

Article

MDPI

Synthesis, Single Crystal X-ray Analysis, and Antifungal Profiling of Certain New Oximino Ethers Bearing Imidazole Nuclei

Reem I. Al-Wabli ^{1,*}, Alwah R. Al-Ghamdi ¹, Hazem A. Ghabbour ^{1,2} ^(D), Mohamed H. Al-Agamy ^{3,4} ^(D) and Mohamed I. Attia ^{1,5,*} ^(D)

- ¹ Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; toto24se@hotmail.com (A.R.A.-G.); ghabbourh@yahoo.com (H.A.G.)
- ² Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- ³ Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; malagamy@ksu.edu.sa
- ⁴ Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
- ⁵ Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), El Bohooth Street, Dokki, Giza 12622, Egypt
- * Correspondence: ralwabli@ksu.edu.sa (R.I.A.-W.); mattia@ksu.edu.sa (M.I.A.)

Received: 4 October 2017; Accepted: 31 October 2017; Published: 3 November 2017

Abstract: Fungal infections threaten human health, particularly in immune-compromised patients worldwide. Although there are a large number of antifungal agents available, the desired clinical attributes for the treatment of fungal infections have not yet been achieved. Azoles are the mainstay class of the clinically used antifungal agents. In the current study, the synthesis, spectroscopic characterization, and antifungal activity of certain new oximino ethers Va-n bearing imidazole nuclei are reported. The (E)-configuration of the imine double bond of the synthesized compounds Va–n has been confirmed via single crystal X-ray analysis of compound Vi as a representative example of this class of compounds. The molecular structure of compound Vi was crystallized in the monoclinic, $P2_1/c$, a = 18.7879(14) Å, b = 5.8944(4) Å, c = 16.7621(12) Å, $\beta = 93.063(3)^\circ$, V = 1855.5(2) Å³, Z = 4. The invitro antifungal activity of the synthesized compounds Va-n were evaluated using diameter of the inhibition zone (DIZ) and minimum inhibitory concentration (MIC) assays against different fungal strains. Compound Ve manifested anti-Candida albicans activity with an MIC value of 0.050 µmol/mL, being almost equipotent with the reference antifungal drug fluconazole (FLC), while compounds Vi and Vn are the most active congeners against Candida parapsilosis, being equipotent and about twenty-three times more potent than FLC with an MIC value of $0.002 \mu mol/mL$. The results of the current report might support the development of new potent and safer antifungal azoles.

Keywords: imidazole; Mannich reaction; X-ray; antifungal agents; anti-Candida

1. Introduction

Fungal infections are an ever-growing burden on the health of mankind. They sometimes cause significant morbidity and mortality particularly in immune-compromised individuals, like those taking anticancer chemotherapy, patients with AIDS, or those receiving organ transplants [1,2]. Invasive fungal infections, like invasive aspergillosis and candidiasis, threaten the human health of millions of patients annually worldwide [3]. The available antifungal drugs can be classified into five main categories according to their mode of action: antimetabolites (e.g., 5-fluorocytosine) [4], polyenes (e.g., nystatin and amphotericin B) [5], azoles (e.g., itraconazole, voriconazole and fluconazole) [5], allylamines (e.g., naftifine and terbinafine) [6], and echinocandins (e.g., micafungin and caspofungin) [7].

Azoles bearing either imidazole or triazole moiety as a pharmacophoric portion constitute the mainstay antifungal therapy due to their good safety profile and favorable bioavailability [6]. They target lanosterol 14α -demethylase (CYP51) enzyme, a member of the CYP51 class of cytochrome P450 enzymes, leading to inhibition of the biosynthesis of ergosterol and accumulation of the toxic methylated sterol, which ultimately results in fungi cell death [8]. Even though azoles are currently the most clinically prescribed antifungal agents, they suffer from some limitations. Inhibition of cytochrome P450 enzymes by azoles leads to interference with the metabolism of other co-administered medications [9]. Moreover, azoles lack fungicidal activity against many fungi, which leads to the development of resistance toward fungal therapy [3]. Therefore, there is considerable interest in developing new azole-bearing antifungal agents endowed with a wide antifungal spectrum, high potency, diminished undesired drug–drug interactions, and reduced adverse effects.

Screening the literature revealed that oxiconazole (1, Figure 1) and its inverted oxime analog 2 (Figure 1) are well known antifungal agents bearing both imidazole and oxime functionalities [10,11]. Moreover, most of the currently available azole-bearing antifungal agents feature a spacer of two carbon atoms between the azole pharmacophore moiety and an aromatic nucleus, while insufficient information is available about azole antifungals bearing a three-carbon bridge connecting azole and aromatic moieties [12–14]. Accordingly, it was of our interest to synthesize the oximino ethers **Va–g** to be evaluated as new antifungal agents bearing oxime and imidazole fragments with a three-carbon atom bridge between the imidazole pharmacophore and the aromatic moiety. In addition, a 1,3-benzodioxole scaffold was incorporated into a plethora of bioactive molecules including antimicrobials [15–17]. Therefore, the phenyl ring in compounds **Va–g** was replaced by 1,3-benzodioxole moiety to afford the respective compounds **Vh–n** to be assessed as new antifungal candidates. Moreover, the configuration around the imine double bond of the title compounds **Va–n** was explored via single crystal X-ray analysis of compound **Vi** as a representative example of this type of compounds.

Figure 1. Chemical structures of the antifungal agents 1 and 2 as well as the target compounds Va-n.

2. Results and Discussion

2.1. Chemistry

The target compounds **Va–n** and their intermediates were successfully achieved as illustrated in Scheme 1. The synthesis was commenced by utilizing the commercially available acetophenones **Ia,b** to perform Mannich reactions to give the respective Mannich bases **IIa,b**. Compounds **IIa,b** were elaborated to the corresponding ketones **IIIa,b** which were subsequently transformed to the oximes **IVa,b**. The target oximino ethers **Va–n** were obtained in 24–63.4% yields via etherification of the pivotal oximes **IVa,b** using the appropriate benzyl bromide/chloride in the presence of sodium hydride. The assigned chemical structures of the title compounds **Va–n** were confirmed via different spectroscopic techniques (IR, ¹H-NMR, ¹³C-NMR and mass spectrometry). The aromatic protons of compounds **Va–n** appeared along with imidazole protons in the range of 6.75–8.39 ppm, while the benzylic protons occurred in the range of 5.13–5.29 ppm. The benzodiaxole methylene protons of compounds **Vh–n** manifested around 5.9 ppm. The aliphatic ethylene protons of compounds **Va–n** were observed in the expected upfield region of 3.14–4.29 ppm. The ¹³C spectra of compounds **Va–n** showed aromatic as well as imidazole carbons in the range of 106.2–162.6 ppm. Their benzylic carbons occurred at 74.8–76.7 ppm, while the benzoldiaxole methylene carbons of compounds **Vh–n** were observed around 101 ppm. Moreover, the aliphatic ethylene carbons of compounds **Va–n** exhibited signals in the expected region of 28.9–44.3 ppm while the oximino carbons manifested signals around 155 ppm. The mass spectral data of the target compounds **Va–n** are consistent with their assigned chemical structures. The (*E*)-configuration of the oximino double bond of the title compounds **Va–n** has been proved using single crystal X-ray analysis of compound **Vi** as a representative example of the prepared compounds **Va–n**.

