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Abstract: The phylum Thermotogae is composed of a single class (Thermotogae), 4 orders (Thermotogales,
Kosmotogales, Petrotogales, Mesoaciditogales), 5 families (Thermatogaceae, Fervidobacteriaceae, Kosmoto-
gaceae, Petrotogaceae, Mesoaciditogaceae), and 13 genera. They have been isolated from extremely hot
environments whose characteristics are reflected in the metabolic and phenotypic properties of the
Thermotogae species. The metabolic versatility of Thermotogae members leads to a pool of high value-
added products with application potentials in many industry fields. The low risk of contamination
associated with their extreme culture conditions has made most species of the phylum attractive
candidates in biotechnological processes. Almost all members of the phylum, especially those in the
order Thermotogales, can produce bio-hydrogen from a variety of simple and complex sugars with
yields close to the theoretical Thauer limit of 4 mol H2/mol consumed glucose. Acetate, lactate, and
L-alanine are the major organic end products. Thermotagae fermentation processes are influenced
by various factors, such as hydrogen partial pressure, agitation, gas sparging, culture/headspace
ratio, inoculum, pH, temperature, nitrogen sources, sulfur sources, inorganic compounds, metal
ions, etc. Optimization of these parameters will help to fully unleash the biotechnological potentials
of Thermotogae and promote their applications in industry. This article gives an overview of how
these operational parameters could impact Thermotogae fermentation in terms of sugar consumption,
hydrogen yields, and organic acids production.

Keywords: anaerobic bacteria; hydrogen yields; fermentation rate; organic acids; nitrogen; car-
bon dioxide

1. Introduction

The phylum Thermotogae is comprised of thermophilic, hyperthermophilic, mesophilic,
and thermo-acidophilic anaerobic bacteria that originated from geothermally heated en-
vironments (Table 1) [1,2]. Recent phylogenetic analyses based on gene markers/core
genome inferences, comparative genomics, and whole-genome relatedness have led to a
taxonomic revision of the phylum, with a single class (Thermotogae), 4 orders (Thermotogales,
Kosmotogales, Petrotogales, Mesoaciditogales), 5 families (Thermatogaceae, Fervidobacteriaceae,
Kosmotogaceae, Petrotogaceae, Mesoaciditogaceae), and 13 genera, i.e., Thermotoga (T.) [3],
Pseudothermotoga (Pseudot.) [2,4], Fervidobacterium (F.) [5], Thermosipho (Ts.) [6], Kosmo-
toga (K.) [7], Mesotoga (Ms.) [8], Defluviitoga (D.) [9], Geotoga (G.) and Petrotoga (P.) [10],
Marinitoga (Mn.) [11], Oceanotoga (O.) [12], Mesoaciditoga (M.) [13], and Athalassatoga (A.)
(Table 1) [2,4,14]. Thermotogae are able to grow under mesophilic (Kosmotogales; Mesoacid-
itogales, Petrotogales) and thermophilic conditions (Thermotogales), but most species have
optimal growth temperatures in the range of 45–80 ◦C (Table 1). They are Gram-negative
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bacteria, except for D. tunisiensis, which shows a positive result in Gram staining [9]. Apart
from K. shengliensis, whose cells are in a coccoid form, Thermotogae cells are rod-shaped and
encapsulated by a unique outer membrane, named “toga” [1,8,15]. Usually, the cells grow
singly or in pairs, but it is also possible to observe chains surrounded by a unique toga [1,2].
Cell length is typically less than 20 µm, except for F. gondwanense and some members of
the Petrotoga genus, whose cells can reach to 50 µm long (Table 1) [2,10]. Almost all species
grow at neutral pH, and NaCl tolerances are high among Geotoga, Oceanotoga, and Petrotoga
species (Table 1). Numerous studies have reported that members of the phylum can grow
on both simple (e.g., glucose, galactose, fructose, lactose, maltose, mannose, sucrose) and
complex carbohydrates (e.g., starch, glycogen, cellulose, keratin) (Table 1). Genes, tran-
scriptional factors, and regulatory mechanisms driving the carbohydrates utilization have
been identified for multiple members of the phylum [16–18]. ABC transporters for the
uptake of a broad list of sugars have also been characterized [19–23].

All species of the phylum, except for Mesotoga spp., have tremendous potentials in-
biotechnological production of H2, especially the order Thermotogales, as their hydrogen
yields are close to the theoretical maximum value (Thauer limit) of 4 mol H2/mol glu-
cose [1,4,24]. Acetate, lactate, and L-alanine are the major organic products of the sugar
fermentation [1]. Ms. prima and Ms. infera produce mainly/only acetate from sugar uti-
lization without H2 formation [8,25–27]. Lactate is produced by T. maritima, T. neapolitana,
and Mn. camini in variable quantities depending on growth conditions [11,28–31]. Other
significant products include ethanol (has been measured in Geotoga, Petrotoga, Kosmotoga,
and Oceanotoga spp.); isovalerate, isobutyrate, and/or propionate (have been measured in
Mn. camini and K. olearia); L-glutamate, alpha-aminobutyrate, hydroxyphenyl-acetate, or
phenylacetate (have been measured in F. pennavorans) [1,32] (Table 1). Among these fermen-
tation end-products, lactic acid has been widely used in various industries such as food,
cosmetic, pharmaceutical, and chemical industries, although its primary application is
serving as the building block for the production of biodegradable polylactic acid (PLA) [33].
Ethanol is an important industrial commodity; it is used as a food additive and a renewable
biofuel; it is also contained in many cosmetics, households, and sanitizer products [34].
Moreover, a plethora of thermostable enzymes, harbored by most of these bacteria, are
valuable components for many industrial and biotechnological applications [17,35–44].

Hydrogen (H2) is considered a green and sustainable alternative to traditional fossil
fuels and is capable of mitigating greenhouse gas emissions. Using hydrogen in fuel cells
or combustion engines produces heat and electricity with water as the only waste. As
the current abiotic hydrogen production method is energy-consuming and still causes
pollution, emphasis must be given to biological production of the energy from renewable
sources [45,46]. Biological synthesis of H2 can use a wide range of organic substrates as
feedstocks, including agro-industrial wastes and algal biomass, and may operate under
various environmental conditions [1,46–54]. In addition, high temperatures help to im-
prove the solubilization of substrates, reduce fermentation time, and lower contamination
risks [55]. Although hydrogen production by Thermotoga species is considered one of the
most challenging biological systems, no application using pure Thermotoga cultures has
been reported at the industrial scale.

Releasing hydrogen is an efficient way to dissipate excessive reductants generated
during the fermentative conversion of organic substrates. The process is generally referred
to as dark fermentation (DF) and is typically influenced by environmental conditions such
as pH, cell growth rate, and hydrogen partial pressure [24,56,57].

According to the classical model of dark fermentation, theoretically up to 4 mol of
hydrogen may be produced from each mole of glucose, which is converted to acetate
and CO2 (Thaeur limit Figure 1) [24]. When hydrogen accumulates, pyruvate is diverted
away from acetate production. In this case, excessive NADH from glycolysis is not used
in the energetically favorable manner to synthesize acetate and H2 but dissipated via
synthesizing other metabolic products such as lactic acid, L-alanine, ethanol, butyrate,
and valerate (Figure 1) [24]. Synthesis of hydrogen in Thermotogae species is performed
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by the heterotrimeric [FeFe]-hydrogenase, an electron-bifurcating enzyme that couples
the endergonic reduction of H+ to hydrogen by NADH to the exergonic reduction of H+

to hydrogen by reduced ferredoxin (Figure 1) [58]. Because the hydrogenase uses both
NADH and reduced ferredoxin as electron donors, hydrogen yield is influenced by factors
that affect both reductants.

The value of these bacteria in biotechnological processes is rising sharply since the
discovery of the bifurcating hydrogenase and will probably be enhanced with a full elu-
cidation of the molecular and biochemical properties of the processes. Despite decades
of efforts in the development of genetic tools to engineer these species, only a few of
thermostable selectable markers and genetic modifications with low stability are reported,
which makes it still difficult to perform genetic modifications of these organisms [59–61].
However, these difficulties could be offset by their well-known susceptibility to mutations
under environmental pressures [62,63].

In recent years, many researchers have been focusing on the optimization of fermen-
tation performance towards the production of hydrogen and other target end-products
[30,43,64–71].

Anaerobic fermentation in Thermotogae depends on many cultivation parameters such
as hydrogen partial pressure, agitation, gas sparging, culture/headspace ratio, inoculum,
pH, temperature, nitrogen sources, sulfur sources, inorganic compounds, and metal ions.
The effect of each factor on H2 yield, sugar consumption rate, and formation of biotechno-
logically interesting end-products are discussed here. Main data are also summarized in
extensive tables, citing the most important studies, with the information on their cultivation
systems (e.g., reactor type, incubation periods, batch vs. continuous modality).
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Table 1. Physiological and metabolic properties of Thermotogae species. YE: Yeast extract; BHI: Brain heart infusion; CMC: Carboxymethylcellulose; S0 = Elemental sulfur; Thio: Thiosulfate;
Cys: Cysteine; AA: Acetic acid; LA: Lactic acid; ALA: Alanine; EPS: Exopolysaccharide; AABA: α-aminobutyrate; EtOH: Ethanol; AQDS: Anthraquinone-2,6-disulfonate; But: Butyrate;
Val: Valerate; Glu: Glutamate; BuOH: Butanol; iBut: isobutyrate; iVal: isovalerate; PPA: Propionic Acid; Gly: Glycine; Pro: Proline; Fo: Formate; HPA: Hydroxyphenilacetate; PA:
Phenylacetate; 3-IAA: Indole-3-acetate; 2-MeBu: 2-Methylbutyrate.

Genus Species Isolation Temp. Range/
Optimal (◦C)

pH
Range/

Optimal

Cell
Dimension

(Long by Wide)
(µm)

Growth Substrates
NaCl Range/

Optimal
(%)

Electron
Acceptor

End
Products Ref.

