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Simple Summary: With the advancement of existing technology, artificial intelligence is widely
applied in various fields of research, including cardiovascular studies. In this study, we explored the
feasibility of conducting a markerless cardiac physiology assessment in zebrafish embryos by using
DeepLabCut (DLC), a deep learning tool for motion analysis. Several cardiac parameters, such as
heart rate, diastolic–systolic volumes (EDV/ESV), stroke volume, cardiac output, shortening fraction,
and ejection fraction were obtained by the DLC-trained model and then compared to the previous
published methods, Time Series Analysis and Kymograph. This new method has several advantages,
having full automation, precise detection, and real-time labelling. This network was also trained to
analyze zebrafish with cardiovascular defects (pericardial edema) induced by chemical treatments
with ethanol and ponatinib. It was revealed that the heart rate, EDV/ESV, stroke volume, and cardiac
output from both the ethanol and ponatinib groups displayed significant reductions compared with
the control. Hopefully, this trained DLC network can contribute to a better understanding and
investigation of the existing cardiovascular system and abnormalities.

Abstract: DeepLabCut (DLC) is a deep learning-based tool initially invented for markerless pose
estimation in mammals. In this study, we explored the possibility of adopting this tool for conducting
markerless cardiac physiology assessment in an important aquatic toxicology model of zebrafish
(Danio rerio). Initially, high-definition videography was applied to capture heartbeat information at
a frame rate of 30 frames per second (fps). Next, 20 videos from different individuals were used to
perform convolutional neural network training by labeling the heart chamber (ventricle) with eight
landmarks. Using Residual Network (ResNet) 152, a neural network with 152 convolutional neural
network layers with 500,000 iterations, we successfully obtained a trained model that can track the
heart chamber in a real-time manner. Later, we validated DLC performance with the previously
published ImageJ Time Series Analysis (TSA) and Kymograph (KYM) methods. We also evaluated
DLC performance by challenging experimental animals with ethanol and ponatinib to induce cardiac
abnormality and heartbeat irregularity. The results showed that DLC is more accurate than the TSA
method in several parameters tested. The DLC-trained model also detected the ventricle of zebrafish
embryos even in the occurrence of heart abnormalities, such as pericardial edema. We believe that
this tool is beneficial for research studies, especially for cardiac physiology assessment in zebrafish
embryos.

Keywords: DeepLabCut; zebrafish; cardiac physiology; deep learning

Biology 2022, 11, 1243. https://doi.org/10.3390/biology11081243 https://www.mdpi.com/journal/biology

https://doi.org/10.3390/biology11081243
https://doi.org/10.3390/biology11081243
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0003-0089-6516
https://orcid.org/0000-0002-5715-9827
https://orcid.org/0000-0002-3403-0879
https://orcid.org/0000-0002-5906-9710
https://orcid.org/0000-0001-6398-1828
https://orcid.org/0000-0002-2709-2633
https://orcid.org/0000-0003-3997-1683
https://orcid.org/0000-0002-6398-8672
https://doi.org/10.3390/biology11081243
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology11081243?type=check_update&version=2


Biology 2022, 11, 1243 2 of 18

1. Introduction

Due to its transparent body and relatively short development processes, the zebrafish
is a widely used model for numerous biological studies, including cardiovascular and
genetic screenings [1,2]. These fish are also easy to culture, cheap, and have the potential
for a high-throughput screening [3]. Zebrafish hearts are typically used for drug testing,
which involves the evaluation of different cardiovascular parameters, such as heart rate,
the frequency of shortening fraction, stroke volume, ejection fraction, cardiac output, and
heartbeat regularity [4]. Numerous methods were developed to detect and quantify the
zebrafish heart rate, including visual inspection, electrocardiogram (ECG) use, and image
processing methods [5]. However, a visual inspection of the cardiac rate is time-consuming
and operator dependent. Using ECG, cardiac events can easily be seen, but recording
electrocardiographic traces from embryonic zebrafish requires precisely positioned elec-
trodes, which is an essential step in obtaining reproducible ECG signals [6]. Nowadays,
the flexibility to evaluate cardiac performance is mostly based on image processing. By
choosing a specific image-processing strategy, the tool can also be used to analyze these
animal models. Several previously established methods for cardiac physiology assessment
in zebrafish are summarized in Table 1. However, these methods also have limitations
which may involve multiple steps before the cardiac function can be obtained.