Scheme 1. Synthesis of the target compounds **Va**–**n**. Reagents and conditions: (i) HN(CH₃)₂.HCl, (CH₂O)_{*n*}, conc. HCl, ethanol, reflux, 2 h; (ii) Imidazole, water, reflux, 5 h; (iii) H₂NOH.HCl, KOH, ethanol, reflux, 18 h; (iv) Appropriate benzyl chloride/bromide derivative, NaH, DMF, 80 °C, 3 h.

2.2. Crystal Structure of Compound Vi

The selected bond lengths and bond angles of compound **Vi** are listed in Table 1. The asymmetric unit contains one independent molecule as shown in Figure 2. All the bond lengths and angles are

within normal ranges [18]. In the crystal packing, Figure 3, molecules are linked via one intermolecular hydrogen bond (Table 2).

Bond Lengths								
Br1-C18	1.905(3)	N1-C8	1.290(4)					
O1-C1	1.432(5)	N2-C10	1.462(5)					
O1–C2	1.386(4)	N2-C11	1.337(5)					
O2-C1	1.428(5)	N2-C13	1.347(6)					
O2–C7	1.373(4)	N3-C11	1.313(6)					
O3-N1	1.410(4)	N3-C12	1.343(6)					
O3-C14	1.442(4)							
Bond Angles								
C101C2	105.9(3)	O2C7C2	110.5(3)					
C1-O2-C7	105.9(3)	O2-C7-C6	128.4(3)					
N1-O3-C14	107.6(2)	N1-C8-C4	114.9(3)					
O3-N1-C8	111.8(3)	N1-C8-C9	123.1(3)					
C10-N2-C11	127.2(3)	N2-C10-C9	112.3(3)					
C10-N2-C13	126.8(3)	N2-C11-N3	112.3(4)					
C11-N2-C13	106.0(3)	N3-C12-C13	110.2(4)					
C11-N3-C12	104.8(4)	N2-C13-C12	106.7(4)					
O1C1O2	108.0(3)	O3-C14-C15	113.3(3)					
O1-C2-C3	127.9(3)	Br1-C18-C17	119.4(2)					
O1-C2-C7	109.3(3)	Br1-C18-C19	119.3(3)					

Table 1. Selected geometric parameters (Å, $^{\circ}$).

Table 2. Hydrogen-bond geometry (Å, $^{\circ}$).

D-H···A	D-H	Н…А	D····A	D-H···A		
С3–Н3А…N3	0.9300	2.5300	3.453(5)	169.00		
Symmetry codes: (i) $-x - 2, -y, -z + 1$.						

Figure 2. ORTEP diagram of compound **Vi**. Displacement ellipsoids are plotted at the 40% probability level for non-H atoms.

Figure 3. Molecular packing of compound Vi.

2.3. Antifungal Evaluation

The antifungal activity of the synthesized compounds **Va–n** was determined against three *Candida* species and *Asperagillus niger* using in vitro diameter of the inhibition zone (DIZ) and minimum inhibitory concentration (MIC) assays; the results are presented in Table 3.

Table 3. Antifungal activity of the target oximino ethers **Va**–**n** against *C. albicans, C. tropicalis, C. parapsilosis* and *A. niger.*

Compound No.	Candida albicans		Candida tropicalis		Candida parapsilosis		Asperagillus niger	
	DIZ ± SD (mm)	MIC (µmol/mL)	DIZ ± SD (mm)	MIC (µmol/mL)	DIZ ± SD (mm)	MIC (µmol/mL)	DIZ ± SD (mm)	MIC (µmol/mL)
Va	18 ± 1.00	0.209	16 ± 1.16	0.419	20 ± 0.68	0.105	21 ± 1.14	0.105
Vb	23 ± 0.63	0.083	18 ± 0.97	0.083	24 ± 0.45	0.042	22 ± 0.94	0.083
Vc	22 ± 0.52	0.094	22 ± 0.63	0.094	23 ± 0.61	0.047	19 ± 0.75	0.047
Vd	18 ± 1.12	0.198	15 ± 1.21	0.198	19 ± 0.85	0.049	12 ± 0.30	0.198
Ve	19 ± 1.10	0.050	17 ± 1.14	0.100	20 ± 1.00	0.050	12 ± 0.41	0.201
Vf	18 ± 0.95	0.686	18 ± 1.13	0.343	21 ± 0.43	0.043	22 ± 0.99	0.172
Vg	21 ± 1.13	0.073	20 ± 0.91	0.145	22 ± 0.58	0.036	13 ± 0.64	0.290
Vĥ	14 ± 0.50	0.183	10 ± 0.58	0.183	13 ± 0.60	0.003	20 ± 0.50	0.733
Vi	15 ± 1.20	0.149	15 ± 0.30	0.149	14 ± 0.50	0.002	13 ± 1.53	0.299
Vj	15 ± 0.30	0.167	14 ± 0.60	0.167	21 ± 1.00	0.010	16 ± 1.31	0.667
Vk	15 ± 0.58	0.174	12 ± 0.58	0.174	13 ± 0.58	0.044	23 ± 0.50	0.697
Vl	16 ± 1.00	0.176	13 ± 0.60	0.176	19 ± 1.00	0.006	12 ± 0.58	0.705
Vm	15 ± 0.58	0.153	13 ± 0.40	0.153	23 ± 0.60	0.019	14 ± 1.00	0.307
Vn	13 ± 0.40	0.527	15 ± 1.20	0.527	19 ± 0.58	0.002	11 ± 0.20	>1.05
Fluconazole	18 ± 1.10	0.051	19 ± 1.00	0.045	19 ± 0.90	0.047	ND	ND
Ketokonazole	ND	ND	ND	ND	ND	ND	29 ± 0.60	0.02

Arithmetic mean \pm standard deviation; DIZ: diameter of the inhibition zone; SD: standard deviation; MIC: minimum inhibitory concentration; ND: not determined.

