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Abstract

Despite recent advancements, it is still difficult to evaluate in vivo responses to toxicants in humans. Development of a
system that can mimic the in vivo responses of human cells will enable more accurate health risk assessments. A surrogate
human hematopoietic lineage can be established in NOD/Shi-scid/IL-2Rcnull (NOG) mice by transplanting human
hematopoietic stem/progenitor cells (Hu-NOG mice). Here, we first evaluated the toxic response of human-like
hematopoietic lineage in NOG mice to a representative toxic agent, benzene. Flow cytometric analysis showed that
benzene caused a significant decrease in the number of human hematopoietic stem/progenitor cells in the bone marrow
and the number of human leukocytes in the peripheral blood and hematopoietic organs. Next, we established chimeric
mice by transplanting C57BL/6 mouse-derived bone marrow cells into NOG mice (Mo-NOG mice). A comparison of the
degree of benzene-induced hematotoxicity in donor-derived hematopoietic lineage cells within Mo-NOG mice indicated
that the toxic response of Hu-NOG mice reflected interspecies differences in susceptibilities to benzene. Responses to the
toxic effects of benzene were greater in lymphoid cells than in myeloid cells in Mo-NOG and Hu-NOG mice. These findings
suggested that Hu-NOG mice may be a powerful in vivo tool for assessing hematotoxicity in humans, while accounting for
interspecies differences.
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Introduction

Currently, health risk assessment of various factors is evaluated

based on results from epidemiologic surveys, animal testing,

cytotoxicity studies, or a combination thereof. In epidemiological

surveys, the influence on human health can be evaluated directly

[1]. However, it is often impossible to perform such surveys, with

the exception of surveys addressing a restricted set of factors that

offer health benefits, such as pharmaceuticals. Animal testing,

which is used as a substitute for epidemiological surveys, allows for

quantifiable assessment under controlled conditions [2]. Although

experimental animals have been used to assess the risks of various

agents, they may not reflect the responses seen in humans. Instead,

responses of human cells to potentially toxic agents can be

evaluated using cytotoxicity assays [3]. However, in cell culture, it

is extremely difficult to establish cell networks that mimic in vivo

systems. As a result, a safe margin has been applied to health risk

assessments to take into consideration the possibility of insufficient

evaluation, particularly regarding interspecies differences, though

such extrapolation to humans using safe margins occasionally

results in overestimation of risks. However, the underestimation of

risks by a small safety margin exposes humans to significant

danger. Therefore, to perform more accurate health risk

assessments, the development of an in vivo evaluation system that

can reproduce human responses to toxic factors would be an

important breakthrough.

For many years, mouse models transgenically expressing human

genes [4,5] or harboring transplanted human cells, tissues, and

organs, called humanized mice [6], have been developed to

reproduce the responses of human cells in vivo. Mice that are

humanized by transplantation of human cells are able to establish

networks of human cells in their bodies. The available diverse

mouse models were developed by transplantation of various types

of cells to immunodeficient strains of mice. In cancer research, the

biology of human tumor growth, metastasis, and angiogenesis has

been evaluated in these mouse models [7,8,9]. More recently, by

transplanting human hepatocytes into liver-failure immunodefi-

cient mice (uPA/SCID), mice with human livers have been

developed for the study of human infectious diseases and

metabolism [10,11]. Moreover, various types of hematopoietic

cells can be produced within immunodeficient NOG mice by

transplanting human hematopoietic stem cells [12], allowing for

the establishment of a functional human-like hematopoietic

lineage [13]. These techniques have proven valuable for the

in vivo study of human hematopoietic stem cell function [14],

infectious disease [15], and drug discovery [16], among other
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research questions. Interspecies differences in responses to

toxicants are influenced greatly by the specificity and expression

pattern of receptors, metabolic enzymes, and many other

molecules. A human-like hematopoietic lineage may mimic the

response to toxicants by human cells, and such humanized mice

may therefore prove to be powerful tools for health assessment and

aid in our evaluation of the hematotoxicity of various factors, while

accounting for interspecies differences.