Table 1. Summary of previous detection methods and endpoints for cardiac physiology assessment
in zebrafish. Abbreviations: dpf: days post-fertilization; hpf: hours post-fertilization.

Species Detection Method Detection Endpoints Literatures

Danio rerio (36–120 hpf)
Detection algorithms written in

Matlab based on changes in pixel
intensity and color segmentation

Heartbeats and heart rate
irregularity Pylatiuk et al., 2014 [7]

Danio rerio (3 dpf)

Using green fluorescent
protein-expressing zebrafish

Tg(cmlc2: GFP) to automate the
myocardial phenotype screening

Number of heart contraction times
based on subsite pixel intensities

changes
Burns et al., 2005 [8]

Danio rerio (72 hpf)
Heart rate was calculated by the
software “DanioScope” using a

Noldus DanioVision system

Heart rate in beats per minute
(BPM) based on video assessment

of inter-beat intervals
Zhong et al., 2021 [9]

Danio rerio Kymograph plugin in ImageJ
Heartbeat regularity, stroke volume,

ejection fraction, shortening
fraction, and cardiac output

Kurnia et al., 2021 [4]

Danio rerio ImageJ based on the dynamic pixel
changes method

Atrium rhythm and heartbeat
frequency Santoso et al., 2019 [10]

Another approach is integrating artificial intelligence (AI) deep learning-based meth-
ods into cardiovascular research. In recent years, AI and computer vision libraries were
used for many applications in the healthcare industry to reduce costs and time, and enhance
clinical practices [11]. AI allows accurate information to be produced and large datasets to
be quantitatively analyzed, which would not be feasible manually. It integrates omics data
with additional layers of information, such as videos, imaging, and other electronic health
records [12]. A deep learning-based method required training to compensate for automated
analysis of images and demonstrate consistency with the overall assessment [13]. This ap-
proach also relies on framework selection to find features in images or object detection [14].
Several deep learning methods established for cardiac physiology assessment in zebrafish
are shown in Table 2. However, these methods require some coding skills and advanced
computer units. In addition, most of these studies do not provide or share complete details
on how the programs were used or run. These deep learning methods also seem to be
developing rapidly, making it more difficult to keep track of the details of each procedure.



Biology 2022, 11, 1243 3 of 18

Table 2. Summary of deep learning-based methods and endpoints used to conduct cardiac physiology
assessment in fish.

Species Deep Learning Method Detection Endpoints Literatures

Danio rerio (3 dpf)

Automatic assessment of
cardiovascular function based

on a U-net deep learning
model

Shortening fraction and ejection fraction
of masked ventricles Naderi et al., 2021 [15]

Danio rerio (embryonic)
A stand-alone software that

uses C# language with
the.NET Framework 4.5.2

Shortening fraction based on two pairs of
marking points from the diastolic and
systolic heart edges of the ventricles

Nasrat et al., 2016 [16]

Danio rerio (48 to 96 hpf)
Automatic detection of the

heart region by using an
intelligent robotic microscope

Heart-region detection based on the
intensity and difference images which

can be used to distinguish the heart
dysfunction

Spomer et al., 2012 [17]

Danio rerio OpenCV-based approach Heart rate and heartbeat regularity Farhan et al., 2021 [18]

Danio rerio Cardiac Functional Imaging
Network (CFIN)

Shorteing fraction, ejection fraction, heart
rate, and cardiac output Akerberg et al., 2019 [19]

Danio rerio Zebrafish Heart Rate
Automatic Method (Z-HRAM)

Heartbeat detection based on zebrafish
body expansion and contraction

movements
Xing et al., 2018 [20]