The current study reports the antifungal potential of certain imidazole-bearing compounds having either an unsubstituted phenyl ring (compounds Va-g) or a benzodioxole fragment (compounds Vh-n) representing the aromatic pharmacophore moieties. The title compounds Va-n feature 3-aryl-3-iminopropyl moiety attached at N^1 of the imidazole ring. It has been previously reported that the presence of chlorine atoms in the aromatic moiety of the antifungal agents contributes to the enhancement of their antifungal activity [19]. Substitution of the phenyl moiety of the benzyl fragment with halogen, methyl, or 3,5-bis-trifluoromethyl groups of compounds Va-g enhanced their antifungal activity against the tested *Candida* species. Compound **Ve** bearing 4-methylbenzyl moiety exhibited the best MIC value of 0.050 µmol/mL, being nearly equipotent with the reference fluconazole (FLC) towards *Candida albicans*, while compounds Vb (4-bromobenzyl derivative) and Vg (3,5-bis-trifluoromethyl benzyl derivative) manifested the best MIC values of 0.083 and 0.36 µmol/mL towards Candida tropicalis and Candida parapsilosis, respectively. The same anti-Candida profile was mostly observed in the respective analogs Vh-n except towards Candida parapsilosis in which substitution with halogen or methyl did not improve the activity as compared with the unsubstituted analog, compound Vh. Substitution with the trifluoromethyl group gave compound Vm improved activity towards Candida albicans and Candida tropicalis with, an MIC value of 0.153 µmol/mL. The highest sensitivity of Asperagillus niger was observed towards the 4-chlorobenzyl derivative analog, compound Vc, with an MIC value of 0.047 µmol/mL. In summary, compounds Vb, Vc, Ve and Vi, or Vn are the most active congeners towards Candida tropicalis, Asperagillus niger, Candida albicans, and Candida parapsilosis, respectively. It seems that the antifungal profile of compounds Va-g is better than that of their respective benzodioxole analogs, compounds **Vh–n**. Therefore, it is believed that the replacement of an unsubstituted phenyl pharmacophore with benzodioxole moiety is not favorable towards the tested fungal strains.

3. Experimental

3.1. General

The melting points were measured using a Gallenkamp melting point device and are uncorrected. The NMR samples of the synthesized compounds **Va–n** were dissolved in DMSO-*d*₆ and the NMR spectra were recorded using a Bruker NMR spectrometer (Bruker, Reinstetten, Germany) at 500 MHz for ¹H and 125.76 MHz for ¹³C at the Research Center, College of Pharmacy, King Saud University, Saudi Arabia. Chemical shifts are expressed in δ -values (ppm) relative to TMS as an internal standard. Elemental analyses were carried out at Microanalysis Laboratory, Cairo University, Cairo, Egypt and the results agreed favorably with the proposed structures within ±0.4% of the theoretical values. Mass spectra were recorded using Agilent Quadrupole 6120 LC/MS with ESI (Electrospray ionization) source (Agilent Technologies, Palo Alto, CA, USA).

3.2. Chemistry

3.2.1. Synthesis of (1E)-1-(2H-1,3-benzodioxol-5-yl)-N-hydroxy-3-(1H-imidazol-1-yl)propan-1-imine (IV)

Compound IV and its intermediates were prepared as previously reported [20,21]. Their spectral data are consistent with the reported ones.

3.2.2. Synthesis of the Oximino Ethers Va-n

Sodium hydride (1.5 mmol) was added to a solution of the oxime (**IV**, 1.0 mmol) in DMF (5 mL) and the reaction mixture was stirred at room temperature for 10 min. Then, the appropriate benzyl bromide/chloride (1.1 mmol) in DMF (5 mL) was added dropwise. The reaction mixture was stirred at room temperature for 30 min. then heated at 80 $^{\circ}$ C for two hours. The reaction mixture was concentrated under vacuum and the residue was poured into ice cold water and extracted with

ethyl acetate (3 \times 20 mL). The organic phases were combined and washed with water (2 \times 15 mL), dried (Na₂SO₄), and evaporated under reduced pressure. The crude oximino ethers **Va**–**n** were purified using column chromatography, and chloroform/methanol (18:1) was used as the solvent system.

(1*E*)-*N*-(*Benzyloxy*)-3-(1*H*-*imidazol*-1-*yl*)-1-*phenylpropan*-1-*imine* (**Va**). Yield 52.9%; light brown viscous oil; IR (KBr): ν (cm⁻¹) 3003, 2964, 1724 1673 (C=N), 1506, 1437, 1286, 700; ¹H-NMR (CDCl₃): δ (ppm) 3.16 (br. s., 2H, –CH₂–CH₂–N), 4.12 (br. s., 2H, –CH₂–CH₂–N), 5.25 (s, 2H, –CH₂–C₆H₅), 6.77 (s, 1H, –N–CH=CH–N=), 6.94 (s, 1H, –N–CH=CH–N=), 7.27–7.31 (m, 5H, Ar–H), 7.33–7.38 (m, 5H, Ar–H), 7.41 (s, 1H, –N–CH=N–); ¹³C-NMR (CDCl₃): δ (ppm) 29.4 (–CH₂–CH₂–N), 43.4 (–CH₂–CH₂–N), 76.7 (–CH₂–C₆H₄), 118.8 (–N–CH=CH–N=), 125.9, 128.1, 128.3, 128.4, 128.5, 128.6, 129.1, 129.5, 134.8 (Ar–CH, Ar–C, –N–CH=CH–N=), 137.3 (–N–CH=N–), 154.9 (C=N); MS *m*/*z* (ESI): 306.2 [M + H]⁺, 307.1 [(M + 1) + H]⁺.

(1*E*)-*N*-[(4-Bromobenzyl)oxy]-3-(1*H*-imidazol-1-yl)-1-phenylpropan-1-imine (**Vb**). Yield 43.4%; pale yellow viscous oil; IR (KBr): ν (cm⁻¹) 3003, 2924, 1720, 1672 (C=N), 1510, 1436, 1220, 785; ¹H-NMR (CDCl₃): δ (ppm) 3.34 (br. s., 2H, $-CH_2-CH_2-N$), 4.29 (br. s., 2H, $-CH_2-CH_2-N$), 5.24 (s, 2H, $-CH_2-C_6H_4$), 6.94 (s, 1H, -N-CH=CH-N=), 7.11 (s, 1H, -N-CH=CH-N=), 7.37 (d, *J* = 7.5 Hz, 2H, Ar–H), 7.47–7.57 (m, 5H, Ar–H), 7.62 (d, *J* = 7.4 Hz, 2H, Ar–H), 7.66 (s, 1H, -N-CH=N-); ¹³C-NMR (CDCl₃): δ (ppm) 29.2 ($-CH_2-CH_2-N$), 43.7 ($-CH_2-CH_2-N$), 75.8 ($-CH_2-C_6H_4$), 119.0 (-N-CH=CH-N=), 122.1, 126.1, 127.7, 128.5, 128.7, 129.7, 130.1, 131.6, 134.5 (Ar–CH, Ar–C, -N-CH=CH-N=), 136.4 (-N-CH=N-), 155.0 (C=N); MS *m*/*z* (ESI): 384.1 [M + H]⁺, 386.1 [(M + 2) + H]⁺, 387.1 [(M + 3) + H]⁺.