Thermotoga

Thermotoga
petrophila

Oil
reservoir,

Japan
47–88/

80
5.2–9.0/

7.0
2.0–7.0

by 0.7–1.0

YE, peptone, glucose, fructose, ribose,
arabinose, sucrose, lactose, maltose,

starch, cellulose

0.1–5.5/
1.0

S0;
Thio

AA, LA,
CO2, H2

[72]

Thermotoga
naphthophila

Oil
reservoir,

Japan
48–86/

80
5.4–9.0/

7.0
2.0–7.0

by 0.8–1.2

YE, peptone, glucose, galactose, fructose,
mannitol, ribose, arabinose, sucrose,

lactose, maltose, starch

0.1–6.0/
1.0

S0;
Thio

AA, LA,
CO2, H2

[72]

Thermotoga
maritima

Geotermal
vent

55–90/
80

5.5–9.0/
6.5

1.5–11.0
by 0.6

ribose, xylose, glucose, sucrose, maltose,
lactose, galactose, starch, glycogen

0.2–3.8/
2.7

Fe (III)
S0;

Thio

AA, LA,
CO2, H2,

ALA, EPS,
AABA

[3]

Thermotoga
profunda

Hot spring,
Japan

50–72/
60

6.0–8.6/
7.4

0.8–2.1
by 0.4

glucose, trehalose, cellobiose, arabinose,
xylose, ribose, pyruvate n. d S0;

Thio n. d [73]

Thermotoga
caldifontis

Hot spring,
Japan

55–85/
70

6.0–8.6/
7.4

1.2–3.5
by 0.5

glucose, maltose, trehalose, cellobiose,
arabinose, xylose, ribose, pyruvate, starch n. d Thio n. d [73]

Thermotoga
neapolitana

Submarine
thermal

vent
55–95/

77
6.0–9.0/

7.5
1.5–11.0
by 0.6

fructose, fucose, galactose, mannose,
rhamnose, pyruvate, glucosamine,

lactulose, turanose, glycerol, dextrin,
ribose, xylose, glucose, sucrose, maltose,

lactose, starch, glycogen

0.2–6.0/
2.0 S0 AA, ALA,

CO2, H2
[74]

Pseudothermotoga

Pseudothermotoga
lettingae

Thermophilic
bioreactor

50–75/
65

6.0–8.5/
7.0

2.0–3.0
by 0.5–1.0 glucose, EtOH, acetate, formate 0.0–2.8/

1.0
S0; Thio;
AQDS;
Fe(III)

AA, ALA,
LA,

EtOH, AA,
BA, CO2, H2

[75]

Pseudothermotoga
elfii Oil reservoir 50–72/

66
5.5–7.5/

7.5
2.0–3.0

by 0.5–1.0
glucose, arabinose, fructose, lactose,

maltose, mannose, ribose, sucrose, xylose
0.0–2.8/

1.0 Thio AA, CO2,
H2

[76]

Pseudothermotoga
hypogea

Oil
reservoir,

Africa
56–90/

70
6.1–9.1/
7.3–7.4

2.0–3.0
by 0.5–1.0

fructose, galactose, glucose, lactose,
maltose, mannose, sucrose, xylose, xylan

0.0–1.5/
0.2 Thio

AA, ALA,
CO2, H2,

EtOH
[77]

Pseudothermotoga

Pseudothermotoga
subterranea

Oil
reservoir,

Paris
50–75/

70
6.0–8.5/

7.0
3.0–10.0
by 0.5 YE, peptone, tryptone, casein 0.0–2.4/

1.2
Cys,
Thio n.d. [78]

Pseudothermotoga
thermarum

Hot spring,
Africa

55–84/
70

6.0–9.0/
7.0

1.5–11.0
by 0.6 starch, glucose, maltose 0.2–0.5/

0.35 S0 n.d. [6]
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Table 1. Cont.

Genus Species Isolation Temp. Range/
Optimal (◦C)

pH
Range/

Optimal

Cell
Dimension

(Long by Wide)
(µm)

Growth Substrates
NaCl Range/

Optimal
(%)

Electron
Acceptor

End
Products Ref.

Fervidobacterium

Fervidobacterium
nodosum

Hot spring,
New

Zealand
40–80/
65–70

6.0–8.0/
7.0

1.0–2.5
by 0.5–0.55 glucose, sucrose, starch and lactose n.d./<1.0 S0

AA, LA,
CO2, H2,

EtOH, But,
Val

[5]

Fervidobacterium
pennavorans

Hot spring,
Portugal

50–80/
70

5.5–8.0/
6.5

2.0–20.0
by 0.5

cellobiose, starch, glycogen, pullulan,
glucose, fructose, maltose, xylose,

native feathers

0.0–4.0/
0.4

S0;
Thio

AA, CO2,
ALA, Glu,
EtOH, But,
H2, BuOH

[79]

Fervidobacterium
islandicum

Icelandic
Hot spring

50–80/
65

6.0–8.0/
7.2

1.0–4.0
by 0.6

pyruvate, ribose, glucose, maltose,
raffinose, starch, cellulose

0.0–1.0/
0.2

S0;
Thio

LA, AA, H2,
EtOH, CO2,

iBut, iVal
[80]

Fervidobacterium
riparium

Hot spring,
Russia

46–80/
65

5.7–7.9/
7.8

1.0–3.0
by 0.4–0.5

peptone, YE, pyruvate, glucose, xylose,
fructose, maltose, sucrose, cellobiose,

starch, xylan, CMC, cellulose, filter paper

0.0–1.0/
0.0 S0

H2, AA,
CO2, PPA,
iBut, But

[81]

Fervidobacterium
gondwanense

Hot spring,
Australia

45–80/
65–68

5.5–8.5/
7.0

4.0–40.0
by 0.5–0.6

cellobiose, amylopectin, maltose, starch,
dextrin, xylose, glucose, pyruvate,
lactose, fructose, mannose, CMC,

galactose

0.0–0.6/
0.1 S0 EtOH, AA,

LA, CO2, H2
[82]

Fervidobacterium
thailandese

Hot spring,
Thailand

60–88/
78–80

6.5–8.5/
7.5

1.1–2.5
by 0.5–0.6

glucose, maltose, sucrose, fructose,
cellobiose, CMC, cellulose, starch <0.5/0.5 S0 n.d. [83]

Fervidobacterium
changbaicum

Hot spring,
China

55–90/
75–80

6.3–8.5/
7.5

1.0–8.0
by 0.5–0.6

glucose, lactose, fructose, sucrose,
maltose, starch, sorbitol, cellobiose,

trehalose,
galactose, melibiose, pyruvate, glycerin

0.0–1.0/
0.0 S0 n.d. [84]

Thermosipho

Thermosipho
africanus

Hot spring,
Africa

53–77/
75

6.0–8.0/
7.2

3.0–4.0
by 0.5

glucose, ribose, maltose, starch,
galactose, fructose, sucrose 0.11–3.6 S0;

Thio

AA, H2,
CO2,

EtOH, LA
[85]

Thermosipho
japonicus

Hydrothermal
vent, Japan

45–80/
72

5.3–9.3/
7.2–7.6

3.0–4.0
by 0.5

YE, peptone, and tryptone, maltose,
glucose, galactose, starch, sacharose,

ribose, casein

0.7–7.9/
4.0

S0;
Thio n.d. [86]

Thermosipho
geolei

Oil
reservoir,

Russia
45–75/

70
6.0–9.4/

7.5
2.0–3.0

by 0.4–0.6 Glucose, peptone, beef extract, YE 0.5–7.0/
2.0–3.0 S0

H2, AA,
ALA, CO2,

iVal
[87]

Thermosipho

Thermosipho
affectus

Hydrothermal
vent,

Atlantic
Ocean

37–75/
70

5.6–8.2/
6.6

1.2–6.0
by 0.4–0.9

YE, beef extract, glucose, maltose,
sucrose, starch, dextrin, CMC, cellulose

1.0–5.5/
2.0 S0 AA, H2,

CO2, EtOH [88]

Thermosipho
globiformans

Hydrothermal
vent

40–75/
68

5.0–8.2/
6.8

2.0–4.0
by 0.5 YE, tryptone, starch 0.2–5.2/

2.5
S0;

Fe2O3
n.d. [89]
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Table 1. Cont.

Genus Species Isolation Temp. Range/
Optimal (◦C)

pH
Range/

Optimal

Cell
Dimension

(Long by Wide)
(µm)

Growth Substrates
NaCl Range/

Optimal
(%)

Electron
Acceptor

End
Products Ref.

Thermosipho
melanesiensis

Hydrothermal
vent,

Pacific
Ocean

50–75/
70

4.5–8.5/
6.5–7.5

1.0–3.5
by 0.4–0.6

BHI, malt extract, tryptone, sucrose,
starch, glucose, maltose, lactose,

cellobiose, galactose

1.0–6.0/
3.0 S0 H2, AA,

ALA, CO2
[90]

Thermosipho
activus

Riftia
sheath,

Guaymas
Basin

44–75/
65

5.5–8.0/
6.0

1.5–10.0
by 0.3–0.8

glucose, maltose, cellobiose, cellulose,
filter paper, chitin, xylan, pectin, xanthan

gum, YE, beef extract, tryptone, casein,
keratin, arabinose, xylose, gelatin

0.3–6.0/
2.5

S0,
Fe (III)

AA, H2,
CO2

[91]

Thermosipho
atlanticus

Hydrothermal
vent,

Atlantic
Ocean

45–80/
65

5.0–9.0/
6.0

1.0–2.6
by 0.2–0.6

cellobiose, xylose, starch, LA, maltose,
mannose, trehalose, lactose, arabinose,

galactose, mannitol, peptone,
casamino acids, gelatin, BHI, YE, glucose

1.5–4.6/
2.3

S0,
Thio,
Cys

AA, iVal,
H2, Gly,

ALA, Pro
[92]

Geotoga

Geotoga
subterranea

Oilfields,
USA

30–60/
45

5.5–9.0/
6.5

4.0– 7.5
by 0.5

mannose, starch, maltodextrins, glucose,
lactose, sucrose, galactose, maltose

0.5-10/
4.0 S0 H2, CO2,

AA, EtOH [10]

Geotoga
petraea

Oilfields,
USA

30–55/
50

5.5–9.0/
6.5

3.0– 20.0
by 0.6

mannose, starch, maltodextrins, glucose,
lactose, sucrose, galactose, maltose

0.5–10/
3.0 S0 H2, CO2,

AA, EtOH [10]

Petrotoga

Petrotoga
miotherma

Oilfields,
USA

35–65/
55

5.5–9.0/
6.5

2.0– 7.5
by 0.6

mannose, starch, maltodextrins, glucose,
lactose, sucrose, galactose, maltose,

maltodexstrins, xylose

0.5–10/
2.0 S0 H2, CO2,

AA, EtOH [10]

Petrotoga
olearia

Oil
reservoir,

Russia
37–60/

55
6.5–8.5/

7.5
0.9–2.5

by 0.3–0.6

arabinose, xylose, cellobiose, dextrin,
sucrose, glucose, fructose, maltose, ribose,

trehalose, xylan, pyruvate, peptone,
starch

0.5–8.0/
2.0 S0 H2, AA, LA,

ALA, EtOH [93]

Petrotoga
sibirica

Oil
reservoir,

Russia
37–55/

55
6.5–9.4/

8.0
0.9–2.5

by 0.3–0.6

sucrose, glucose, fructose, maltose, ribose,
trehalose, xylan, pyruvate, peptone,

galactose

0.5–7.0/
1.0 S0 H2, AA, LA,

ALA, EtOH [93]

Petrotoga

Petrotoga
mobilis

Oilfield,
North Sea

40–65/
58–60

5.5–8.5/
6.5–7.0

1.0–50.0
by 0.5–1.5

starch, xylan, maltodextrin, maltose,
cellobiose, sucrose, lactose, glucose,

galactose, fructose, arabinose, xylose,
ribose, rhamnose

0.5–9.0/
3.0–4.0

S0,
Thio

H2, CO2,
AA, EtOH [94]

Petrotoga
halophila

Offshore oil,
Africa

45–65/
60

5.6–7.8/
6.7–7.2

2.0–45.0
by 0.5–0.7

arabinose, cellobiose, fructose, galactose,
glucose, lactose, maltose, rhamnose,
ribose, starch, sucrose, xylose, xylan,

pyruvate

0.5–9.0/
4.0–6.0 S0

AA, LA,
ALA, H2,

CO2

[95]
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Table 1. Cont.

Genus Species Isolation Temp. Range/
Optimal (◦C)

pH
Range/

Optimal

Cell
Dimension

(Long by Wide)
(µm)

Growth Substrates
NaCl Range/

Optimal
(%)

Electron
Acceptor

End
Products Ref.

Petrotoga
mexicana

Offshore oil,
Africa

25–65/
55

5.8–8.5/
6.6

1.0–30.0
by 0.5–0.7

arabinose, cellobiose, fructose, galactose,
glucose, lactose, maltose, mannose,
raffinose, rhamnose, ribose, starch,

sucrose, xylose,
xylan, pyruvate.