Danio rerio (2–3 dpf) DeepLabCutTM (DLC) using
ResNet-152

Calculation of volume change, heart rate,
stroke volume, ejection fraction,

shortening fraction, cardiac output, and
heartbeat regularity based on 8-point

labeling of heart edges for short and long
axis lengths

In this study

At present, deep learning has made significant progress in the field of neuroscience,
behavior observation, and other analyses related to health examination. Researchers have
studied deep learning to train models to track user-defined features for different animals,
simplifying traditional feature engineering and image-processing methods [21]. In 2018,
Mathis et al. developed an open-source software package called DeepLabCut (DLC), a
markerless pose estimation tool to define body parts using deep learning [22]. It combines
pre-trained Residual Networks (ResNets) with deconvolutional layers to create a deep
convolutional network capable of object recognition and semantic segmentation. This
toolbox is provided with several features to extract frames automatically or manually from
videos for labeling, create a training dataset based on labeled frames, train networks by
selecting the desired framework, and identify the locations of these features in unlabeled
data. Basically, DLC enables the creation of tailored part detectors adapted from the body
parts of interest that have been labeled. DLC can then be applied to novel videos after a
few hours of network training. Although DLC was demonstrated in a mouse [23], fruit
fly [24], cat [25], monkey [21], and zebrafish [26] based on the labeling of their outer body
parts, there are no inherent limitations. This toolbox can be applied to other models or
non-model organisms with a broad range of characteristics.

In this study, we explored the feasibility of conducting a markerless cardiac physiol-
ogy assessment using DLC in an important aquatic toxicology model, the zebrafish. By
demonstrating the practical use of this tool, a better understanding and evaluation of deep
learning applications in cardiovascular research can be established. We also demonstrated
that trained deep-learning models could generate accurate predictions when given a simple
anatomical feature, such as the heart chamber.
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2. Materials and Methods
2.1. Zebrafish Maintenance

Wild-type AB strain zebrafish (Danio rerio) were obtained from Taiwan Zebrafish Core
Facility (Academia Sinica, Taipei, Taiwan). Sexually matured male and female zebrafish (4 to
6 months old) were used for breeding. An E3 medium and methylene blue mixture were used
to culture the zebrafish embryos [27]. The zebrafish embryos were maintained at 25–27 ◦C
with a 14:10 h light:dark cycle. At 2 and 3-days post-fertilization (dpf), zebrafish embryos
were used for cardiac physiology assessment. All experiments in this study involving
zebrafish were approved by the Institutional Animal Care and Use Committees (IACUCs) of
Chung Yuan Christian University (Approval No. 109001, issue date 15 January 2020).

2.2. High-Definition Videography

Up to 10 zebrafish were placed onto a microscope slide and mounted with 3% methyl-
cellulose for immobilization. The heart chamber movement (ventricle) for each individual
fish embryo was recorded using a high-resolution 4K CCD (XP4K8MA, ToupTek, Zhejiang,
China) mounted on an upright microscope (EX20, SOPTOP, Taipei, Taiwan). The video
was recorded for 1 min for each individual fish embryo at a resolution of 3840 × 2160 at
a rate of 30 fps. The heart position was identical for each recording, and in this case, the
head position of animal models was on the left side to maintain consistency throughout the
training process. We repeated at least triplicates video recording for microscope slides.

2.3. DeepLabCut Training

The recorded videos were then used for the training process in DeepLabCut™ (Version
2.2.05, Mathis Group, Swiss Federal Institute of Technology, Lausanne, Switzerland) [22].
The training dataset was generated using a combined 2 and 3-dpf untreated zebrafish
(control) group and a chemical treatment (ethanol and ponatinib) group. Ten (10) videos
from each group were selected and 20 frames were extracted automatically from each video
by OpenCV with a K-means algorithm. In this function, the video was downsampled to
frames and clustered based on visual appearance [28]. Generally, this procedure ensures
that each extracted frame looks different. After the frames were extracted, each was labeled
with eight different points, namely 1, 2, 3, 4, 5, 6, 7, and 8 (Figure 1). The points between
1 and 5 were then connected by a black line to indicate the short axis (Ds) of the heart
chamber. Points 3 and 7 were also connected by a black line to indicate the long axis (Dl).
In this study, as an initial step, we used and compared ResNet-50, 101, and 152 to the image
augmentation (imgaug) method to train our labeled data with 50,000 iterations. After the
training, the network was evaluated and was ready to be used to analyze the videos. This
process was repeated and increased by 50,000 iterations until a total of 500,000 iterations
was reached. Finally, based on each ResNet network train-and-test error results, ResNet-
152 was selected, due to it having the best performance. The ResNet-152-based neural
network [29] with default parameters for 500,000 training iterations was performed. This
was validated with ten shuffles, which resulted in the evaluation network of the test-and-
train error rate (based on X and Y pixels position). The network was then utilized to analyze
new videos and detect the heart chamber of the animal model with similar experimental
settings. Afterward, seven cardiac parameters were calculated: end-diastolic volume (EDV),
end-systolic volume (ESV), heart rate, SV, CO, EF, and SF.
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Figure 1. The experimental design was used to detect and label the heart chamber of zebrafish in
this study. On top, the animal model: zebrafish (Danio rerio) was used in this study as it is widely
used for toxicity studies since its body transparency makes it suitable for cardiovascular assessment.
Up to 20 videos of a heart beating with a duration of 1 min were collected. The bottom section
describes how DLC performed the training process for dataset and video analysis, resulting in a
labeled zebrafish ventricle heart chamber.