(1*E*)-*N*-[(4-Chlorobenzyl)oxy]-3-(1*H*-imidazol-1-yl)-1-phenylpropan-1-imine (**Vc**). Yield 63.4%; light brown viscous oil; IR (KBr): ν (cm⁻¹) 3003, 2928, 1722, 1671 (C=N), 1511, 1437, 1224, 696; ¹H-NMR (CDCl₃): δ (ppm) 3.30 (br. s., 2H, $-CH_2-CH_2-N$), 4.25 (br. s., 2H, $-CH_2-CH_2-N$), 5.26 (s, 2H, $-CH_2-C_6H_4$), 6.92 (s, 1H, -N-CH=CH-N=), 7.08 (s, 1H, -N-CH=CH-N=), 7.44–7.52 (m, 9H, Ar–H), 7.55 (s, 1H, -N-CH=N-); ¹³C-NMR (CDCl₃): δ (ppm) 29.2 ($-CH_2-CH_2-N$), 43.4 ($-CH_2-CH_2-N$), 75.7 ($-CH_2-C_6H_4$), 118.8 (-N-CH=CH-N=), 125.9, 128.5, 128.6, 129.1, 129.6, 129.7, 133.8, 134.5, 135.9 (Ar–CH, Ar–C, -N-CH=CH-N=), 136.8 (-N-CH=N-), 155.0 (C=N); MS *m*/*z* (ESI): 340.1 [M + H]⁺, 341.1 [(M + 1) + H]⁺, 342.1 [(M + 2) + H]⁺.

(1*E*)-*N*-[(4-Fluorobenzyl)oxy]-3-(1*H*-imidazol-1-yl)-1-phenylpropan-1-imine (**Vd**). Yield 59.9%; light brown viscous oil; IR (KBr): ν (cm⁻¹) 3003, 2924, 1720, 1670 (C=N), 1510, 1435, 1217, 765; ¹H-NMR (CDCl₃): δ (ppm) 3.29 (t, *J* = 6.6 Hz, 2H, -CH₂-CH₂-N), 4.25 (t, *J* = 6.5 Hz, 2H, -CH₂-CH₂-N), 5.27 (s, 2H, -CH₂-C₆H₄), 6.90 (s, 1H, -N-CH=CH-N=), 7.08 (s, 1H, -N-CH=CH-N=), 7.15-7.22 (m, 2H, Ar-H), 7.45-7.56 (m, 8H, Ar-H, -N-CH=N-), ¹³C-NMR (CDCl₃): δ (ppm) 29.2 (-CH₂-CH₂-N), 43.5 (-CH₂-CH₂-N), 75.9 (-CH₂-C₆H₄), 115.3 (d, *J*_{C-3', F&C-5', F} = 21.1 Hz, C-3' and C-5'), 118.9 (-N-CH=CH-N=), 125.9, 128.7, 128.8, 129.6, 134.6 (Ar-CH, Ar-C, -N-CH=CH-N=), 130.3 (d, *J*_{C-2', F&C-6', F} = 8.3 Hz, C-2' and C-6'), 133.2 (d, *J*_{C-1', F} = 2.8 Hz, C-1'), 136.8 (-N-CH=N-), 154.9 (C=N), 162.5 (d, *J*_{C-4', F} = 246.9 Hz, C-4'); MS *m*/z (ESI): 324.2 [M + H]⁺, 325.2 [(M + 1) + H]⁺.

(1E)-3-(1H-Imidazol-1-yl)-N-[(4-methylbenzyl)oxy]-1-phenylpropan-1-imine (Ve). Yield 52.2%; light brown viscous oil; IR (KBr): ν (cm⁻¹) 3003, 2781, 1714, 1676 (C=N), 1512, 1220, 790; ¹H-NMR (CDCl₃): δ (ppm) 2.41 (s, 3H, CH₃), 3.25 (br. s., 2H, -CH₂-CH₂-N), 4.22 (br. s., 2H, -CH₂-CH₂-N), 5.26 (s, 1H, -CH₂-C₆H₄), 6.95 (s, 1H, -N-CH=CH-N=), 7.04 (s, 1H, -N-CH=CH-N=), 7.26 (d, *J* = 6.3 Hz, 2H, Ar-H), 7.37 (d, *J* = 6.5 Hz, 2H, Ar-H), 7.41–7.51 (m, 5H, Ar-H), 7.64 (s, 1H, -N-CH=N-); ¹³C-NMR (CDCl₃): δ (ppm) 21.2 (CH₃), 29.4 (-CH₂-CH₂-N), 43.4 (-CH₂-CH₂-N), 76.6 (-CH₂-C₆H₄), 118.9 (-N-CH=CH-N=), 125.9, 127.3, 128.5, 128.6, 129.1, 129.5, 129.6, 134.3, 134.9 (Ar-CH, Ar-C, -N-CH=CH-N=), 137.9 (-N-CH=N-), 154.7 (C=N); MS *m*/*z* (ESI): 320.2 [M + H]⁺, 321.2 [(M + 1) + H]⁺.

(1*E*)-3-(1*H*-*Imidazol*-1-*yl*)-1-*phenyl*-N-{[4-(trifluoromethyl)benzyl]oxy}propan-1-imine (**Vf**). Yield 43.3%; light brown viscous oil; IR (KBr): ν (cm⁻¹) 3003, 2975, 1717, 1676 (C=N), 1502, 1437, 1219, 790; ¹H-NMR (CDCl₃): δ (ppm) 3.27 (br. s., 2H, -CH₂-CH₂-N), 4.21 (br. s., 2H, -CH₂-CH₂-N), 5.27 (s, 1H, -CH₂-C₆H₄), 6.86 (s, 1H, -N-CH=CH-N=), 7.01 (s, 1H, -N-CH=CH-N=), 7.39-7.51 (m, 9H, 9H, 9H).