1.0–20.0/
3.0

S0,
Thio,

Sulfite

AA, LA, H2,
CO2, ALA [96]

Petrotoga
japonica

Oil
reservoir,

Japan
40–65/

60
6.0–9.0/

7.5
2.5–7.0

by 0.25–0.75

starch, xylan, maltose, cellobiose, sucrose,
lactose, glucose, galactose, fructose,
casamino acids, mannose, arabinose,

xylose, ribose

0.5–9.0/
0.5–1.0

S0,
Thio

AA, H2,
CO2, ALA [97]

Marinitoga

Marinitoga
piezophila

Hydrothermal
chimney,
Pacific
Ocean

45–70/
65

5.0–8.0/
6.0

1.0–1.5
by 0.5

starch, fructose, glucose, galactose,
maltose, cellobiose, ribose, acetate

1.0–5.0/
3.0

S0,
Thio,
Cys

n.d. [98]

Marinitoga
litoralis

Hot spring,
Indian
Ocean

45–70/
65

5.5–7.5/
6.0

1.0–7.0
by 0.8–1.0

cellobiose, galactose, glucose, glycogen,
lactose, maltose, ribose, starch, BHI,

casamino acids, casein, peptone,
pyruvate, tryptone, YE

0.8–4.6/
2.6 S0 n.d. [99]

Marinitoga
okinawensis

Hydrothermal
field,

Okinawa

30–70/
55–60

5.5–7.4/
5.5–5.8

1.5–5.0
by 0.5–0.8

YE, tryptone, peptone, starch, glucose,
glycerol

1.0–5.5/
3.0–3.5

S0,
Cys n.d. [100]

Marinitoga
hydrogenitolerans

Hydrothermal
chimney,
Atlantic
Ocean

35–65/
60

4.5–8.5/
6.0

1.5–5.0
by 0.5–0.8

glucose, starch, glycogen, chitin, YE,
BHI, peptone, casein, pyruvate, maltose

1.0–6.5/
3.0–4.0

S0,
Thio,
Cys

AA, EtOH,
Fo, H2, CO2

[101]

Marinitoga
artica

Hydrothermal
chimney,

Norwegian

45–70/
65

5.0–7.5/
5.5

1.0–5.0
by 0.5–0.8

glucose, trehalose, maltose, sucrose,
maltodextrin, starch, pectin, meat extract,

tryptone, YE, pyruvate, fructose,
mannose, cellobiose, cellulose, peptone

1.5–5.5/
2.5

S0,
Cys n.d. [102]

Marinitoga
camini

Hydrothermal
chimney,
Atlantic
Ridge

25–65/
55

5.0–9.0/
7.0

2.0–3.0
by 0.5–1.0

BHI, gluten, peptone, tryptone, pyruvate,
glucose, fructose, maltose, cellobiose,

sucrose, starch, cellulose, CMC, pectin,
chitin

1.0–4.5/
2.0

S0,
Cys

AA, iBut,
iVal, H2,

3-IAA, LA
CO2, HPA,

PA

[11]

Oceanotoga Oceanotoga
teriensis

Offshore oil,
India

25–70/
55– 58

5.5–9.0/
7.5

1.5–1.7 by
0.5–0.7

glucose, fructose, cellobiose, arabinose,
raffinose, rhamnose, sucrose, xylose,

ribose, starch, EtOH, formate, acetate,
BHI, YE, bio–trypticase

0.0–12/
4.3

S0,
Thio

AA, H2,
CO2, EtOH [12]

Defluviitoga Defluviitog
tunisiensis

Mesothermic
digester

37–65/
55

6.7–7.9/
6.9

3.0–30.0
by 1.0

arabinose, cellobiose, fructose, galactose,
glucose, lactose, maltose, mannose,

raffinose, ribose, sucrose, xylose,
cellulose, xylan

0.2–3.0/
0.5

S0,
Thio

AA, H2,
CO2

[9]
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Table 1. Cont.

Genus Species Isolation Temp. Range/
Optimal (◦C)

pH
Range/

Optimal

Cell
Dimension

(Long by Wide)
(µm)

Growth Substrates
NaCl Range/

Optimal
(%)

Electron
Acceptor

End
Products Ref.

Mesotoga

Mesotoga
infera

Deep
aquifer,
France

30–50/
45

6.2–7.9/
7.4

2.0–4.0
by 1.0–2.0

arabinose, cellobiose, fructose, galactose,
glucose, lactose, LA, mannose, maltose,

raffinose, ribose, sucrose, xylose

0.0–1.5/
0.2 S0 AA, CO2 [26]

Mesotoga
prima

Sediment,
USA

20–50/
37

6.5–8.0/
7.5 1.0 by 0.2

xylose, fructose, ribose, sucrose, mannose,
galactose, maltose, lactose, peptone,
tryptone, casamino acids, glucose,

arabinose, cellobiose, casein, pyruvate

2.0–6.0/
4.0

S0,
Thio,

Sulfite

AA, But,
iBut, iVal,
2–MeBu

[8]

Kosmotoga

Kosmotoga
arenicorallina

Hot spring,
Japan

50–65/
60

6.2–8.0/
7.1

1.1–2.7
by 1.1–1.9 xylose, maltose, glycerol 1.0–6.0/

3.0
S0,

Cys n.d. [103]

Kosmotoga
pacifica

Hydrothermal
field, Pacific

Ocean

33–78/
70

6.2–8.0/
7.1 1.0 by 0.6

maltose, YE, peptone, BHI, glycerol,
tryptone, xylose, glucose, fructose,

cellobiose, trehalose, LA, propionate,
glutamate

0.5–6.0/
n.d.

S0,
Cys n.d. [104]

Kosmotoga
olearia

Fluid,
North Sea

20–80/
65

5.5–8.0/
6.8

0.8–1.2
by 0.4–0.7

maltose, ribose, sucrose, starch,
casamino acids, tryptone, pyruvate

1.0–6.0/
2.5–3.0 Thio

H2, CO2,
AA, EtOH,

PPA
[7]

Kosmotoga
shengliensis

Oilfield,
China

45–75/
65

6.0–8.0/
7.0 0.7–0.9

glucose, acetate, mEtOH, galactose,
fructose, xylose, sucrose, maltose,

sorbitol, lactose,
xylan, arabinose, formate, rhamnose,

glycerol, pyruvate, starch, LA

0.0–4.0/
1.5

S0,
Thio,

Sulfate

AA, LA,
ALA, CO2,

H2

[15]

Athalassatoga Athalassatoga
saccharophila

Hot spring,
Japan

30–60/
55

4.5–7.5/
5.5–6.0

0.8–2.0
by 0.7–0.8

arabinose, fructose, glucose, lactose,
maltose, mannose, ribose, sucrose,

xylose, starch, glycogen, peptone, YE
<1/0.0

Fe (III),
Thio,
Cys

AA, iBut,
iVal [14]

Mesoaciditoga Mesoaciditoga
lauensis

Hydrothermal
vent,

Pacific
Ocean

45–65/
57–60

4.1–6.0/
5.5–5.7

0.8–1.0
by 0.4

YE, peptone, maltose, sucrose, glucose,
xylose, ribose, starch, tryptone

0.5–6.0/
3.0

S0;
Thio,
Cys

n.d. [13]
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2. Operating Conditions
2.1. H2 Partial Pressure (PH2)

Since Thermotogae members are hydrogen producers, tolerance to hydrogen produced
by the bacteria on its own gaseous production, known as the “hydrogen partial pressure
(PH2)” effect, is one of the primary parameters being extensively investigated [51,70,105].
The highest hydrogen tolerance has been observed in the genus Marinitoga. Mn. camini and
Mn. piezophila were able to grow with H2 concentrations up to 40% and 60%, respectively.
Mn. hydrogenitolerans and Mn. okinawensis can grow under 100% H2 atmosphere with only
minor inhibition on growth and fermentation [100,101]. Their remarkable resistance to high
H2 levels is probably related to the typical habitats in which Marinotoga species thrive [100].
However, the growth of Thermotogae species is often inhibited by H2 accumulation, and the
metabolism of these organisms undergoes a series of rearrangements to suit PH2 levels in
the bioreactor headspace. The majority of literature data refers to H2 percentages in gaseous
phase, although some studies have been reporting values of PH2. Partial pressure around
607 mbar led to decreased levels of biomass production, glucose consumption rate, and H2
production in both T. neapolitana and T. maritima [106,107]. Boileau et al. [107] highlighted
a shift of T. maritima glucose catabolism from acetic acid towards lactic acid when PH2
increased from 7 to 607 mbar (Table 2) [106,107]. In contrast, low PH2 (less than 80 mbar)
promoted acetic acid accumulation. Biomass production and glucose consumption rate are
unaffected when PH2 is maintained within the range of 7.1–178.5 mbar (Table 2) [105,106].
In fact, PH2 lower than 200 mbar is required for optimal growth in reactors, and PH2 around
2900 mbar completely inhibits growth in T. maritima [1,45,49,108,109].

Hydrogen evolution is driven by a bifurcating hydrogenase (H2ase) that couples the
oxidation of reduced ferredoxin (Fd) and NADH with the reduction of protons to H2
(Figure 1) [58]. In dark fermentation, pyruvate is converted to acetate and ATP, which
thermodynamically drives the H2-acetate pathway. Under high H2 partial pressure, hy-
drogenase activity is inhibited, NADH consumption stops, pyruvate is diverted away
from acetic acid production, and lactic acid synthesis becomes the only mechanism for
recycling reduced electron carriers (Figure 1) [28–30,57,64,106,110]. Synthesis of lactic acid
by the lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate with
the concomitant conversion of NADH to NAD+ (Figure 1). The depletion of the pyruvate
pool, as occurs with the synthesis of lactic acid, negatively affects hydrogen yield, prevent-
ing it from reaching the theoretical maximal value (Figure 1) [24]. This problem can be
overcome by enhancing the liquid-to-gas mass transfer and keeping H2 concentrations
low in experimental conditions (See Section 2.2) or by using mixed cultures with microbial
species that are able to oxidize H2 [27,111].
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Figure 1. Schematic representation of Thermotogae metabolic fermentation. Dark fermentation (black arrows) of glucose leads
to the production of H2 and acetate. An increase in CO2 concentration in the reactor headspace induces the recycling of Ac-
CoA and CO2 into lactate without impairing the synthesis of biogas (blue arrows). This process is named “Capnophilic lactic
fermentation (CLF)” [30,31,56,70]. The main end-products of Thermotogae fermentation are H2, lactate, and acetate. Other
fermentation products are reported in red. Fe-Fe H2ase = [Fe-Fe] hydrogenase; PFOR = Pyruvate ferredoxin oxidoreductase;
LDH = Lactate dehydrogenase; Fd = Ferredoxin.

2.2. Shaking Speed, Culture/Headspace Volume Ratio, Gas Sparging, and Inoculum

Growth and metabolism of thermophilic bacteria are reported to be strongly affected
by an increase in the hydrogen level, which makes the metabolic reactions thermodynami-
cally unfavorable [112]. Many effective strategies have been developed to overcome the
H2 feedback inhibition, such as gas sparging, vigorous stirring, or simply increasing the
gas/liquid volume ratio in the reactor. H2 saturation is dependent on the partial pressure of
hydrogen in the culture medium and its mass transfer from liquid to gas phase. As a matter
of fact, the mass transfer of H2 from liquid to gas can be improved by applying vigorous ag-
itation in bioreactors [69,106]. Increased H2 production rate, glucose consumption rate, and
lactic acid synthesis have been observed in T. neapolitana cultures with agitation at 200 rpm,
compared to static cultures, although the final H2 yields were similar [106]. Comparable
hydrogen yields were also observed when the agitation speed was 300 and 500 rpm, e.g.,
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3.0 ± 0.0 mol H2/moL glucose at 300 rpm vs. 3.2 ± 0.1 moL H2/moL glucose at 500 rpm,
with a mild improvement in fermentation rate (Table 2) [69]. In xylose fermentation, the
highest hydrogen and organic acid yields have been reported at 400 rpm when tested in
the range of 300–600 rpm [113].