Hematotoxicity is evaluated according to many factors,

including decreased hematopoietic cell counts, abnormal blood

coagulation, aberrant myelopoiesis, and induction of leukemia, all

of which can be caused by diverse risk factors [17,18,19].

Toxicants, such as benzene, can differentially affect human or

animal hematopoietic lineages [20,21]. Here, we took advantage

of mice harboring a human-like hematopoietic lineage as a tool for

assessing human hematotoxicity in vivo. These mice were estab-

lished by transplanting NOG mice with human CD34+ cells (Hu-

NOG mice). The response to benzene, a model toxicant, was

measured by determining decreases in the number of leukocytes.

Furthermore, we established chimeric mice by transplanting

C57BL/6 mouse-derived bone marrow cells into NOG mice

(Mo-NOG mice). To evaluate whether the response to benzene by

Hu-NOG mice reflected interspecies differences, the degrees of

benzene-induced hematotoxicities in Mo-NOG and Hu-NOG

mice were compared.

Materials and Methods

Cells and Mice
Transplanted human CD34+ cells isolated from cord blood

were purchased from Lonza (Lot: OF4563, Basel, Switzerland)

and cryopreserved in liquid nitrogen prior to use. Transplanted

mouse Lin2 bone marrow cells were prepared from the femurs of

6-week-old C57BL/6J mice. Bone marrow cells were collected by

excising and crushing the epiphysis and metaphysis with a mortar

and by pushing a needle through the diaphysis. Lin2 cells were

further purified using a Lineage Cell Depletion Kit (Miltenyi

Biotec, Bisley, UK). Fresh Lin2 bone marrow cells were used in

experiments. As hosts for cell transplantation, immunodeficient

NOD/Shi-scid/IL-2Rcnull (NOG) mice (6-week-old, male) were

obtained from the Central Institute for Experimental Animals

(Kawasaki, Japan). Mice were housed in a specific pathogen-free

facility in autoclaved polycarbonate cages and fed sterile food and

water ad libitum. In addition, NOG mice were maintained on

neomycin-polymyxin B in their drinking water.

All experimental protocols involving human cells and laboratory

mice were reviewed and approved by the Ethical Committee for

the Study of Materials from Human Beings and for Research and

Welfare of Experimental Animals at the Central Research Institute

of Electric Power Industry.

Cell Transplantation into NOG Mice
After a 2-week quarantine and acclimatization period, whole-

body X-ray irradiation of NOG mice was performed at 2.5 Gy

using an X-ray generator (MBR-320R, Hitachi Medical, Tokyo,

Japan) operated at 300 kV and 10 mA with 1.0-mm aluminum

and 0.5-mm copper filters at a dose ratio of 1.5 Gy/min and a

focus surface distance of 550 mm. Three to five hours later, the

irradiated mice were injected intravenously with human CD34+

cells or mouse Lin2 bone marrow cells suspended in MEM

supplemented with 2% BSA (200 mL containing 46104 cells per

mouse).

Mouse Grouping
Donor human or mouse cell-derived hematopoietic lineages

were established in NOG mice by maintenance of the mice for

about 3 months after transplantation. For grouping the mice, the

properties of the peripheral blood leukocytes of both types of mice

were analyzed using a microcavity array system [22,23,24] as

described previously [22]. Briefly, blood samples (,20 mL) from

the tail vein of transplanted NOG mice were stained with Hoechst

33342 (Life Technologies, Carlsbad, CA) and fluorophore-labeled

antibodies. For analysis of Hu-NOG mice, FITC-conjugated anti-

hCD45 monoclonal antibodies (mAbs) and PE-conjugated anti-

mCD45 mAbs (both from BD Biosciences, San Jose, CA) were

used. For analysis of Mo-NOG mice, FITC-conjugated anti-

mCD45.2 mAbs and PE-conjugated anti-mCD45.1 mAbs (both

from BD Biosciences) were used. Stained blood samples were

passed through the microcavities with negative pressure, and only

leucocytes were captured. Then, a whole image of the cell array

area was obtained using an IN Cell Analyzer 2000 (GE Healthcare

Life Sciences, Little Chalfont, UK). The number and rate of host

and donor-derived leukocytes was determined from the scanned

fluorescence signal of arrayed leukocytes.