Ar–H), 7.65 (s, 1H, –N–CH=N–); ¹³C-NMR (CDCl₃): δ (ppm) 29.2 (–CH₂–CH₂–N), 43.6 (–CH₂–CH₂–N), 75.7 (–CH₂–C₆H₄), 119.0 (–N–CH=CH–N=), 125.4, 125.5, 126.1, 127.4, 128.3, 128.8, 129.0, 129.8, 134.4, 136.9, 141.6 (Ar–CH, Ar–C, –N–CH=CH–N=, –N–CH=N–), 155.4 (C=N); MS *m*/*z* (ESI): 374.2 [M + H]⁺, 375.1 [(M + 1) + H]⁺.

(1E)-N-{[3,5-Bis(trifluoromethyl)benzyl]oxy}-3-(1H-imidazol-1-yl)-1-phenylpropan-1-imine (**Vg**). Yield 28%; light brown viscous oil; IR (KBr): ν (cm⁻¹) 3003, 2970, 1717,1673 (C=N), 1502, 1420, 1223, 702; ¹H-NMR (CDCl₃): δ (ppm) 3.31 (br. s., 2H, –CH₂–CH₂–N), 4.25 (br. s., 2H, –CH₂–CH₂–N), 5.29 (s, 1H, –CH₂–C₆H₄), 6.89 (s, 1H, –N–CH=CH–N=), 7.05 (s, 1H, –N–CH=CH–N=), 7.39–7.52 (m, 6H, Ar–H, –N–CH=N–), 7.75–7.86 (m, 2H, Ar–H), 8.39 (s, 1H, Ar–H); ¹³C-NMR (CDCl₃): δ (ppm) 28.9 (–CH₂–CH₂–N), 44.3 (–CH₂–CH₂–N), 74.9 (–CH₂–C₆H₄), 119.4 (–N–CH=CH–N=), 121.9, 122.5, 124.0, 126.2, 128.3, 128.9, 130.2, 131.7, 131.9, 136.6, 140.1 (Ar–CH, Ar–C, –N–CH=CH–N=, –N–CH=N–), 155.8 (C=N); MS *m*/*z* (ESI): 442.1 [M + H]⁺, 443.1 [(M + 1) + H]⁺.

(1E)-1-(1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)-N-(benzyloxy)propan-1-imine (**Vh**). Yield 61%; light brownviscousoil; IR (KBr): ν (cm⁻¹) 3030, 2927, 1670 (C=N), 1606, 1489, 1284, 700; ¹H-NMR (CDCl₃): δ (ppm) 3.17 (t, J = 7.0 Hz, 2H, $-CH_2-CH_2-N$), 4.18 (t, J = 7.0 Hz, 2H, $-CH_2-CH_2-N$), 5.22 (s, 2H, $-CH_2-C_6H_5$), 5.99 (s, 2H, $-O-CH_2-O-$), 6.76 (d, J = 8.0 Hz, 1H, Ar–H), 6.82 (s, 1H, -N-CH=CH-N=), 6.86 (dd, J = 1.5, 8.5 Hz, 1H, Ar–H), 7.01 (s, 1H, -N-CH=CH-N=), 7.09 (d, J = 1.0 Hz, 1H, Ar–H), 7.33–7.37 (m, 5H, Ar–H), 7.50 (s, 1H, -N-CH=N-); ¹³C-NMR (CDCl₃): δ (ppm) 29.4 ($-CH_2-CH_2-N$), 43.7 ($-CH_2-CH_2-N$), 76.2 ($-CH_2-C_6H_4$), 101.4 ($-O-CH_2-O-$), 106.2, 108.2 (Ar–CH), 119.0 (-N-CH=CH-N=), 120.3, 128.2, 128.4, 128.5, 128.7, 129.0, 136.9 (Ar–CH, Ar–C, -N-CH=CH-N=), 137.5 (-N-CH=N-), 148.2, 148.3 (Ar–C), 154.3 (C=N); MS m/z (ESI): 350.1 [M + H]⁺.

(1E)-1-(1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)-N-[(4-bromobenzyl)oxy]propan-1-imine (**Vi**). Yield 55%; pale yellow solid, m.p. 80–82 °C; IR (KBr): ν (cm⁻¹) 3115, 2934, 1670 (C=N), 1506, 1489, 1232, 756; ¹H-NMR (CDCl₃): δ (ppm) 3.17 (t, *J* = 7.0 Hz, 2H, -CH₂-CH₂-N), 4.17 (t, *J* = 7.0 Hz, 2H, -CH₂-CH₂-N), 5.13 (s, 2H, -CH₂-C₆H₄), 5.98 (s, 2H, -O-CH₂-O-), 6.76 (d, *J* = 8.0 Hz, 1H, Ar-H), 6.84 (s, 1H, -N-CH=CH-N=), 6.88 (dd, *J* = 1.5, 8.0 Hz, 1H, Ar-H), 7.01 (s, 1H, -N-CH=CH-N=), 7.07 (d, *J* = 1.0 Hz, 1H, Ar-H), 7.25 (d, *J* = 8.0 Hz, 2H, Ar-H), 7.50 (d, *J* = 8.5 Hz, 2H, Ar-H), 7.52 (s, 1H, -N-CH=N-); ¹³C-NMR (CDCl₃): δ (ppm) 29.2 (-CH₂-CH₂-N), 43.7 (-CH₂-CH₂-N), 75.8 (-CH₂-C₆H₄), 101.5 (-O-CH₂-O-), 106.2, 108.2 (Ar-CH), 119.0 (-N-CH=CH-N=), 120.4, 122.1, 128.7, 128.9, 130.1, 131.5, 136.5 (Ar-CH, Ar-C, -N-CH=CH-N=), 136.9 (-N-CH=N-), 148.2, 149.0 (Ar-C), 154.6 (C=N); MS *m*/*z* (ESI): 428.1 [M + H]⁺, 430.0 [(M + 2) + H]⁺, 431.0[(M + 3) + H]⁺.