2.4. Cardiac Parameter Calculation

The data calculations were processed in Microsoft® Excel® for Microsoft 365 MSO
(Version 2206 Build 16.0.15330.20260) 32-bit. EDV and ESV were calculated with the
following equation by assuming the ventricle is spheroid:

EDV or ESV =
1
6
× π × Dl × Ds

2

The data were further processed in Origin 9.1 software (Originlab Corporation,
Northampton, MA, USA). By using the Peak Analyzer tool provided in the Origin software,
the EDV, ESV, and heart rate were determined. EDV and ESV represent the heart volume
during diastolic–systolic phases. Heart rate was defined as the number of times the heart
beats per minute (bpm) and was obtained by dividing one minute with the time interval of
consecutive beats. After EDV, ESV, and heart rate were obtained, other parameters such
as stroke volume, cardiac output, and ejection fraction were measured. Stroke volume
represents the volume ejected with every heartbeat (1 cycle) between the EDV and ESV
(calculated by the equation below).

Stroke volume = EDV − ESV
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The cardiac output is the total amount of blood pumped within a time frame (1 min)
and was calculated by the following equation:

Cardiac output = Stroke volume × heart rate

The ejection fraction is the volumetric fraction (percentage) change of blood that is
pumped out from the heart chamber during diastolic phase which is important to measure
heart contractility. It was calculated by the following equation:

Ejection f raction =
Stroke volume

EDV
× 100%

Lastly, the shortening fraction—another cardiac parameter—represents the percentage
reduction in the length of the end-diastolic diameter by the end of systole. Similar to the
ejection fraction, it measures the contractility of the heart muscle, and it can be calculated
by the following equation:

Shortening f raction =
Dsd − Dss

Dss
× 100%

where Dsd is the short axis diameter during the diastolic stage and Dss refers to the short
axis diameter during the systolic stage. All formulations and calculations in this study
were conducted based on our previous publications [4,30].

2.5. Data Validation with ImageJ and Kymograph

To validate the cardiac parameter results analyzed by DLC, we also applied the
ImageJ method with the Time Series Analysis (TSA) plug-in (https://imagej.nih.gov/ij/
plugins/time-series.html) (accessed on 22 July 2021) and the kymograph (KYM) generation
with broadly applicable routines (BAR) plug-in (https://imagej.net/BAR) (accessed on 8
August 2021) to compare the data. The TSA and KYM methods were performed in ImageJ
Version 1.53e on Windows 10 Home. For the TSA method, the peaks of beat intervals were
retrieved based on the change in dynamic pixels of blood during diastolic–systolic phases.
Meanwhile, in the KYM method, the time-lapse for heart contraction–relaxation images
were created in a two-dimensional plot comprising time and space information. Similar
output results with total of seven cardiac parameters were calculated. The protocol was
conducted based on our previous publications [4,30,31].

2.6. Chemical Exposure to Induce Cardiac Abnormality

We further improved our zebrafish cardiovascular detection performance by adding
some irregular or abnormal heart morphology images to the training dataset. To achieve
this, ethanol and ponatinib were used to induce pericardial edema in zebrafish embryos.
Ethanol was purchased from the Sigma-Aldrich Corporation (Taipei, Taiwan), and pona-
tinib was purchased from Shanghai Aladdin Bio-Chem Technology Co., Ltd. (Shanghai,
China). Based on a previous study, 2% ethanol was added to 10-hpf zebrafish [32]. A
separate group of 2-dpf zebrafish embryos was exposed to 2.5 ppm of ponatinib for the
ethanol-treated group [33]. Pericardial edema was successfully induced in both groups on
day 3. All data were recorded using the same method as explained in the previous section.