On the basis of body weight, the sum of leukocyte counts, and

the rates of leukocyte chimerism, Hu-NOG mice were divided into

5 groups of 9–10 mice per group without significant differences

between each group. The rates of leukocyte chimerism were

calculated as the percentage of donor-derived leukocytes in the

total leukocyte population (the sum of donor- and host-derived

leukocytes). Mo-NOG mice were divided into 4 groups of 8 mice

each.

Administration of Benzene
Published epidemiological research regarding short-term expo-

sure to benzene has shown that the lowest-observed adverse effect

level (LOAEL) of benzene-induced hematotoxicity based on

decreasing leukocyte counts in the peripheral blood, is 60 ppm

[25]. When inhalation exposure levels are converted into oral

administration levels, 60 ppm is equivalent to 30 mg benzene/kg-

b.w./day (conversion conditions are as follows: respiratory volume,

20 m3/day; absorptivity, 50%; body weight, 70 kg) [26]. Benzene

toxicity depends on the amount absorbed and not the site of

absorption [26,27]. Therefore, in the present study, 0, 10, 30, 100,

and 300 mg/kg-b.w. benzene, suspended in corn oil, were

administered by gavage to Hu-NOG mice daily for 2 weeks,

starting at about 4 months after transplantation. In the case of Mo-

NOG mice, the amounts of benzene administered were 0, 30, 100,

and 300 mg/kg-b.w./day. Because mouse cells have lower

Figure 1. Schematic of the method. After a 2-week quarantine and
acclimatization period, human CD34+ cells or mouse Lin2 bone marrow
cells were injected intravenously into irradiated NOG mice. About 4
months after cell transplantation, 0–300 mg/kg-b.w. benzene was
administered daily for 2 weeks. The assessment of benzene-induced
hematotoxicity was performed using flow cytometric analysis and
colony assays.
doi:10.1371/journal.pone.0050448.g001

In Vivo Tool for Assessing Hematotoxicity in Human
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susceptibility to benzene than human cells [20,21], the adminis-

tration of 10 mg/kg-b.w. benzene to Mo-NOG mice was not

performed.

Cell Preparation from the Peripheral Blood and
Hematopoietic Organs

After benzene administration for 2 weeks, samples from the

bone marrow, spleen, thymus, and peripheral blood were

harvested from each mouse. Bone marrow cells were collected as

described above. The spleen and thymus were crushed between 2

glass slides. Peripheral blood was aspirated from the postcava

under anticoagulation treatment. Erythrocytes that could have

interfered with further evaluation were lysed using VersaLyse

(Beckman Coulter, Fullerton, CA). Collected cells were suspended

in phosphate buffered saline supplemented with 4 mM EDTA and

0.5% BSA. Mice in which edema was observed in the thymus at

the time of dissection were not used for subsequent analysis. We

did not observe detectable differences in the appearance of

abnormalities or the amount of benzene administered.

Flow Cytometric Analysis
Hematopoietic cells collected from each tissue, and organs were

analyzed by flow cytometry. Cells were stained with fluorophore-

conjugated antibodies in BD TruCOUNT Tubes (BD Biosciences)