To improve hydrogen liquid-gas mass transfer, Dreschke et al. [69] designed a new
method that recirculated the H2-rich biogas (GaR) into the T. neapolitana subs. capnolactica
broth with agitation (300, 500 rpm). This combination accelerated the H2 evolution rate
and glucose consumption rate during glucose fermentation, compared to the treatments
including agitation but excluding GaR. Nonetheless, levels of the end-products, except for
H2 yield, were not significantly altered by the combined parameters (Table 2) [69].

Since PH2 depends on the culture/headspace volume ratio in the bioreactors, its
impacts on the performance of fermentation have also been investigated, mainly in batch
reactors. Nguyen et al. [64] have experimented various culture/headspace volume ratio
from 8.3% (10 mL/120 mL) up to 50% (60 mL/120 mL) in T. neapolitana and T. maritima
cultures [64]. At 8.3%, the H2 production is the highest for both species (890 mL H2/L
medium in T. neapolitana and 883 mL H2/L medium in T. maritima). H2 production
gradually diminished, and lactic acid production was promoted with increasing culture
volumes [30,64,110]. d’Ippolito et al. [30] found 1:3 culture/headspace volume was the
most suitable ratio for high hydrogen yields [30]. When these conditions were optimized,
T. neapolitana resulted in H2 yields between 3.46–3.85 mol H2/mol glucose [30,114].

Gas sparging, mainly with N2, is the most common method to reduce hydrogen
partial pressure by removing H2 and CO2 produced from sugar fermentation in closed
bioreactors [56,108,115,116]. Under nitrogen sparging conditions, the overall yield of
H2 in T. neapolitana fermentation was about two-fold of the non-sparged cultures, e.g.,
1.82 vs. 3.24 moL H2/moL glucose or 1.14 vs. 2.20 moL H2/moL xylose (Table 2). The
levels of acetic acid and butyrate also increased [110]. Moreover, the fermentation per-
formance was remarkably improved when N2- sparging was coupled with pH control
in T. neapolitana using pure glycerol as the sole carbon source (Table 2) [116]. Keeping
pH close to neutral improved the glucose utilization and H2-acetate production rates. In
contrast, lactic acid production was lowered under these conditions (0.255 mmol/L with
pH control and sparging vs. 0.36 mmol/L with pH control but no sparging) (Table 2) [116].
The use of a CO2-enriched atmosphere significantly increased both glucose consumption
rate and hydrogen production rate, even though the molar yield was comparable to that of
N2−sparging (Table 2) [31]. Surprisingly, supplementation of CO2 to T. neapolitana cultures
induced an unexpected metabolic shift from acetic to lactic fermentation without any
significant change in hydrogen production (3.6 moL/moL glucose) (Table 2) [31]. Experi-
ments with labeled precursors revealed that part of the exogenous CO2 was biologically
coupled with acetyl-CoA to give lactic acid when the cultures were sparged with CO2
gas or enriched in sodium bicarbonate (Figure 1) [117]. This process, named Capnophilic
Lactic Fermentation (CLF), has the surprising feature to produce more lactic acid than
expected from the classical dark fermentation model where H2 production is impaired
by the onset of by-passing pathways (Figure 1) [31,56,117–119]. In dark fermentation,
hydrogen and lactic acid levels competed for a common pool of reducing power. Whereas,
in CLF, the H2 level remained high, probably due to additional sources of reductants to
sustain NADH-dependent pathways (Figure 1) [118–120]. Recently, an additional increase
in lactic acid production occurred in a T. neapolitana mutant that was isolated from a culture
adapted to continuous exposure to CO2 [62]. Sparging with CO2 was also performed on
the culture of other Thermotogales species, whose metabolic response was qualitatively and
quantitatively diverse (Table 2) [70]. CO2-enriched conditions promoted glucose consump-
tion rate and lowered biogas production in almost all tested species [70]. T. caldifontis,
Pseudot. elfii, Pseudot. thermarum, Pseudot. lettingae, and Pseudot. subterranea did not show
substantial variations in the levels of the fermentation products compared to cultures in an
N2-enriched atmosphere [70]. T. neapolitana, T. maritima, T. profunda, and Pseudot. hypogea
species responded to CO2 by reducing the fermentation rate. T. neapolitana subsp. capno-
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lactica was the only species to increase lactic acid and H2 yield moving from N2-sparging
to CO2-sparging [70]. Generally speaking, the supplementation of external gas (N2 or
CO2) successfully improves the fermentation performance in most species and lowers
the inhibitory effect of H2 accumulation, but it inevitably causes an undesired dilution of
hydrogen in evolved gases. In this context, the recirculation of the H2-rich biogas method
prevents hydrogen saturation in the bioreactor without negatively affecting the content of
the produced biogas [69].

The initial biomass concentration (size of inoculum) also has an unexpected impact on
the fermentation of thermophilic bacteria. Using various initial biomass concentrations of
T. neapolitana subs. capnolactica (in the range of 0.46–1.74 g CDW/L) under CO2 atmosphere,
hydrogen yield and the distribution of end-products were unaffected (Table 2) [68]. How-
ever, increasing inoculum size from 0.46 to 1.74 g/L reduced the fermentation time from
7 h to 3 h [68]. Moreover, the hydrogen production rate, glucose consumption rate, and
biomass growth rate were increased [49,50,68]. It is worth pointing out that Ngo et al. [116]
reported a reverse correlation between hydrogen production rate and inoculum size, stat-
ing that high initial biomass corresponded to a mild reduction of hydrogen production
rate [116].

2.3. pH

As the fermentation of sugars leads to the production and accumulation of organic
acids, the pH is decreasing during the process, which may inhibit bacterial growth be-
fore the substrates are completely consumed [30,106,113]. Two factors impose a strong
inhibition on bacterial growth and H2 production: rapid decrease in pH due to the accumu-
lation of byproducts and feedback inhibition caused by H2 accumulated in the headspace
[65,105–108,113,121].

Thus, pH is a critical factor to control sugar consumption and direct end-products
formation [65,67,117,119,122]. Gradual pH drop causes enzyme activity loss [123]. To over-
come pH-induced limitations on Thermotogae fermentation, several studies were performed
with pH adjustments [51,67,121]. In pH-controlled cultures (~6.5–7.0), H2 and acetic acid
production predominated over lactic acid and peaked around 20 h [113]. In contrast, lactic
acid production only started when pH declined to around 5.0 [113].

The addition of NaOH at regular intervals and the use of buffering reagents have
been regarded as the best-performing methods with serum bottles [56,66,67,113]. The
optimum pH for growth and hydrogen production is 6.5–7.0 in T. maritima and 6.5–7.5 in
T. neapolitana depending on substrates and growth conditions [64,113,122]. Moreover, pH
7.0 provides the most promising results in terms of H2 and organic acids production in T.
neapolitana [113,122]. A pH shift from 5.5 to 7.0 improved H2 yield from 125 to 198 mL H2/L
medium in T. neapolitana [61]. With T. neapolitana cells immobilized on ceramic surfaces
using glucose as the carbon source, the highest hydrogen production was observed in the
pH range of 7.7–8.5 [51]. Further increase in the range of pH to 8.0–9.0 led to a dramatic
decrease in the biogas evolution [64].

Different organic and inorganic buffers have been examined for their effect on anaero-
bic fermentation under various growth conditions and buffer concentrations [51]. Accord-
ing to Cappelletti et al. [51], 0.1 M HEPES resulted in the best performance, compared to
MOPS, PIPES, HPO4

−/H2PO4
−, or Tris-HCl buffer in T. neapolitana batch cultures growing

on glucose under N2 atmosphere [51]. The good buffering properties of HEPES, whose
pK (7.55) is near the optimal pH of T. neapolitana, was also demonstrated for T. neapolitana
cultures growing on different complex carbon sources (cheese whey, molasses, or waste
glycerol) [51,122]. In another study, 0.05 M HEPES was found to be sufficient under N2
sparging atmosphere (Table 2) [113]. Under CLF conditions, 0.01 M MOPS, TRIS, or HEPES
buffers provided satisfactory results for both H2 and lactic acid synthesis in T. neapolitana
subs. capnolactica (Table 2) [67]. More specifically, H2 synthesis was found to be the highest
in MOPS, while TRIS promoted acetic acid formation (Table 2) [67]. The highest value of
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lactic acid synthesis was 14.9 ± 0.3 mM in phosphate buffer compared to 11.3 ± 0.6 mM in
the standard condition (Table 2) [67].

The buffering capacity of HCO3
− is sufficient to maintain near to optimal pH for

growth (~6.5), facilitating the complete substrate degradation and desired by-product
formation (Table 2) [31,56,67].

In other studies, itaconic acid was successfully used as a physiological buffer to
enhance hydrogen production in T. neapolitana growing on glucose or glycerol [121,122].
During the cultivation with 1.5 g/L itaconic acid, the pH slowly dropped from 7.5 to 6.8
over 99 h, while the same pH change was reached within 48 h in cultures not buffered [122].
Although itaconic acid is only poorly catabolized, it affected the overall metabolism of T.
neapolitana because H2 and acetic acid production were almost 1.4-fold higher than the
control, while lactic acid production was reduced by nearly 100% compared to the control
(Table 2) [122]. In addition, Ngo and Sim [122] found that the performance of T. neapolitana
fermentation growing on waste glycerol was improved by almost 40% by adding itaconic
acid into the culture medium [122].

2.4. Temperature

Due to their origin from hot habitats, bacterial species of the phylum Thermotogae can
live and grow at temperatures in the range of 40–90 ◦C (Table 1). Some species such as
K. olearia, O. teriensis, Ms. prima, and P. mexicana can thrive at mesophilic temperatures
(Table 1) [7,8,96,100], and other species such as F. changbaicum, F. thailandese, T. maritima,
Pseudot. hypogea, and T. neapolitana share the ability of growing at temperatures close to
90 ◦C (Table 1) [3,74,77,83,94]. For a long time, researchers have selected an operating
temperature of 70 ◦C [104,117] or 80 ◦C [105] to cultivate T. neapolitana and T. maritima
without careful investigation of the impacts on fermentation. Nguyen et al. [64] explored
changes of H2 production with temperatures ranging from 55 to 90 ◦C for T. neapolitana
and T. maritima. Both cultures showed approximately 100 mL H2/L medium at 55 ◦C
and a maximum of 200 mL H2/L medium at 75–80 ◦C, with a decrease to 150 H2/L
medium at 90 ◦C [64]. In T. neapolitana, high temperatures (77–85 ◦C) enhanced glucose
uptake (2.2 mmol/L at 60 ◦C and 11.0 mmol/L at 77–85 ◦C) and boosted hydrogen yields
(2.04 mol H2/moL consumed glucose at 60 ◦C and 3.85 mol H2/mol at 77 ◦C) [65]. This
positive effect was also found for acetic acid (2.0 mmol/L at 60 ◦C and 18.0 mmol/L at 85 ◦C)
and lactic acid production (no production at 60 ◦C and 1.25 mmol/L at 85 ◦C) (Table 2) [65].
Studies conducted on T. maritima hydrogenase demonstrated that this enzyme is unstable
at the ambient temperature and its activity increased considerably with rising temperature
(an activity of 25 units/mg at 20 ◦C and 110 units/mg at 90 ◦C [123].

