following treatment with
an anti-SMAD7 oligonucleotide that restores the normal TGF-β signaling [35]. Further-
more, TGF-β is a strong inducer of epithelial-mesenchymal transition [36], which has
been implicated in the pathogenesis of fibrosis [37,38] and fistulas [39] in CD. Moreover,
LEFTY serves as a repressor of TGF-β signaling by inhibiting Smad2 phosphorylation
after activation of the TGF-β receptor and further suppresses downstream events after
R-Smad phosphorylation, including the heterodimerization of R-Smads with Smad4 and
the nuclear translocation of the R-Smad-Smad4 complex [40].

The LEFTY1 and BMP8B genes have not been associated with IBD yet. Our bioinfor-
matics study shows down-regulation of gene LEFTY1 and up-regulation of BMP8B in CD
tissue and up-regulation of LEFTY1 and down-regulation of BMP8B in UC. In addition,
the expression of gene LEFTY2 (logFC = −0.70) decreased, while the expression of gene
BMP8A increased (logFC = 0.57) in CD tissue, but not in UC. Our experimental results
show down-regulation of gene BMP8B in both, CD and UC tissues, and down-regulation
of BMP8B when UC was compared to CD, confirming the trend of bioinformatics analysis.
Experimentally, LEFTY1 was slightly up-regulated in CD and slightly down-regulated in
UC, although the differences were not significant.

While the BMP8B expression in the colon is unknown, an independent study showed
an expression of LEFTY1 in the colon. The LEFTY1 mRNA was present in basal cells of the
crypts, whereas LEFTY1 protein was localized in the apical region [41]. The gene LEFTY1
increased in various tissues and in cancer. Miyata et al. reported that LEFTY expression
is induced by TGF-β in several pancreatic cancer cell lines, all of which contained a RAS
mutation [42]. It was previously associated with ovarian epithelial carcinoma through up-
regulation of expression at the mRNA and protein levels [43]. The BMP8B is also known as
a tumor suppressor in cancer of the stomach [44,45], ovary [46] and pancreas [47]. Moreover,
BMP8 has been mostly associated with male reproductive system development [48].

5. Conclusions

By analyzing the gene expression profiles of four UC and three CD associated GEO
projects, we found differences in the expression profiles between UC and CD for three
cytokines, i.e., INSL5, LEFTY1 and BMP8B, which we experimentally validated. Their
expression profiles were analyzed in CD, UC and normal samples of the colon and ileum.
Gene INSL5 was expressed only in the colon, while BMP8B and LEFTY1 have the potential
to distinguish between UC and CD in the colon or ileum.

Furthermore, the expression profiles of INSL5, LEFTY1 and BMP8B seem promising,
warranting further studies, such as DNA methylation and protein expression to provide
more evidence of their potential diagnostic significance in CD and UC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12101477/s1, Table S1: List of Cytokine-coding genes, Table S2: List of significantly
expressed genes and probes in Crohn’s disease or ulcerative colitis, Table S3: List of significant Gene
Ontology terms, pathways and phenotypes for genes significantly expressed in Crohn’s disease and
ulcerative colitis.
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