and applied to a flow cytometer to determine cell surface markers

and cell numbers simultaneously. FITC-conjugated anti-hCD45

mAbs (BioLegend, San Diego, CA), Lineage cocktail (BD

Biosciences), PE-conjugated anti-hCD33 mAbs (BioLegend),

anti-hCD38 mAbs (BD Biosciences), PerCP-conjugated anti-

mCD45 mAbs (BioLegend), APC-conjugated anti-hCD4 mAbs

(BioLegend), anti-hCD34 mAbs (BD Biosciences), and APC-Cy7-

conjugated anti-hCD8 mAbs (BioLegend) were used to analyze

Hu-NOG mice. FITC-conjugated anti-mLy6C/6G mAbs, PerCP-

Cy5.5-conjugated anti-mCD45.2 mAbs, and APC-conjugated

anti-mCD45.1 mAbs (all from BD Biosciences) were used to

analyze Mo-NOG mice. Flow cytometric analysis was conducted

using the FACSCanto II (BD Biosciences) system. A total of

10,000 events were analyzed for each sample. FlowJo software

(TreeStar, Ashland, OR) was used for the analysis of flow

cytometry data. Data from several samples in which the number

of leukocytes exceeding 2 standard deviations of the group mean

was detected were not used for analysis.

Colony-forming Assay
Bone marrow cells (16105) collected from Hu-NOG mice were

plated in methylcellulose-based medium (MethoCult H4034,

StemCell Technologies, Vancouver, Canada). After 13 days of

cultivation at 37uC in a humidified atmosphere containing 5%

CO2, the numbers of colony-forming unit-granulocyte/erythroid/

macrophage/megakaryocytes (CFU-GEMMs) were enumerated

using visible light microscopy.

Results

Benzene Toxicity in Human Hematopoietic Stem/
progenitor Cells from Hu-NOG Mice

About 4 months after cell transplantation, daily oral adminis-

tration of 0–300 mg/kg-b.w. benzene was performed in Hu-NOG

mice for 2 weeks (Fig. 1). We carried out flow cytometric

enumerations of Lin2hCD382hCD34+ cells contained in the bone

marrow of Hu-NOG mice (Fig. 2A), which were highly enriched

in the population of human hematopoietic stem/progenitor cells.

The number of Lin2hCD382hCD34+ cells in the bone marrow of

Hu-NOG mice decreased depending on the amount of benzene

administered (Fig. 2B). Compared with the number of

Lin2hCD382hCD34+ cells in the bone marrow of untreated

Hu-NOG mice, the numbers of Lin2hCD382hCD34+ cells

decreased significantly following administration of greater than

30 mg/kg-b.w./day benzene (2.46104, 2.06104, 9.36103,

1.06103, and 4.76102 cells/tissue were present after 0, 10, 30,

100, and 300 mg/kg-b.w. benzene administration, respectively).

In colony-forming assays for multilineage hematopoietic progen-

itors, the numbers of CFU-GEMMs appearing in bone marrow

cells were reduced depending on the amount of benzene

administered (Fig. 2C).

Figure 2. Benzene toxicity in human hematopoietic stem/progenitor cells from Hu-NOG mice. (A) Dot plot of a bone marrow sample
from untreated Hu-NOG mice stained with hCD38 and hCD34 within the Lin2 gate. (B) Numbers of Lin2hCD382hCD34+ cells in the bone marrow of
Hu-NOG mice after benzene administration (n = 7 or n = 8). (C) Numbers of colony-forming unit-granulocyte/erythroid/macrophage/megakaryocytes
(CFU-GEMMs) arising from the bone marrow cells of Hu-NOG mice after benzene administration (n = 6–8). Each point represents the mean 6 SD of
each group. * p,0.05 and ** p,0.01 represent significant differences compared with untreated mice, as determined by t tests.
doi:10.1371/journal.pone.0050448.g002

In Vivo Tool for Assessing Hematotoxicity in Human
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Benzene Toxicity in Human Leukocytes from Hu-NOG
Mice

Human leukocytes were identified in the peripheral blood and

hematopoietic organs of Hu-NOG mice by double staining with

anti-hCD45 and anti-mCD45 antibodies. By maintenance of the

mice for about 4.5 months after cell transplantation, human

leukocytes were highly represented in leukocytes contained in all

target tissues of Hu-NOG mice (Fig. 3A). The numbers of human

leukocytes in Hu-NOG mice without benzene administration were

1.56107 cells/tissue (bone marrow), 3.06108 cells/tissue (spleen),

3.16105 cells/tissue (thymus) and 5.26102 cells/mL (peripheral

blood).