2.5. Oxygen (O2)

Thermotogae members occur in various hot ecosystems, including hot springs, deep-
sea, and shallow hydrothermal vents, and may also be exposed to O2 in these ecological
niches [1254]. Indeed, despite their anaerobic nature, O2 tolerance is variable in the phylum;
for example, Thermotoga, Fervidobacterium, and Geotoga genera can grow only under strictly
anaerobic conditions, while K. olearia can survive in up to 15% O2 [10]. With elemental
sulfur, Ts. atlanticus can grow with up to 8% O2 in the headspace [92]. Geochemical and
microbial analyses demonstrated the wide distribution of Thermotogae species in ecosystems
that are not only anaerobic but also partially oxygenated [124]. For this reason, the question
of O2 tolerance and microaerophilic metabolism of Thermotogae has been addressed by
several studies [65,105,106,125–129]. Some researchers have demonstrated that low con-
centrations of O2 are tolerated by T. neapolitana and T. maritima [127,128]. An O2 insensitive
hydrogenase has been described in T. neapolitana, explaining why microaerobic H2 pro-
duction and O2 tolerance could take place in this bacterium [130]. Additionally, Pseudot.
hypogea and T. maritima contain an NADH oxidase that may serve as an O2 detoxification
system [131,132]. Lakhal et al. [129] demonstrated O2 consumption over 12 h during the
stationary phase of T. maritima in a batch reactor without reducing agent [129]. O2 presence
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reduced glucose fermentation rate and significantly shifted metabolism towards lactic acid
production in T. maritima (Table 2). This change can probably be explained by O2 sensitivity
of the hydrogenase [129]. Furthermore, T. maritima overproduced enzymes involved in
reactive oxygen species (ROS) detoxification, iron-sulfur cluster synthesis/repair, cysteine
biosynthesis, and a flavoprotein homologous to the rubredoxin of Desulfovibrio species that
exhibited an oxygen reductase activity [127].

Van Ooteghem et al. [121] reported that O2 concentration decreased during the growth
of F. pennavorans, P. miotherma, Ts. africanus, Pseudot. elfii, and T. neapolitana. In these
experiments, the H2 yield greatly exceeded the theoretical limit of 4 mol H2/mol glucose
in F. pennavorans, Pseudot. elfii, and T. neapolitana fermentation [121]. These surprisingly
high H2 yield have led to the hypothesis of an unidentified aerobic pathway using O2 as
a terminal electron acceptor in these bacteria which may not be obligate anaerobes [121].
However, aerobic metabolism is not supported by the genomic sequence of T. maritima, al-
though the enzymes involved in the pentose phosphate pathway and an NADPH-reducing
hydrogenase have been identified in the genome [16]. To explain the increased yield of
H2 by T. neapolitana in microaerobic conditions and the existence of a catabolic process
requiring O2, van Ooteghem et al. [121] used malonic acid as an inhibitor of succinate
dehydrogenase and thus the O2-dependent metabolism. Even if the coding sequence for
succinate dehydrogenase has not been identified in the T. maritima genome, hydrogen
generation was completely inhibited for >40 h in the presence of malonate, postulating that
malonate in the medium was no longer available to block catabolism [121]. Then, Eriksen
et al. [106] demonstrated that malonic acid was not metabolized by T. neapolitana cultures
but the exposure to malonic acid clearly affected the metabolism as reduced production
of lactic acid and increased H2 yield were observed [106]. Against these findings, other
researchers reported a reduction of H2 rate and production in T. neapolitana cultures after
the injection of 6% O2 [65,106]. The reduction of O2 consumes reducing equivalents that
are then unvailable to produce H2. The total duration of T. maritima fermentation in the
batch reactor was delayed about 67 h under O2-induced stress [129]. In addition, the con-
sumption rate of glucose was drastically reduced and the metabolism of T. maritima shifted
towards lactic acid production due to inhibition of the O2-sensitive hydrogenase [129].

From a technical point of view, several strategies were adopted to remove dissolved
O2 in the bioreactor: [I] sparging the culture with N2, CO2 or a mixture of both gases; [II]
heating the medium; [III] adding a reducing agent such as sodium sulfide or cysteine-
HCl in the medium; [IV] maintaining a positive pressure in the bioreactor headspace
[31,56,62,67,70,105,106,113,121].
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Table 2. Effects of operating conditions on Thermotogae fermentation. MOPS: Morpholinopropane-1-sulfonic acid; HEPES: 2-[4-(2-hydroxyethyl) piperazin-1-yl] ethanesulfonic acid; TRIS:
tris(idrossimetil)amminometano cloridrato; CDW: Cellular dry weight; AA: Acetic acid; LA: Lactic acid; ALA: Alanine; But: Butyrate; IA: Itaconic acid; GaR: recirculation of H2-rich
biogas. Experiments were performed in different bioreactor configurations: B = Batch; CSTR = Continuous-flow Stirred-Tank Reactor; CSABR: Continuously Stirred Anaerobic Bioreactor;
SB = Serum bottles. H2 column: a H2 yield = mol H2/mol consumed substrate; b mL/L culture. * Values extrapolated from the graphical representation of data.

Parameter Organism T (◦C) Culture
Type

Mixing
Speed
(rpm)

Reactor/
Working

Volume (L)

Substrate
Loaded

(mmol/L)

Operational
Parameter

Substrate
Consumed
(mmol/L)

Products
Ref.H2

yielda AA (mmol/L) LA
(mmol/L)

ALA
(mmol/L)

But
(mmol/L)

PH2 (mbar) T.
maritima 80 B 350 1.4/0.1 Glucose

(28)

PH2 = 7.1 ± 0.4 19.8 ± 1.1 2.34 25.0 ± 1.4 10.5 ± 0.5

[107]
PH2 = 71.4 ± 2.1 19.7 ± 1.4 2.44 24.6 ± 2.4 11.0 ± 0.6

PH2 = 178.5 ± 3.5 17.2 ± 0.9 2.32 20.1 ± 1.0 9.4 ± 0.5

PH2 = 606.9 ± 18.7 13.4 ± 0.7 n. d. 13.0 ± 0.7 11.0 ± 0.6

Stirring
Speed
(rpm)

T.
neapolitana 75 CSABR

300

3.0/1.0 Xylose
(33.3)

300 31.43 2.13 ± 0.11 41.8 ± 2.16 1.78 ± 0.11

[113]400 400 32.56 2.94 ± 0.15 50.12 ± 2.5 4.0 ± 0.22

500 500 32.03 2.31 ± 0.12 44.62 ± 2.16 4.84 ± 0.22

600 600 31.87 2.24 ± 0.11 41.12 ± 2.0 1.89 ± 0.11

T.
neapolitana

subsp.
capnolactica

80 CSTR

300

3.0/2.0 Glucose
(28)

300 22.9 ± 2.7 3.0 ± 0.0 32.3 ± 4.3 10.0 ± 1.0 1.1 ± 0.1
[69]500 500 24.8 ± 0.4 3.2 ± 0.1 37.7 ± 2.7 8.1 ± 0.2 1.0 ± 0.1

300 300 + GaR 24.7 ± 0.2 3.5 ± 0.2 39.2 ± 1.2 4.4 ± 0.1 0.9 ± 0.0

500 500 + GaR 24.9 ± 0.2 3.3 ± 0.1 38.7 ± 2.2 5.1 ± 0.5 0.8 ± 0.0

Gas
sparging

T.
neapolitana

80 B 250 3.8/1.0 Glucose
(28)

N2 25.9 ± 1.3 2.8 44.8 ± 5.4 12.5 ± 2.9 1.3 ± 0.4
[31]

CO2 26.1 ± 1.2 2.8 35.6 ± 5.8 20.0 ± 6.1 2.7 ± 0.5

75 SB no 0.12/0.04 Glycerol
(108.6)

w/o 13 ±0.6 1.24 ± 0.06 8.71 ± 0.35 0.36 ± 0.02

[115]N2 14 ± 0.7 2.06 ± 0.09 10.04 ± 0.5 0.34 ± 0.02

N2 plus pH
control 18 ± 0.9 1.98 ± 0.1 12.62 ± 0.53 0.25 ± 0.01

Gas
sparging

T.
neapolitana 77 SB 150 0.12/0.04

Glucose
(39)

w/o - 1.82 ± 0.09 64.28 ± 2.83 33.48 ± 1.47

[110]N2 - 3.24 ± 0.14 81.42 ± 3.49 36.77 ± 2.04

Xylose (27)
w/o - 1.14 ± 0.07 40.30 ± 3.5 37.68 ± 1.7

N2 - 2.20 ± 0.13 71.94 ± 3.66 50.62 ± 2.38

T.
neapolitana

subsp.
capnolactica

80 SB no 0.12/0.03 Glucose
(28)

N2 25.7 ± 0.1 2.5 ± 0.06 27.3 ± 0.8 8.6 ± 0.2 2.5 ± 0.2
[70]

CO2 28.3 ± 1.0 2.9 ± 0.1 22.1 ± 0.9 11.3 ± 0.1 3.0 ± 0.3
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Table 2. Cont.

Parameter Organism T (◦C) Culture
Type

Mixing
Speed
(rpm)

Reactor/
Working

Volume (L)

Substrate
Loaded

(mmol/L)

Operational
Parameter

Substrate
Consumed
(mmol/L)

Products
Ref.H2

yielda AA (mmol/L) LA
(mmol/L)

ALA
(mmol/L)

But
(mmol/L)

T.
neapolitana 80 SB no 0.12/0.03 Glucose

(28)
N2 21.7 ± 0.6 2.5 ± 0.03 30.2 ± 0.4 2.2 ± 0.02 1.9 ± 0.3

CO2 20.8 ± 2.3 1.9 ± 0.1 20.8 ± 0.1 1.2 ± 0.06 2.4 ± 0.3

T.
maritima 80 SB no 0.12/0.03 Glucose

(28)
N2 23.2 ± 1.0 1.9± 0.06 25.5 ± 0.5 5.3 ± 0.8 2.4 ± 0.06

CO2 19.9 ± 0.6 2.0 ± 0.1 18.3 ± 0.3 1.6 ± 0.2 2.3 ± 0.3

T.
naphtophila 80 SB no 0.12/0.04 Glucose

(28)
N2 13.30 ± 1.10 2.20 ± 0.20 15.70 ± 0.10 1.40 ± 0.06 0.80 ±0.10

CO2 20.80 ± 1.70 1.60 ± 0.20 19.20 ± 0.10 5.00 ± 0.02 1.80 ±0.05

T.
petrophila 80 SB no 0.12/0.05 Glucose

(28)
N2 9.20 ± 1.30 3.00 ± 0.40 13.10 ± 0.05 2.00 ± 0.01 0.00

CO2 14.20 ± 0.60 1.90 ± 0.10 12.60 ± 0.10 3.80 ± 0.02 0.30 ±0.10

T.
caldifontis 70 SB no 0.12/0.05 Glucose

(28)
N2 10.90 ± 1.10 2.60 ± 0.10 16.70 ± 3.60 2.20 ± 0.50 3.20 ±0.90

CO2 15.20 ± 0.90 1.80 ± 0.03 15.60 ± 1.50 2.30 ± 0.40 6.60 ±0.70

T.
profunda 60 SB no 0.12/0.05 Glucose

(28)
N2 18.1 0 ±0.40 1.50 ± 0.20 15.90 ± 0.40 5.70 ± 0.10 1.40 ±0.06

CO2 22.60 ± 1.70 0.70 ± 0.04 5.60 ± 0.20 2.3 ± 0.04 2.60 ±0.30

Pseudot.
hypogea 70 SB no 0.12/0.05 Glucose

(28)
N2 8.80 ± 1.10 1.10 ± 0.30 6.40 ± 0.10 0.10 ± 0.00 2.90 ±0.10

CO2 4.30 ± 0.10 0.50 ± 0.10 3.10 ± 0.20 0.10 ± 0.00 3.40 ±0.30

Pseudot.
elfii 70 SB no 0.12/0.05 Glucose

(28)
N2 7.00 ± 0.90 2.00 ± 0.20 8.30 ± 0.06 0.20 ± 0.03 4.20 ±0.30

[70]