(1E)-1-(1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)-N-[(4-chlorobenzyl)oxy]propan-1-imine (Vj). Yield 40%; light brown viscous oil; IR (KBr): ν (cm⁻¹) 3017, 2932, 1670 (C=N), 1506, 1491, 1280, 756; ¹H-NMR (CDCl₃): δ (ppm) 3.16 (t, J = 7.0 Hz, 2H, $-CH_2-CH_2-N$), 4.15 (t, J = 7.0 Hz, 2H, $-CH_2-CH_2-N$), 5.15 (s, 2H, $-CH_2-C_6H_4$), 5.98 (s, 2H, $-O-CH_2-O-$), 6.76 (d, J = 8.0 Hz, 1H, Ar–H), 6.84 (s, 1H, -N-CH=CH-N=), 6.86 (dd, J = 1.5, 8.0 Hz, 1H, Ar–H), 7.01 (s, 1H, -N-CH=CH-N=), 7.07 (d, J = 1.0 Hz, 1H, Ar–H), 7.31–7.33 (m, 2H, Ar–H), 7.35 (d, J = 8.5 Hz, 2H, Ar–H), 7.43 (s, 1H, -N-CH=N-); ¹³C-NMR (CDCl₃): δ (ppm) 29.3 ($-CH_2-CH_2-N$), 43.6 ($-CH_2-CH_2-N$), 76.7 ($-CH_2-C_6H_4$), 101.5 ($-O-CH_2-O-$), 106.2, 108.2 (Ar–CH), 118.9 (-N-CH=CH-N=), 120.4, 121.9, 128.7, 129.3, 129.7, 133.9, 136.5 (Ar–CH, Ar–C, -N-CH=CH-N=), 136.9 (-N-CH=N-), 148.2, 149.0 (Ar–C), 154.6 (C=N); MS *m*/*z* (ESI): 384.1 [M + H]⁺, 385.1 [(M + 1) + H]⁺, 386.1 [(M + 2) + H]⁺.

(1*E*)-1-(1,3-Benzodioxol-5-yl)-3-(1*H*-imidazol-1-yl)-N-[(4-fluorobenzyl)oxy]propan-1-imine (**Vk**). Yield 32%; light brown viscous oil; IR (KBr): ν (cm⁻¹) 3018, 2962, 1604 (C=N), 1510, 1490, 1215, 759; ¹H-NMR (CDCl₃): δ (ppm) 3.14 (t, *J* = 7.1 Hz, 2H, -CH₂-CH₂-N), 4.14 (t, *J* = 7.0 Hz, 2H, -CH₂-CH₂-N), 5.14 (s, 2H, -CH₂-C₆H₄), 5.96 (s, 2H, -O-CH₂-O-), 6.75 (d, *J* = 8.1 Hz, 1H, Ar-H), 6.82 (s, 1H, -N-CH=CH-N=), 6.86 (dd, *J* = 2.0, 8.5 Hz, 1H, Ar-H), 6.99 (s, 1H, -N-CH=CH-N=), 7.04-7.07 (m, 3H, Ar-H), 7.35-7.38 (m, 2H, Ar-H), 7.41 (s, 1H, -N-CH=N-); ¹³C-NMR (CDCl₃): δ (ppm) 29.3 (-CH₂-CH₂-N), 43.6 (-CH₂-CH₂-N), 75.9 (-CH₂-C₆H₄), 101.5 (-O-CH₂-O-), 106.2, 108.2 (Ar-CH),

115.4 (d, *J*_{C-3', F&C-5', F} = 21.4 Hz, C-3' and C-5'), 119.0 (-N-CH=CH-N=), 120.3, 128.9, 129.3, (Ar-CH,

Ar–C, –N–CH=CH–N=), 130.3 (d, $J_{C-2', F\&C-6', F}$ = 8.2 Hz, C–2' and C–6'), 133.3 (d, $J_{C-1', F}$ = 3.2 Hz, C–1'), 136.9 (–N–CH=N–), 148.2, 149.0 (Ar–C), 154.5 (C=N), 162.6 (d, $J_{C-4', F}$ = 246.4 Hz, C–4'); MS m/z (ESI): 368.1 [M + H]⁺, 369.1 [(M + 1) + H]⁺.

(1*E*)-1-(1,3-Benzodioxol-5-yl)-3-(1*H*-imidazol-1-yl)-N-[(4-methylbenzyl)oxy]propan-1-imine (**VI**). Yield 24%; light brown viscous oil; IR (KBr): ν (cm⁻¹) 3669, 3115, 2953, 1614 (C=N), 1585, 1510, 1248, 754; ¹H-NMR (CDCl₃): δ (ppm) 2.39 (s, 3H, CH₃), 3.15 (t, *J* = 7.0 Hz, 2H, -CH₂-CH₂-N), 4.17 (t, *J* = 7.0 Hz, 2H, -CH₂-CH₂-N), 5.18 (s, 2H, -CH₂-C₆H₄), 5.99 (s, 2H, -O-CH₂-O), 6.77 (d, *J* = 8.0 Hz, 1H, Ar-H), 6.83 (s, 1H, -N-CH=CH-N=), 6.88 (dd, *J* = 1.5, 8.0 Hz, 1H, Ar-H), 7.01 (s, 1H, -N-CH=CH-N=), 7.09 (d, *J* = 1.5 Hz, 1H, Ar-H), 7.22 (d, *J* = 7.5 Hz, 2H, Ar-H), 7.32 (d, *J* = 8.0 Hz, 2H, Ar-H), 7.46 (s, 1H, -N-CH=N-); ¹³C-NMR (CDCl₃): δ (ppm) 21.2 (CH₃), 29.4 (-CH₂-CH₂-N), 43.7 (-CH₂-CH₂-N), 76.6 (-CH₂-C₆H₄), 101.4 (-O-CH₂-O-), 106.2, 108.2 (Ar-CH), 118.9 (-N-CH=CH-N=), 120.4, 128.6, 128.9, 129.1, 129.2, 134.4, 136.9 (Ar-CH, Ar-C, -N-CH=CH-N=), 137.9 (-N-CH=N-), 148.1, 148.9 (Ar-C), 154.2 (C=N); MS *m*/*z* (ESI): 364.1 [M + H]⁺.

(1E)-1-(1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)-N-{[4-(trifluromethyl)benzyl]oxy}propan-1-imine (**Vm**). Yield 25%; light brown solid, m.p. 81–83 °C; IR (KBr): ν (cm⁻¹) 3016, 2941, 1670 (C=N), 1506, 1448, 1232, 756; ¹H-NMR (CDCl₃): δ (ppm) 3.23 (t, *J* = 7.0 Hz, 2H, –CH₂–CH₂–N), 4.23 (t, *J* = 7.0 Hz, 2H, –CH₂–CH₂–N), 5.24 (s, 2H, –CH₂–C₆H₄), 5.99 (s, 2H, –O–CH₂–O–), 6.78 (d, *J* = 8.1 Hz, 1H, Ar–H), 6.86 (s, 1H, –N–CH=CH–N=), 6.91 (dd, *J* = 1.6, 8.1 Hz, 1H, Ar–H), 7.04 (s, 1H, –N–CH=CH–N=), 7.09 (d, *J* = 1.4 Hz, 1H, Ar–H), 7.49 (d, *J* = 7.7 Hz, 2H, Ar–H), 7.65 (d, *J* = 7.9 Hz, 2H, Ar–H), 7.68 (s, 1H, –N–CH=N–); ¹³C-NMR (CDCl₃): δ (ppm) 29.1 (–CH₂–CH₂–N), 43.9 (–CH₂–CH₂–N), 75.6 (–CH₂–C₆H₄), 101.5 (–O–CH₂–O–), 106.2, 108.3 (Ar–CH), 119.1 (–N–CH=CH–N=), 120.5, 123.0, 125.4, 125.5, 128.4, 128.5, 130.1, 136.8, 141.6 (Ar–CH, Ar–C, –N–CH=CH–N=, –N–CH=N–), 148.3, 149.2 (Ar–C), 154.8 (C=N); MS *m*/*z* (ESI): 418.1 [M + H]⁺, 419.1 [(M + 1) + H]⁺.