Next, we evaluated the toxic effects of benzene on human

leukocytes (hCD45+mCD452) in the peripheral blood and

hematopoietic organs of Hu-NOG mice. The numbers of human

leukocytes in all samples were reduced depending on the amount

of benzene administered to the same extent as human hemato-

poietic stem/progenitor cells in the bone marrow (Fig. 4A). The

numbers of human leukocytes in Hu-NOG mice given 30 mg

benzene/kg-b.w./day were 0.78- (bone marrow), 0.28- (spleen),

0.30- (thymus), and 0.40-fold (peripheral blood) the number in

untreated Hu-NOG mice. The number of cells decreased most

drastically in the spleen.

We next analyzed the population of human leukocytes in Hu-

NOG mice using anti-hCD33 mAbs and found that benzene

administration caused a more dramatic reduction in the number of

lymphoid cells (hCD332) than in the number of myeloid cells

(hCD33+) in the bone marrow and peripheral blood (Fig. 4B).

Initially, the spleen and thymus contained only a few myeloid cells

(less than 4% of total leukocytes). The percentages of individual

types of T cells in the thymus, as identified using differentiation

markers, are shown in Figure 4C. The relative abundance of

hCD4+hCD8+ cells was affected by benzene administration to a

greater extent than the other 3 T cell populations (hCD4+hCD8+

cells constituted 70.1, 59.8, 52.1, 2.6, and 0.6% of T cells in the

thymus of Hu-NOG mice after 0, 10, 30, 100, and 300 mg/kg-

b.w. benzene administration, respectively).

Comparison of Benzene Toxicity in Hu-NOG and Mo-NOG
Mice

In this study, NOG mice (CD45.1) with different strain-derived

mouse hematopoietic lineages were established by transplanting

Figure 3. Establishment of hematopoietic cell lineages in NOG mice. Flow cytometric analysis of leukocytes in the peripheral blood and
hematopoietic organs of untreated Hu-NOG (A) and Mo-NOG (B) mice. Rates of leukocyte chimerism in Hu-NOG mice were calculated as the
percentage of hCD45+mCD452 cells in the total CD45+ cell population (the sum of human and mouse CD45+ cells). Data represent the mean 6
standard deviation (SD; n = 7 or n = 8). Rates of leukocyte chimerism in Mo-NOG mice were calculated as the percentage of mCD45.2+mCD45.12 cells
in the total CD45+ cell population (the sum of mCD45.1+ and mCD45.2+ cells). Data represent the mean 6 SD (n = 6–8).
doi:10.1371/journal.pone.0050448.g003

In Vivo Tool for Assessing Hematotoxicity in Human
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Figure 4. Benzene toxicity in human leukocytes from Hu-NOG mice. (A) Human leukocytes collected from the peripheral blood and
hematopoietic organs of Hu-NOG mice. Upper panel: histogram of hCD45+mCD452 cells in Hu-NOG mice administered 0 (gray), 30 (red), or 300 mg
(blue-lined) benzene/kg-b.w./day. Lower panel: numbers of hCD45+mCD452 cells in Hu-NOG mice. Each point represents the mean 6 SD of each

In Vivo Tool for Assessing Hematotoxicity in Human
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Lin2 bone marrow cells prepared from C57BL/6 mice (CD45.2).