CO2 6.70 ± 0.20 2.10 ± 0.10 7.80 ± 0.30 0.10 ± 0.01 10.0 ±0.30

Pseudot.
lettingae 70 SB no 0.12/0.05 Glucose

(28)
N2 9.30 ± 0.50 1.20 ± 0.10 5.10 ± 0.05 0.20 ± 0.00 2.70 ±0.05

CO2 8.10 ± 0.70 1.30 ± 0.30 4.40 ± 0.10 0.05 ± 0.01 3.70 ±0.20

Gas
sparging

Pseudot.
subterranea 70 SB no 0.12/0.05 Glucose

(28)
N2 23.10 ± 2.10 1.80 ± 0.20 30.60 ± 6.90 16.20 ± 4.60 9.50 ±0.40

CO2 27.00 ± 1.40 1.40 ± 0.10 31.90 ± 7.90 10.70 ± 4.0 20.0 ± 8.0

Pseudot.
thermarum 80 SB no 0.12/0.05 Glucose

(28)
N2 Complete 1.8 ± 0.02 30.00 ± 2.20 6.50 ± 0.20 1.10 ±0.07

CO2 Complete 1.50 ± 0.10 24.80 ± 0.70 5.60 ± 0.60 2.20 ±0.20

Biomass
(g CDW/L)

T.
neapolitana 80 Flask 300 0.25/0.2 Glucose

(28)

0.46 3.2 ± 0.04 2.39 34.3 ± 0.6 10.9 ± 0.4

[68]
0.91 2.9 ± 0.06 2.44 32.9 ± 0.8 12.2 ± 0.8

1.33 3.4 ± 0.01 2.58 32.3 ± 0.2 11.5 ± 0.5

1.74 3.0 ± 0.04 2.37 31.4 ± 1.1 14.7 ± 0.7
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Table 2. Cont.

Parameter Organism T (◦C) Culture
Type

Mixing
Speed
(rpm)

Reactor/
Working

Volume (L)

Substrate
Loaded

(mmol/L)

Operational
Parameter

Substrate
Consumed
(mmol/L)

Products
Ref.H2

yielda AA (mmol/L) LA
(mmol/L)

ALA
(mmol/L)

But
(mmol/L)

pH

T.
neapolitana

subsp.
capnolactica

80 SB no 0.12/0.03 Glucose
(28)

w/o 18.54 ± 0.15 1.78 ± 0.29 22.76 ± 0.40 11.35 ± 0.62

[67]

0.01M MOPS 26.42 ± 0.05 3.27 ± 0.18 26.65 ± 0.87 14.23 ± 0.22

0.01M TRIS 25.55 ± 0.06 3.10 ± 0.10 26.77 ± 0.29 12.08 ± 0.89

0.01M HEPES 25.99 ± 0.03 2.85 ± 0.40 25.56 ± 0.49 13.58 ± 0.88

0.01M HCO3
− 25.62 ± 0.10 2.20 ± 0.30 22.82 ± 0.84 14.63 ± 3.23

0.01M phosphate 26.17 ± 0.26 2.78 ± 0.40 24.70 ± 0.59 14.92 ± 0.25

T.
neapolitana 75 CSABR 300 3.0/1.0

Glucose
(28)

w/o pH control 21.98 ± 1.11 2.05 ± 0.1 30.81 ± 1.5 3.33 ± 0.22

[113]plus pH control 27.47 ± 1.39 3.2 ± 0.16 38.3 ± 2.0 1.77 ± 0.11

Xylose
(33.3)

w/o pH control 29.77 ± 1.46 1.84 ± 0.09 34.47 ± 1.66 3.77 ± 0.22

plus pH control 31.83 ± 1.6 2.22 ± 0.11 41.8 ± 2.0 1.66 ± 0.11

pH

T.
neapolitana 75 CSABR 300 3.0/1.0

Sucrose
(14.6)

w/o pH control 13.78 ± 0.7 3.52 ± 0.18 33.13 ± 1.65 3.11 ± 0.11

[113]

plus pH control 14.69 ± 0.06 4.95 ± 0.25 35.47 ± 1.83 2.11 ± 0.11

Xylose
(33.3)

w/o pH control 29.44 1.85 ± 0.09 34.97 ± 1.66 3.88 ±0.22

pH = 6.5 32.57 2.71 ± 0.14 49.62 ± 2.50 3.44 ± 0.11

pH = 7.0 32.9 2.84 ±0.14 50.29 ± 2.50 4.00 ± 0.22

pH = 7.5 31.77 2.23 ± 0.11 41.96 ± 2.16 1.89 ± 0.11

75 SB no 0.04/ 0.12 Glycerol
(108.6)

w/o HEPES 16.96 ± 0.8 1.23 ± 0.06 9.14 ± 0.45
[116]

0.05 M HEPES 28.26 ± 1.4 2.73 ± 0.14 22.35 ± 1.05

T.
neapolitana

80 B 250 3.8/1.0 Glucose
(28)

w/o NaHCO3 25.9 ± 1.3 2.8 44.5 ± 5.4 12.5 ± 2.69

[31]
NaHCO3 14 mM 25.4 ± 2.1 1.7 30.5 ± 4.9 18.0 ± 0.6

NaHCO3 20 mM 23.2 ± 1.9 1.0 44.4 ± 8.2 9.2 ± 2.7

pH NaHCO3 40 mM 6.2 ± 0.8 2.7 18.0 ± 4.3 0.7 ± 1.5

75 B no 0.12/0.04 Glycerol
(108.6)

w/o IA - 438 ± 22 b 7.49 ± 0.33 3.55 ± 0.22 *
[122]

1.5 g/L IA - 619 ± 30 b 11.49 ± 0.5 1.66 ± 0.0 *
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Table 2. Cont.

Parameter Organism T (◦C) Culture
Type

Mixing
Speed
(rpm)

Reactor/
Working

Volume (L)

Substrate
Loaded

(mmol/L)

Operational
Parameter

Substrate
Consumed
(mmol/L)

Products
Ref.H2

yielda AA (mmol/L) LA
(mmol/L)

ALA
(mmol/L)

But
(mmol/L)

Temp.
(◦C)

T.
neapolitana

60

SB 75 0.26/0.05 Glucose
(14)

60 2.2 * 2.04 ± 0.05 2.0 n. d

[65]
65 65 5.0 * 3.09 ± 0.3 7.0 0.05

70 70 8.5 * 3.18 ± 0.02 11.5 0.45

77 77 11.0 ± 0.5 * 3.85 ± 0.28 16.5 0.85 ± 0.1

85 85 11.0 ± 0.5 * 3.75 ± 0.49 18.0 ± 1.0 1.25 ± 0.05

Oxygen T.
maritima 80 B 150 2.30/1.53 Glucose

(20)
w/o O2 17.41 38.09 b 18.05 4.36 1.60 ± 0.2

[129]
with O2 19.30 31.75 b 18.27 5.45 1.30 ± 0.2
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3. Nitrogen Containing-Compounds

Nitrogen sources (N-sources) are essential for bacterial life for the synthesis of cel-
lular components like nucleic acids, proteins, and enzymes [133,134]. Yeast extract (YE),
tryptone, and ammonium chloride (NH4Cl) have been identified as highly efficient and
versatile organic N-sources in laboratory practices. It is widely demonstrated that most
of the Thermotogae members can use yeast extract and tryptone to grow and metabolize
carbohydrates [1,10,77,108,135,136].

Numerous efforts were made to replace YE by combining casamino acids and amino
acids, but Pseudot. elfii failed to grow on these alternative substrates. The biogas yields of
cultures grown with other N-sources were about 4–14% of those with YE (Table 3) [108].

Experiments with different concentrations of YE and tryptone were performed to
identify their optimal and minimal concentrations in growth media [64,108,122,137,138]. YE
and tryptone are sufficient to ensure growth and hydrogen production without additional
carbon sources in Pseudot. elfii (Table 3) [108]. van Niel et al. [108] used media with various
concentrations of YE and tryptone to ferment glucose by Pseudot. elfii [108]. They discovered
that increasing the contents of both YE and tryptone from 2 g/L to 5 g/L improved H2
production (14.8 vs. 28.8 mmol/L) but higher contents did not further improve hydrogen
and acetic acid production; high levels of both YE and tryptone only increased acetic acid
production in medium lacking other C-sources [108].

When there was a low level of YE (2 g/L) but no tryptone, productions of H2 and
acetic acid remained low, suggesting that tryptone served as an energy source like YE
(Table 3) [108]. Although the amino acid compositions of the two N-sources are fairly
similar, tryptone contains abundant peptides, a preferred form of amino acids by many bac-
teria [138]. In another study [122], T. neapolitana biomass increased along with the increase
of YE concentrations in the range of 1.0–4.0 g/L but not with higher YE concentrations
(5.0–6.0 g/L) [122]. The H2 production plateaued at 420 mL/L in T. neapolitana growing on
glycerol with 1.0–4.0 g/L YE [122]. Experiments in T. maritima and T. neapolitana revealed
that with over 2 g/L YE, there was a clear increase of acetic acid production, and hydrogen
counted up to 30-33% of the total gas in the headspace, even though a mild reduction in
glucose consumption occurred (Table 3) [64,138].

Nevertheless, low concentrations (2–4 g/L) of YE are still able to support productivity
and bacterial growth [64,108,122,138]. d’Ippolito et al. [30] reported that 2 g/L of both tryp-
tone and YE contributed to 10–15% of the total fermentation products in T. neapolitana [30].
Balk et al. [75] demonstrated that Pseudot. lettingae was able to degrade methanol in around
30 days in the presence of 0.5 g/L YE, whereas the substrate degradation did not occur
when YE was omitted [75]. In contrast, the fermentation of T. neapolitana with glucose
occurred in a medium without YE, even though the total glucose consumption without YE
was attained in 30 h rather than 12 h. H2 and acetate amounts were half in the medium
without YE, (Table 3) [135].

The impact of an inorganic N-source on Thermotogae fermentation, such as NH4Cl,
has not been extensively studied, but the presence of NH4Cl has often been associated
with either exopolysaccharide (EPS) formation in T. maritima or alanine production in T.
neapolitana [62,129,136,139]. It is not clear how NH4Cl stimulates EPS production, but
it might involve processing the surplus of reducing equivalents. For example, some
organisms produce EPS as a mechanism to transport reducing equivalents out of the
cell [140].

Han and Xu [61] demonstrated that a surplus of NH4Cl could partially substitute YE
and tryptone in an optimized medium for auxotrophic Thermotoga sp. RQ7 strain [61].

4. Sodium Chloride and Phosphate

All members of the phylum Thermotogae showed great adaptability to a wide range
of salinity levels (Table 1), although the optimal concentrations of NaCl vary among
the members. Geotoga, Oceanotoga, and Petrotoga species can survive in environments
comprised of 10% NaCl, while P. mexicana can live in up to 20% NaCl (Table 1) [10,12,95].
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In contrast, species of the genus Fervidobacterium can tolerate salt concentrations up to
1% [5,79–81,83]. Among the species of the genus Mesotoga, Ms. infera exhibited the lowest
tolerance of NaCl (Table 1).