(1E)-1-(1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)-N-{[3,5-bis(trifluromethyl)benzyl]oxy} propan-1-imine (**Vn**). Yield 55%; light brown viscous oil; IR (KBr): ν (cm-1) 3014, 2900, 1670 (C=N), 1504, 1446, 1232, 754; ¹H-NMR (CDCl₃): δ (ppm) 3.24 (t, *J* = 6.9 Hz, 2H, -CH₂-CH₂-N), 4.22 (t, *J* = 6.9 Hz, 2H, -CH₂-CH₂-N), 5.26 (s, 2H, -CH₂-C₆H₄), 5.99 (s, 2H, -O-CH₂-O-), 6.78 (d, *J* = 8.1 Hz, 1H, Ar-H), 6.89 (s, 1H, -N-CH=CH-N=), 6.92 (dd, *J* = 1.5, 8.1 Hz, 1H, Ar-H), 7.03 (s, 1H, -N-CH=CH-N=), 7.06 (d, *J* = 1.3 Hz, 1H, Ar-H), 7.65 (s, 1H, -N-CH=N-), 7.84-7.86 (m, 3H, Ar-H); ¹³C-NMR (CDCl₃): δ (ppm) 29.1 (-CH₂-CH₂-N), 43.9 (-CH₂-CH₂-N), 74.8 (-CH₂-C₆H₄), 101.6 (-O-CH₂-O-), 106.2, 108.3 (Ar-CH), 119.1 (-N-CH=CH-N=), 120.6, 121.9, 124.4, 128.1, 128.2, 131.7, 131.9, 136.8, 140.3 (Ar-CH, Ar-C, -N-CH=CH-N=, -N-CH=N-), 148.3, 149.4 (Ar-C), 155.4 (C=N); MS *m*/*z* (ESI): 486.1 [M + H]⁺, 487.1 [(M + 1) + H]⁺.

3.3. Crystal Structure Determination

Compound Vi was obtained as single crystals by slow evaporation from ethanolic solution of the pure compound at room temperature. Data were collected on a Bruker APEX-II D8 Venture area diffractometer, equipped with graphite monochromatic Mo K α radiation, $\lambda = 0.71073$ Å at 293 (2) K. Cell refinement and data reduction were carried out by Bruker SAINT. SHELXT [22,23] was used to solve the structure. The final refinement was performed by full-matrix least-squares techniques with anisotropic thermal data for non-hydrogen atoms. In compound Vi, C₂₀H₁₈BrN₃O₃, the crystallographic data and refinement information are summarized in Table S1. The crystallographic data of compound Vi have been deposited with the Cambridge Crystallographic Data Center (CCDC-1577844) and can be found in Supplementary Materials. Copies of the data may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (deposit@ccdc.cam.ac.uk).

3.4. Antifungal Activity

3.4.1. Materials

The reference standard antifungal drugs, fluconazole and ketoconazole, were obtained from Shouguang-Fukang Pharmaceutical Ltd. (Weifang, China) and from Sigma-Aldrich Co. (St. Louis, MO, USA), respectively. Liquid RPMI 1640 medium supplemented with L-glutamine was purchased from Gibco-BRL, Life Technologies (Paisley, Scotland). Sabouraud Dextrose Agar (SDA) was obtained from Merck Co. (Darmstadt, Germany). Dimethyl sulfoxide (100%) was used to dissolve the reference standards and/or the tested compounds **Va–n** to afford an initial concentration of 2048 mg/L.

3.4.2. Organisms

Candida albicans (ATCC 90028), *Candida tropicalis* (ATCC 66029), *Candida parapsilosis* (ATCC 22019), and *Aspergillus niger* (ATCC 16404) were used to assess antifungal activity.

3.4.3. Preparation of Fungal Inocula

Fungal inocula were prepared as previously reported [21].

3.4.4. Preparation of the Tested Compound Solutions

Briefly, a twofold dilution series of the tested compounds **Va–n** was prepared in a double-strength RPMI 1640 culture medium. Ten serial dilutions were prepared to afford concentrations ranging from 1024 mg/L to 2 mg/L.

3.4.5. Antifungal Susceptibility Studies

The MIC values of the tested compounds Va-n were determined as previously reported [21].

4. Conclusions

The synthesis and spectroscopic characterization of certain new oximino ethers Va–n bearing imidazole pharmacophore moiety have been reported. Single crystal X-ray analysis of compound Vi confirmed the assigned (*E*)-configuration of the imine functionality of the target compounds Va–n. The in vitro antifungal potential of compounds Va–n was assessed using DIZ and MIC assays. Compound Ve emerged as the most active compound toward *Candida albicans*, being nearly equipotent with the reference antifungal drug FLC with an MIC value of 0.050 µmol/mL. On the other hand, compounds Vi and Vn exhibited the most potent activity towards *Candida parapsilosis*, with an MIC value of 0.002 µmol/mL—about twenty-three times more potent than FLC. It seems that the replacement of the phenyl ring in compounds Va–g with the 1,3-benzodioxole scaffold, which gave their respective compounds *Candida parapsilosis*. The antifungal results of the current investigation might support the development of new potent and safer azole antifungal agents to be harnessed in the clinic.

Supplementary Materials: Supplementary Materials are available online.

Acknowledgments: The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project No. RGP-196.

Author Contributions: R.I.A.-W. and A.R.A.-G. prepared and characterized the title compounds. H.A.G. performed the X-ray analysis. M.H.A.-A. carried out the in vitro antifungal assessment of the target compounds. M.I.A. proposed the work, prepared the single crystals of compound Vi and prepared the manuscript for publication. All authors discussed the contents of the manuscript.

Conflicts of Interest: The authors have declared no conflict of interest.