In Mo-NOG mice, C56BL/6 mouse cells succeeded in reconsti-

tuting the hematopoietic cell population (Fig. 3B). After benzene

administration under the same conditions as for Hu-NOG mice,

the degree of benzene-induced hematotoxicity suffered by Mo-

NOG mice was compared with that of Hu-NOG mice. Humans

are known to be more susceptible to the toxic effects of benzene

than mice [20,21]. The cell number ratio of donor cell-derived

human or mouse leukocytes in Hu-NOG and Mo-NOG mice after

benzene administration, based on the number of leukocytes in

untreated mice, is shown in Figure 5A. This comparison indicated

that fewer human leukocytes were present in all target tissues of

Hu-NOG mice in comparison with the number of leukocytes

present in Mo-NOG mice. The difference in leukocyte number

ratios between these mouse groups was large, particularly in the

spleen and thymus, where lymphoid cells represented most of the

leukocytes. In the bone marrow, the differences tended to vary

depending on the amount of benzene administered. In contrast,

differences in the peripheral blood followed the reverse tendency.

Thus, the difference in cell number ratios was larger in lymphoid

cells than in myeloid cells (Fig. 5B). Moreover, 0, 30, and 300 mg

benzene/kg-b.w./day was administered to C56BL/6 mice in same

manner, and the degree of benzene-induced hematotoxicity of the

hematopoietic lineage within C56BL/6 mice was evaluated. The

rate of decrease in leukocyte numbers in the peripheral blood and

hematopoietic organs of C56BL/6 mice, depending on the

amount of benzene, was not significantly different for Mo-NOG

mice (p.0.10).

Discussion

Here, we evaluated the toxic response of a human-like

hematopoietic lineage established in NOG mice using the

hematotoxicant benzene [28,29,30]. Benzene-induced hemato-

toxicity is known to be transmitted by the aryl hydrocarbon

receptor (AhR) [31]. Benzene metabolism is mediated by signals

transmitted through interactions between AhR and benzene,

benzene metabolites, or both, and the resulting benzene metab-

olites and reactive oxygen species induce cell damage [32,33]. In

hematopoietic cells, the AhR is expressed selectively by immature

cells, such as hematopoietic stem/progenitor cells [34,35,36].

Therefore, the toxic response of immature cells is the main cause

of benzene-induced hematotoxicity [34]. When different amounts

of benzene were administered by gavage to Hu-NOG mice, the

number of human hematopoietic stem/progenitor cells in the

bone marrow was reduced in a dose-dependent manner (Fig. 2).

Benzene also affected the numbers of human leukocytes in the

peripheral blood and hematopoietic organs (Fig. 4A). Thus,

benzene-induced hematotoxicity was detected in a human-like

hematopoietic lineage established in NOG mice.

Human lymphoid cells showed higher sensitivity to benzene

than myeloid cells in Hu-NOG mice (Fig. 4B). In a previous report

on benzene-treated mice [37], the same effects on peripheral blood

lymphoid and myeloid cells were observed. Microarray data

indicate that benzene downregulates the expression of MEF2c

[34], which encodes a transcription factor. Mef2c deficiency is

associated with profound defects in the production of lymphoid

cells and an enhanced myeloid output [38]. Moreover, analysis of

the thymic T cell profile of Hu-NOG mice showed that double-

positive (DP) pre-T cells were more strongly affected by benzene

than T cells at other stages of differentiation (Fig. 4C). It has been

reported that only the numbers of DP pre-T cells in the thymus

are reduced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

[36,39], and TCDD-induced hematotoxicity is also mediated by

AhR signaling [40]. Although the molecular mechanism of

benzene toxicity in Hu-NOG mice could not be inferred by these

results alone, we did observe a normal response to benzene by Hu-

NOG mice harboring a human-like hematopoietic lineage. We

conclude, therefore, that the human-like hematopoietic lineage

was sensitive to at least 1 hematotoxicant, benzene, and that Hu-

NOG mice promise to provide a powerful tool for assessing the

in vivo response of human hematopoietic cells to known and

suspected toxicants. Moreover, Hu-NOG mice can contribute to

basic research on human hematopoietic cells, particularly with

respect to internal tissues and organs. It is important to note that

the LOAEL of benzene-induced hematotoxicity in Hu-NOG mice

was approximately equivalent to that established for humans [25].