NaCl at 20 g/L was reported to be optimal for T. neapolitana growing on either glucose
or glycerol when hydrogen production is concerned [64,105,106,108,110,116]. Recently, the
effect of different NaCl concentrations (0–35 g/L) on the CLF process was explored in T.
neapolitana subs. capnolactica using glucose as the carbon source [67]. H2 synthesis and
biomass growth were reduced by 15% and 25%, respectively, when NaCl was increased
to 35 g/L (Table 3). Similarly, acetic acid production decreased from 26.1 ± 4.7 mM with
10 g/L NaCl to 23.2 ± 0.8 mM with 35 g/L NaCl. In contrast, high NaCl levels had a
positive impact on lactic acid production, which increased 7.5-fold (2.8 ± 0.3 mM at 0 g/L
NaCl vs. 21.6 ± 6.2 mM at 35 g/L NaCl), without affecting the overall H2 yields (Table 3)
[67]. Pradhan and coworkers [67] suggested a possible involvement of NaCl in a sodium
ion gradient that potentially fuels ATP synthesis and transport processes [67]. This creates a
bioenergetic balance and supplies necessary reducing equivalents to convert acetic acid into
lactic acid under CLF conditions (Figure 1) [67,118,119]. Similarly, another study [141] on
H2-producing Vibrionaceae showed that increasing NaCl levels from 9 to 75 g/L enhanced
lactic acid synthesis [141].

Regarding phosphate species, they have a strong buffering ability to mitigate pH
fluctuation caused by the accumulation of volatile fatty acids [142]. Phosphate deficiency
induced an increase in lactic acid production and a small decrease in H2 formation, sug-
gesting a slight shift of the T. maritima metabolism towards lactic acid production. Besides
its role as a macro-element, phosphate can also interact with calcium, favoring H2 pro-
duction [141,143]. Saidi and co-workers [52] showed that T. maritima struggled to produce
H2 at the same rate when there was an oversupply of calcium but an undersupply of
phosphate in the medium [52]. For unknown reasons, phosphate exceeding 50 mM has
been suggested to inhibit Pseudot. elfii growth [108].
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Table 3. Effect of organic nitrogen source and NaCl on Thermotogae fermentation. AA: Acetic acid; LA: Lactic acid; ALA: Alanine; YE: Yeast extract; Tryp: Tryptone; CA: Casamino acids; V:
Vitamins solution [108]; aa: Amino acids (cysteine, alanine, asparagine, proline, glutamine, serine, and tryptophan, added at 0.2 g/L each). Experiments were performed in different
bioreactor configurations: B = Batch; SB = Serum bottles. H2 column: a % H2 = calculated setting hydrogen production yield on medium with yeast extract to 100%; b mmol H2/L
medium; c mL H2/L culture; d mol H2/mol glucose. * Values extrapolated from the graphical representation of data.

Parameter Organism T (◦C) Culture
Type

Mixing
Speed
(rpm)

Reactor/
Working

Volume (L)
Substrate Loaded

(mmol/L)
Operational
Parameter

Substrate
Consumed
(mmol/L)

Products
Ref.

H2
AA

(mmol/L)
LA

(mmol/L)
ALA

(mmol/L)

Nitrogen
sources

(g/L)

Pseudot.
elfii

65 B 100 3.0/1.0 no
w/o YE - 40 a

[108]

CA + V - 4 a

CA + V + aa - 6 a

65 B 100 3.0/1.0 Glucose (22.4)
YE (5) n.d. 100 a

CA + V n.d. 14 a

CA +V + aa n.d. 14 a

65 B 100 3.0/1.0 no

YE (2) -Tryp (0) - 13.9 b 3.5

YE (2) -Tryp (2) - 14.8 b 3.4

YE (5) -Tryp (0) - 14.0 b 0.0

YE (5) -Tryp (5) - 28.8 b 4.9

65 B 100 3.0/1.0 Glucose (56)

YE (2) -Tryp (0) 10.3 25.8 b 10.7

YE (2) -Tryp (2) 18.3 78.5 b 19.7

YE (5) -Tryp (0) 13.1 84.9 b 26.3

YE (5) -Tryp (5) 17.9 82.5 b 21.2

T.
neapolitana 80 SB no 0.12/0.05 Glucose (28)

YE (0.5) 26.6 * 260 *c 15 *

[64]

YE (1.0) 26 * 320 *c 22.5 *

YE (2.0) 25.5 * 360 *c 26.6 *

YE (4.0) 25 * 430 *c 30 *

YE (6.0) 25 * 430 *c 33.3 *

T.
maritima 80 SB no 0.12/0.05 Glucose (28.00)

YE (0.5) 25.5 * 190 *c 0.0 *

YE (1.0) 25 * 260 *c 20.8 *

YE (2.0) 25 * 270 *c 23 *

Nitrogen
sources

(g/L)

T.
maritima 80 SB no 0.12/0.05 Glucose (28.00)

YE (4.0) 25 * 335 *c 27.5 * [64]
YE (6.0) 24 * 390 *c 28 *

T.
neapolitana 77 B 75 0.12/0.05 Glucose (28)

no YE 23 * 9 *b 4.2 *
[136]

YE (0.5) Completed * 16 *b 7.2 *
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Table 3. Cont.

Parameter Organism T (◦C) Culture
Type

Mixing
Speed
(rpm)

Reactor/
Working

Volume (L)
Substrate Loaded

(mmol/L)
Operational
Parameter

Substrate
Consumed
(mmol/L)

Products
Ref.

H2
AA

(mmol/L)
LA

(mmol/L)
ALA

(mmol/L)

NaCl (g/L)
T.

neapolitana
subsp.

capnolactica
80 SB no 0.12/0.03 Glucose (28)

w/o 25.62 ± 0.07 2.30 ± 0.50 d 20.66 ± 0.27 2.80 ± 0.26 1.28 ± 0.9

[67]
NaCl (5) 26.00 ± 0.14 2.50 ± 1.20 d 24.59 ± 0.95 6.23 ± 3.26 1.61 ± 0.58

NaCl (10) 26.12 ± 0.16 3.10 ± 0.80 d 26.05 ± 4.69 11.61 ± 2.42 2.46 ± 0.24

NaCl (20) 25.96 ± 0.11 3.30 ± 0.20 d 25.58 ± 1.03 13.44 ± 0.94 2.41 ± 0.09

NaCl (30) 25.68 ± 0.25 2.91 ± 0.37 d 23.22 ± 0.81 21.63 ± 6.15 2.38 ± 0.10
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5. Sulfur-Containing Compounds

All members of the phylum Thermotogae reduced sulfur-containing compounds such as
elemental sulfur (S0), thiosulfate (Thio), and polysulfide to hydrogen sulfide (H2S), which
is produced at the expense of H2 (Table 1) [1,4,29,76,144,145]. Sufficient supply of sulfur-
containing compounds seems to be critically important; due to a large requirement for Fe-S
clusters by the hydrogenase (containing 20 atoms of Fe and 18 atoms of S), PFOR, and other
enzymes (Figure 1) [123,146]. In the literature, the effect of sulfur sources has been widely
explored. The reduction of S-sources is considered an electron-sink reaction to deplete the
surplus of electron power [3,98,107,147]. It is well known that the growth of most anaerobic
bacteria of the phylum Thermotogae is stimulated by S-sources, but not dependent on
them [1,29,52,53,75,107,125,126,144]. Generally speaking, the substrate consumption rate
is benefited from a sulfur supply in the medium, except for the methanol fermentation in
Pseudot. lettingae, which is reduced by S-containing compounds (19.7 mmol/L w/o S-source,
18.7 mmol/L with Thio and 10.6 mmol/L with S0) (Table 4). Members of the Mesotoga genus
are able to oxidize sugars, although with low efficiency, only when S0 is used as the terminal
electron acceptor [26,27,66,148,149]. This process gives acetic acid, CO2, and sulfide (2 mol
of acetate and 4 mol of sulfide per mol of glucose), with no or trace amounts of H2
(Table 4) [27]. After 250 days of Ms. prima cultivation, 9.21 ± 0.13 mmol/L of acetate was
measured in the presence of S0 rather than 1.67 ± 0.21 mM obtained in its absence (Table 4)
[27]. Fadhlaoui and collaborators [27] argued that the metabolic differences between
Thermotoga spp. and Ms. prima strains are related to the absence of a bifurcating [FeFe]-
hydrogenase and the accumulation of NADH in Ms. prima, leading to growth inhibition
in the absence of an external electron acceptor [27]. However, Ms. prima and Ms. infera
strains grew more efficiently in a syntrophic association with a hydrogenotrophic microbial
partner that serves as a biological electron acceptor compared to growing Mesotoga in
a pure culture with sulfur as electron acceptor [26,27]. Boileau et al. [107] investigated
the different responses of fermentation performance to different S-sources (Table 4) [107].
Among these compounds (Table 4), thiosulfate, cysteine, and Na2S were the most efficient
ones to optimize T. maritima glucose fermentation (Table 4) [107]. Biogas production and
glucose utilization increased in the order of no S-source < DMSO < S0 < Thio < Methionine
(Met) < Na2S < Cysteine (Cys) (Table 4) [107]. Moreover, Na2S and Cys increased acetic acid
production 3-fold and H2 production 2-fold (Table 4). Thiosulfate seemed to promote lactic
acid formation (0.8 ± 0.1 mM w/o S-source and 6.3 ± 0.6 mM with Thio) without affecting
other products [107]. Surprisingly, lactic acid was dependent on thiosulfate concentration
(0.3 mol/mol glucose w/o Thio and 0.6 mol/mol glucose with 0.24 mmol Thio), even
though the proportion between lactic and acetic acid yields remained constant (Table 4).
DMSO had no significant impact on T. maritima fermentation parameters (Table 4) [107].

In the presence of thiosulfate, the growth and glutamate production of Fervidobacterium
is stimulated; however, S0 does not seem to help overcoming the H2-feedback inhibition
(Table 4) [32,80,88,144]. P. olearia, P. sibirica, and Ts. Africanus produced small amounts
of ethanol (0.17 mM for both Petrotoga species and 0.79 mM for Ts. africanus) only in the
absence of S-sources (Table 4) [93,145]. Pseudot. lettingae produced L-alanine, at the expense
of acetic acid, only when thiosulfate or S0 was present in the medium using methanol
as the substrate (Table 4) [75]. Meanwhile, the presence of thiosulfate or S0 resulted in
increased production of acetic acid and decreased production of alanine in Pseudot. hypogea,
Ts. melaniensis, Ts. geolei, P. olearia, and P. sibirica cultures, using glucose or xylose as the
carbon source (Table 4) [77,87,90,93]. When S0 is available, no hydrogen could be detected
in Mn. hydrogenitolerans growing on glucose [101].

Thermotogae members have been widely employed to degrade different organic
wastes, and their degradation significantly benefited from the presence of a reducing agent
[51–54,113,116,138]. It is noteworthy to mention that high concentrations of thiosulfinate, a
volatile organo-sulfur compound found in organic wastes, has an inhibitory effect on T.
maritima growth [54]. Similarly, Tao et al. [150] demonstrated that thiosulfinate inhibited
the H2 production by mesophilic seed sludge when co-fermenting food wastes [150].
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Table 4. : Effect of sulfur compounds on Thermotogae fermentation. AA: Acetic acid; LA: Lactic acid; ALA: Alanine; EtOH: Ethanol; iVal: isovalerate; H2S: Hydrogen sulfide; Glu:
Glutamate; DMSO: Dimethyl Sulfoxide; S0: Elemental sulfur; Met: Methionine; Thio: Thiosulfate; Cys: Cysteine; Na2S: Sodium sulfide. * Values extrapolated from the graphical
representation of data. ** Concentrations of Sulfur compounds are 0.03 mol equivalent of sulfur. a H2 produced millimolar equivalent; b mmol; c µM.