References

- Denning, D.W.; Hope, W.W. Therapy for fungal diseases: Opportunities and priorities. *Trends Microbiol.* 2010, 18, 195–204. [CrossRef] [PubMed]
- 2. Castelli, M.V.; Butassi, E.; Monteiro, M.C.; Svetaz, L.A.; Vicente, F.; Zacchino, S.A. Novel antifungal agents: A patent review (2011–present). *Expert Opin. Ther. Pat.* **2014**, *24*, 323–338. [CrossRef] [PubMed]
- 3. Holbrook, S.Y.; Garzan, A.; Dennis, E.K.; Shrestha, S.K.; Garneau-Tsodikova, S. Repurposing antipsychotic drugs into antifungal agents: Synergistic combinations of azoles and bromperidol derivatives in the treatment of various fungal infections. *Eur. J. Med. Chem.* **2017**, *139*, 12–21. [CrossRef] [PubMed]
- 4. Moudgal, V.; Sobel, J. Antifungals to treat *Candida albicans*. *Expert Opin*. *Pharmacother*. **2010**, *11*, 2037–2048. [CrossRef] [PubMed]
- Richardson, M.; Lass-Flörl, C. Changing epidemiology of systemic fungal infections. *Clin. Microbiol. Infect.* 2008, 14, 5–24. [CrossRef] [PubMed]
- Jiang, Z.; Wang, Y.; Wang, W.; Wang, S.; Xu, B.; Fan, G.; Dong, G.; Liu, Y.; Yao, J.; Miao, Z. Discovery of highly potent triazole antifungal derivatives by heterocycle-benzene bioisosteric replacement. *Eur. J. Med. Chem.* 2013, 64, 16–22. [CrossRef] [PubMed]
- Allen, D.; Wilson, D.; Drew, R.; Perfect, J. Azole antifungals: 35 years of invasive fungal infection management. Expert Rev. Anti-Infect. Ther. 2015, 13, 787–798. [CrossRef] [PubMed]
- 8. Ghannoum, M.A.; Rice, L.B. Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. *Clin. Microbiol. Rev.* **1999**, *12*, 501–517. [PubMed]
- 9. Lempers, V.J.; Martial, L.C.; Schreuder, M.F.; Blijlevens, N.M.; Burger, D.M.; Aarnoutse, R.E.; Brüggemann, R.J. Drug-interactions of azole antifungals with selected immunosuppressants in transplant patients: Strategies for optimal management in clinical practice. *Curr. Opin. Pharmacol.* **2015**, *24*, 38–44. [CrossRef] [PubMed]
- 10. Luca, L.D. Naturally occurring and synthetic imidazoles: Their chemistry and their biological activities. *Curr. Med. Chem.* **2006**, *13*, 1–23. [PubMed]
- Rossello, A.; Bertini, S.; Lapucci, A.; Macchia, M.; Martinelli, A.; Rapposelli, S.; Herreros, E.; Macchia, B. Synthesis, antifungal activity, and molecular modeling studies of new inverted oxime ethers of oxiconazole. *J. Med. Chem.* 2002, 45, 4903–4912. [CrossRef] [PubMed]
- Aboul-Enein, M.N.; El-Azzouny, A.A.; Attia, M.I.; Saleh, O.A.; Kansoh, A.L. Synthesis and anti-*Candida* potential of certain novel 1-[(3-substituted-3-phenyl)propyl]-1*H*-imidazoles. *Arch. Pharm.* 2011, 344, 794–801. [CrossRef] [PubMed]
- Roman, G.; Mares, M.; Nastasa, V. A novel antifungal agent with broad spectrum: 1-(4-Biphenylyl)-3-(1*H*-imidazol-1-yl)-1-propanone. *Arch. Pharm.* 2013, 346, 110–118. [CrossRef] [PubMed]
- 14. Attia, M.I.; Zakaria, A.S.; Almutairi, M.S.; Ghoneim, S.W. In vitro anti-*Candida* activity of certain new 3-(1*H*-imidazol-1-yl)propan-1-one oxime esters. *Molecules* **2013**, *18*, 12208–12221. [CrossRef] [PubMed]
- Leite, A.C.L.; da Silva, K.P.; de Souza, I.A.; de Araújo, J.M.; Brondani, D.J. Synthesis, antitumour and antimicrobial activities of new peptidyl derivatives containing the 1,3-benzodioxole system. *Eur. J. Med. Chem.* 2004, *39*, 1059–1065. [CrossRef] [PubMed]
- 16. Himaja, M.; Vandana, K.; Ranjitha, A.; Ramana, M.; Karigar, A. Synthesis, docking studies and antioxidant activity of 1,3-benzodioxole-5-carboxyl amino acids and dipeptides. *Int. Res. J. Pharm.* **2011**, *2*, 57–61.
- 17. Attia, M.I.; Kansoh, A.L.; El-Brollosy, N.R. Antimicrobial pyrimidinones II: Synthesis and antimicrobial evaluation of certain novel 5,6-disubstituted 2-(substituted amino) alkylthiopyrimidin-4(3*H*)-ones. *Monatsh. Chem.* **2014**, *145*, 1825–1837. [CrossRef]
- Allen, F.H.; Kennard, O.; Watson, D.G.; Brammer, L.; Orpen, A.G.; Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. *J. Chem. Soc. Perkin Trans.* 1987, 12, S1–S19. [CrossRef]
- 19. El Hage, S.; Lajoie, B.; Feuillolay, C.; Roques, C.; Baziard, G. Synthesis, antibacterial and antifungal activities of bifonazole derivatives. *Arch. Pharm.* **2011**, *344*, 402–410. [CrossRef] [PubMed]
- Al-Wabli, R.I.; Al-Ghamdi, A.R.; Ghabbour, H.A.; Attia, M.I. Crystal structure of 1-(2H-1,3-benzodioxol-5-yl)-3-(1H-imidazol-1-yl)propan-1-one, C₁₃H₁₂N₂O₃. Z. Krist. New Cryst. Struct. 2017, 232, 437–439. [CrossRef]

- Al-Wabli, R.I.; Al-Ghamdi, A.R.; Ghabbour, H.A.; Al-Agamy, M.H.; Monicka, J.C.; Joe, I.H.; Attia, M.I. Synthesis, X-ray single crystal structure, molecular docking and DFT computations on *N*-[(1*E*)-1-(2*H*-1,3-benzodioxol-5-yl)-3-(1*H*-imidazol-1-yl)propyl idene]hydroxylamine: A new potential antifungal agent precursor. *Molecules* 2017, 22, 373. [CrossRef] [PubMed]
- 22. Sheldrick, G.M. A short history of SHELX. *Acta Crystallogr. Sect. A Found. Crystallogr.* 2008, 64, 112–122. [CrossRef] [PubMed]
- 23. Sheldrick, G. SHELXTL-PC, Version 5.1; Siemens Analytical Instruments Inc.: Madison, WI, USA, 1997.

Sample Availability: Samples of the synthesized compounds are available from the corresponding authors.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).