Sensitivity to benzene differs across species, and humans are

more susceptible than mice [20,21]. The cause of interspecies

differences in benzene-induced hematotoxicity likely involves

differences in the affinity of benzene and the AhR [41] and the

amounts and properties of benzene metabolites [20,42,43];

however, this has not been proven. In this study, we established

chimeric mice, named Mo-NOG mice, by transplanting C57BL/6

mouse-derived bone marrow cells into NOG mice. Then, we

compared the toxic responses of donor cell-derived human and

mouse hematopoietic lineage in NOG mice (Fig. 5A). In a

previous report, Cai et al. [44] discussed the sensitivity of donor-

derived human hematopoietic cells to toxicants by comparison

with host-derived immunodeficient mouse cells. However, we are

skeptical about this comparison between donor-derived cells and

irradiated host cells. In this study, a simple and direct comparison

was enabled by equalizing the transplant environment of donor

cells. It is also important to note that we used C57BL/6 mice, a

strain generally used for toxicity tests. Differences in the benzene

sensitivities of donor-derived cells from Hu- and Mo-NOG mice

undoubtedly indicated that toxic responses within Hu-NOG mice

reflected interspecies differences in benzene-induced hematotoxi-

city.

The toxicity of benzene in leukocytes in the peripheral blood is

induced mainly by benzene metabolites produced in organs such

as the liver [45,46]. Because Hu-NOG and Mo-NOG mice

obviously possess the same organs, we predicted that the degree of

peripheral blood leukocyte toxicity would be almost the same in

both. However, there was a significant difference in the number of

peripheral blood leukocytes between Hu-NOG and Mo-NOG

mice in response to low levels of benzene. This difference may be

attributed to differences in the amounts of cells supplied from the

bone marrow, spleen, and thymus. In fact, the difference in the

number of leukocytes in Hu-NOG and Mo-NOG mice was most

significant in lymphoid organs (Fig. 5B). Moreover, in analyses

targeting the bone marrow and peripheral blood, differences in

group (n = 7 or n = 8). * p,0.05 and ** p,0.01 represent significant differences compared with untreated mice, as determined by t tests. (B) Numbers
of human myeloid and lymphoid cells in the bone marrow or peripheral blood of Hu-NOG mice. Human myeloid cells were identified as
hCD45+mCD452hCD33+ cells (open square). Human lymphoid cells were identified as hCD45+mCD452hCD332 cells (solid square). Each point
represents the mean of each group (n = 7 or n = 8). * p,0.05 and ** p,0.01 represent significant differences compared with untreated mice as
determined by t tests. (C) The percentage of each T cell population in the thymus of Hu-NOG mice. The value was calculated based on the ratio of
hCD45+mCD452hCD332 cells. Individual types of T cells were determined by using combinations of anti-hCD4 and hCD8 antibodies. Values
represent means (n = 7 or n = 8).
doi:10.1371/journal.pone.0050448.g004
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susceptibilities to benzene tended to be greater in lymphoid cells

than in myeloid cells. These results suggested that interspecies

differences in benzene-induced hematotoxicity are mainly due to

differences in toxic responses in lymphoid cells, in the regulation of

benzene in lymphoid development, or both. We speculate that

there may be interspecies differences in the regulation of MEF2c

expression by benzene on the basis of the reasons stated above.

In conclusion, a human-like hematopoietic lineage established

in NOG mice by transplanting human hematopoietic stem/

progenitor cells exhibited human-like susceptibility to at least 1

hematotoxicant, benzene. Hu-NOG and Mo-NOG mice offer a

well-defined, reproducible, and easy-to-manipulate in vivo system

for performing species-specific biochemical analyses of benzene

metabolism. We think it is reasonable to assume that Hu-NOG

mice will provide a powerful in vivo tool for assessing the

hematotoxicity of chemical and physical agents on human

hematopoietic cells. In the future, the similarities of the

hematotoxic responses induced in Hu-NOG mice and humans

should be evaluated more carefully by analyzing the detailed toxic

response mechanism in Hu-NOG mice. Our strategy may be

applicable to the study of other organs [47] and other toxicants as

well.
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