Organism Carbon Source
(mM)

Sulfur
Source
(mM)

Substrate
Consumed
(mmol/L)

Products mmol/L Culture
Ref.

H2 AA LA ALA EtOH iVal H2S Glu

T.
maritima

Glucose (25)

w/o 7.1 ± 0.4 21.3 ± 2.1 10.1 ± 0.8 0.8 ± 0.1 -

[107]

DMSO ** 9.2 ± 0.5 28.7 ± 2.9 13.3 ± 1.1 0.8 ± 0.1 -

S0 ** 16.6 ± 0.8 46.1 ± 4.6 23.8 ± 1.9 3.4 ± 0.3 -

Met ** 18.3 ± 0.9 53.3 ± 5.3 26.5 ± 2.1 3.1 ± 0.3 -

Thio ** 17.5 ± 0.9 47.3 ± 4.7 24.1 ± 1.9 6.3 ± 0.6 -

Cys ** 20.4 ± 1.0 58.5 ± 5.8 30.5 ± 2.4 4.1 ± 0.4 -

Na2S ** 20.4 ± 1.0 54.9 ± 5.5 30.7 ± 2.5 4.7 ± 0.5 -

Glucose (60)

w/o Thio 17.7 ± 1.9 25.0 ± 2.2 12.8 ± 1.0 5.4 ± 0.6 1.39 ± 0.2

Thio (0.01) 20.0 ± 1.1 31.0 ± 2.3 16.0 ± 0.8 10.2 ± 1.1 -

Thio (0.03) 28.0 ± 1.5 57.9 ± 4.8 30.6 ± 1.9 8.2 ± 0.7 -

Thio (0.06) 38.5 ± 2.0 73.3 ± 5.9 38.2 ± 2.4 18.1 ± 1.8 -

Thio (0.12) 45.7 ± 2.5 99.7 ± 8.3 52.4 ± 3.3 15.4 ± 1.6 3.8 ± 0.3

Thio (0.18) 45.4 ± 2.2 86.9 ± 8.2 45.0 ± 2.2 23.4 ± 2.3 -

Thio (0.24) 43.8 ± 2.2 88.6 ± 8.9 46.1 ± 3.3 26.4 ± 1.4 3.8 ± 0.2

Glucose (20)
w/o 13.70 36.09 15.62 0.70 n.d.

[145]
Thio (20) 13.55 4.02 15.99 0.80 14.45

T.
neapolitana Glucose (20)

w/o 14.00 31.67 18.27 0.87 n.d.
[145]

Thio (20) 13.90 16.07 16.12 0.60 7.39

Pseudot.
lettingae Methanol (20)

w/o 19.70 n. d. 13.70 - -

[75]Thio (20) 18.7 n. d. - 5.8 11.2

S0 (2%) 10.6 n. d. - 3.1 7.3

Pseudot.
hypogea Glucose (20)

w/o 8.60 29.03 4.49 1.71 n. d.
[145]

Thio (20) 14.39 2.29 19.7 1.06 15.08
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Table 4. Cont.

Organism Carbon Source
(mM)

Sulfur
Source
(mM)

Substrate
Consumed
(mmol/L)

Products mmol/L Culture
Ref.

H2 AA LA ALA EtOH iVal H2S Glu

Pseudot.
hypogea Glucose (20)

w/o 7.0 9.4 a 5.0 1.7 1.0 0.2
[77]

Thio (20) 13.0 0.9 a 19.8 1.0 1.6 15.1

Pseudot.
hypogea Xylose (20)

w/o 12.9 19.0 a 8.9 2.4 1.0 0.2
[77]

Thio (20) 12.0 1.8 a 13.7 1.3 1.0 7.5

Pseudot.
elfii

Glucose (20)
w/o 3.1 8.8 4.0 0.0

[77]
Thio (20) 10.4 2.0 17.9 23.00

Glucose (20)
w/o 2.75 7.70 3.49 1.05 n. d.

[145]
Thio (20) 8.15 n. d. 12.63 0.41 14.55

Ts.
geolei Glucose (0.28)

w/o 7.0 b 9.3 a 8.5 b 1.2 b 0.5 b
[87]

S0 (2%) 6.0 b 0.0 a 7.5 b 0.5 b 12.5 b

Ms.
Prima Phos

Ac3
Glucose (20)

w/o 1.50 ± 0.20 <1 c 1.67 ± 0.21 1.05 ± 0.25

[27]
S0 6.57 ± 0.19 <1 c 9.21 ± 0.13 24.40 ± 0.30

Ms.
Prima

MesG1Ag4.2T
Fructose (20)

w/o 1.00 ± 0.23 <1 c 0.70 ± 0.41 1.18 ± 0.41

S0 3.27 ± 0.85 <1 c 8.48 ± 1.96 18.03 ± 5.16

Ts.
africanus

Glucose (28)
w/o 7.20 16.80 7.90 <0.2 0.79 n.d.

[145]
Thio (20) 7.70 1.00 12.40 - - 14.60

Ts.
atlanticus

Glucose (28)
w/o 5.6 12.5 1.7 0.14 -

[92]
S0 (1%) 6.0 7.5 1.9 0.15 1.3

F.
islandicum

Glucose (20)
w/o 14.20 21.58 6.25 3.98 n.d.

[145]
Thio (20) 16.20 n. d. 20.25 1.22 34.02

F.
pennavorans Glucose (11)

w/o - 0.25 * 6.7 * 4.0 ± 0.5 * 1.3 *
[32]

Thio (20) - 0.2 * 6.7 * 4.50 * No *
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6. Metal Ions

Typically, hydrothermal ecosystems are enriched with essential micronutrients and
trace metals such as soluble and insoluble iron, manganese, cobalt, and molybdenum. Some
terrestrial hydrothermal waters are also characterized by chromium and uranium contents
of several micrograms per liter [151]. The physiological roles that most of these metals play
in microbial metabolism are still largely unknown. It is believed that their functions include
energy generation and biosynthesis [151]. In addition, Mn, Fe, Zn, and Co metals are vitally
important micro-elements for growth, essential for cellular transport processes, and serve
as cofactors for many enzymes [152]. Understanding the physicochemical properties of
extreme habitats can help to determine the metal toxicity limits on microbial growth in
laboratory settings. Indeed, metal susceptibility tests have been carried out on T. neapolitana,
T. maritima, and Ts. africanus, and have identified the following toxicity order: cadmium
(1.0–10.0 µM) > zinc (0.01–0.1 mM) > nickel (1.0–5.0 mM) > cobalt (1.0–10.0 mM) [153].

Attention has also been paid to Fe (III) reduction by thermophilic bacteria, since Fe
(III) may work as an external electron acceptor in microbial metabolism [154]. Members of
the phylum Thermotogae are capable of coupling the reduction of iron with the oxidation
of a wide range of organic and inorganic compounds. T. maritima reduced Fe (III) into
Fe (II) exclusively with molecular hydrogen as an electron donor [154]. Fe (III) reduction
has also been reported to stimulate growth and mitigate H2 inhibition in Pseudot. lettingae,
Pseudot. subterranea, Pseudot. elfii, Ts. affectus, Ts. globiformans, and Ts. activus [75,76,88,89,91].
The recently characterized member of the order Mesoaciditogales, A. saccharophila, changed
fermentation end-products when growing with Fe (III), favoring the production of small
amounts of acetate, isobutyrate, and isovalerate [14].

Ions and metals are generally supplied in Thermotogae growth media through Balch’s
oligo-elements solution [155]. The removal of oligo-elements from T. maritima cultures
resulted in a minor increase in lactic acid production (1.2 vs. 4.3 mmol/L) and a decrease
in H2 productivity (12.4 vs. 8.8 mmol/h/L) [52]. Limitation in iron lowered H2 production
by deviating the fermentation pathway towards the production of more reduced end-
products such as lactic acid in mixed cultures [156,157]. Another study [139] highlighted
how the supplementation of Fe ions to mixed cultures had pronounced effect on hydrogen
activity [139]. Similarly, Fe2+ (as well as Co, Ni and Mn) stimulated Pseudot. hypogea
alcohol dehydrogenase activity (ADH), an iron-containing enzyme involved in alcohol
fermentation, by 10–15%, while Zn2+ completely inhibited the enzyme activity [158]. On
the same base, the inclusion of tungsten in the growth medium of T. maritima increased
the specific activity of both hydrogenase (by up to 10-fold) and PFOR in cell-free extracts,
although the function of tungsten in the metabolism of T. maritima is not clear [123,126].

As for magnesium, potassium, and calcium ions, they not only play critical roles in bac-
terial growth, but also act as enzyme cofactors and ensure the survival of microorganisms
in their hot ecosystems, by protecting double-stranded DNA from degradation [159]. The
best cell yields were obtained with a low concentration of Mg2+ and a high concentration
of Ca2+ [126]. It would be worthwhile to dig further into the metal ions repercussions on
Thermotogae metabolism in future research.

7. Conclusions

Steam reforming of methane (CH4) is currently used to produce hydrogen in the
industry, as it is the most economic technology available so far. Producing hydrogen
by biological means at an industrial scale remains as a challenge. Within the race to
find the best way to generate hydrogen via microbes (e.g., choice of strains, substrates,
fermentation conditions), Thermotogae seem to have many unique advantages. Optimization
of their cultivation conditions is fundamental to improve the overall productivity of the
fermentation system and its profitability, which determine the feasibility of replacing the
current methods of hydrogen production.

The phylum Thermotogae comprises a wide collection of species with astonishing and
unique features associated to their original habitats. Extensive research has shown tremen-
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dous potentials of using these bacteria in biological production of hydrogen, degradation
of wastes, and isolation of thermostable enzymes.

Many factors affect the anaerobic metabolism of Thermotogae species, including oper-
ating conditions (shaking, inoculum, gas sparging, and culture/headspace volume ratio),
temperature, pH, nitrogen, sulfur-containing compounds, sodium chloride, phosphate, and
metal ions. Optimization of these fermentation parameters has been intensively pursued
with Thermotoga and Pseudothermotoga species, which are the best hydrogen producers in
the phylum. In contrast, little is known regarding other species of the phylum, especially
their ability to synthesize desirable biological products.

In general, Thermotogae fermentation is affected by the accumulation of produced
biogas and organic acids because they increase hydrogen partial pressure inside of the
bioreactor and drastically reduce the pH of the cultivation medium. Consequently, the
metabolic process stops before the substrate is completely consumed. Gas sparging, stirring,
and adjusting culture/headspace volume ratio can help to overcome the inhibition on
growth caused by hydrogen accumulation. Implementing these strategies and adjusting
pH during the fermentation process can result in high hydrogen yields and efficient
consumption of substrates. A reduction of fermentation time by starting with the right
inoculum size could cast favorable great perspectives on the economics of the industrial
processes.

This review highlights the importance of nitrogen-containing compounds that need
to be supplied to the medium to stimulate bacterial growth. Overall, yeast extract and
tryptone are the preferred forms of nitrogen. Sulfur-containing compounds not only play
a critical role in bacterial growth but also divert reducing power to selectively produce
certain end-products in Thermotogae metabolism.

Until now, the impact of metal ions and salts on the fermentation process has not been
well investigated even though it has been demonstrated that they could stimulate many
key enzymes involved in various metabolic pathways.

In summary, the extensive data collection of this review offers a great reference for the
optimization and development of sustainable bioprocesses based on Thermotogae species
and helps to generate insightful perspectives for the exploitation of these anaerobic bacteria
in biotechnological processes.
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