2.7. Heart Rate Variability Measurement by Poincaré Plot

The heart rate variability (HRV) for the control and chemical treatment groups was
evaluated using the Poincaré plot plugin (https://www.originlab.com/fileExchange/
details.aspx?fid=404) (accessed on 13 March 2022) in Origin 9.1 software (Originlab Corpo-
ration, Northampton, MA, USA). The Poincaré plot illustrates HRV through a scatter graph
that is useful for quantifying the heart rate regularity or irregularity [34]. The plot was
created by inputting the time interval of consecutive heartbeats into the data column. The
Poincaré plot was then performed with default settings and with the confidence level for

https://imagej.nih.gov/ij/plugins/time-series.html
https://imagej.nih.gov/ij/plugins/time-series.html
https://imagej.net/BAR
https://www.originlab.com/fileExchange/details.aspx?fid=404
https://www.originlab.com/fileExchange/details.aspx?fid=404
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plotting an ellipse: 0.95. The HRV was determined by two indices: the standard deviation
1 (sd1) and standard deviation 2 (sd2) that represented instantaneous and continuous
long-term beat intervals, respectively [35].

2.8. Statistics

The graphical visualization and statistical analyses were performed using GraphPad
Prism software (Version 8.0.2., GraphPad Software, Inc.: San Diego, CA, USA). To compare
cardiac physiology using the DLC, TSA, and KYM methods, statistical significance was
carried out with repeated measures (RM) one-way ANOVA, followed by the Tukey’s
multiple comparisons test. The control and chemical treatment groups were statistically
analyzed by ordinary one-way ANOVA, followed by Fisher’s LSD test as the post hoc
multiple comparison test. Meanwhile, the sd1 and sd2 of the HRV results were statistically
analyzed by the Kruskal–Wallis test, followed by the uncorrected Dunn’s test.

3. Results
3.1. Overview of Experimental Design

The DeepLabCut (DLC) Python toolbox is versatile, user-friendly, and accessible without
needing advanced skills in the programming language. With few trainings of framed
images, the network can be trained to achieve human-level labeling accuracy, which makes
it applicable for multiple research studies, such as behavior analysis, motion analysis, and
medicine. In DLC, the training datasets are prepared based on several initial videos [26].
DLC identifies frames corresponding to the range of movement and object identity based on
postures. Once the frames are extracted, the points of interest can be labeled. Checking the
accuracy of these annotated frames and correcting them as needed can be done by visual
inspection [29]. All extracted labeled frames are then merged and subdivided into train-and-
test frames to create the training dataset [22]. To predict the points of interest, a pre-trained
network (ResNet) is then refined to adapt its weights according to the labels made by the user.
Using the train-and-test frames, one can compare the performance of the trained network.
The trained network can be used to analyze videos and extract the pose files [36].

In this study, the cardiac physiology of zebrafish embryos was evaluated by using DLC.
The first step was to record the heart movement of this animal model. Since the zebrafish
has two heart chambers, it is difficult for the microscope to focus on both chambers. Thus,
only one chamber of the ventricle was examined. The video was recorded for 1 min (30
fps) at a 4K resolution of 3840 × 2160 and saved in .mp4 format. After that, 20 frames
from each video were automatically extracted using the K-means algorithm. Eight points
surrounding the heart chamber were labeled to mark the heart movement. The marker
points were then trained using a deep learning approach using a ResNet neural network
until 500,000 iterations were reached. The trained datasets were stored in configuration
files and used to conduct additional analysis on the novel videos. The heart chamber from
the novel videos could then be recognized and labeled automatically (Figure A1). The
output data X and Y coordinates were used as a starting point for determining the short
axis length, long axis length, and volume (Figure A2), which were used to calculate the
cardiac parameters, such as EDV, ESV, stroke volume, heart rate, cardiac output, shortening
fraction, and ejection fraction. The experimental design of this study is shown in Figure 1.

3.2. DeepLabCut Training for Zebrafish

We adopted the deep neural network, using the ResNet model. This network model
has remarkable performance, as it is prepared with information, different capable models,
and visual acknowledgment frameworks [37]. The training network was evaluated using
different ResNet networks provided in DLC: ResNet-50, 101, and 152. The iteration process
started from 50,000 to 500,000, then the train-and-test errors (pixels) were calculated using
the p-cutoff method. ResNet-152 provided the best performance on zebrafish compared
with ResNet-50 and ResNet-101 (Figure 2). The evaluation results showed that ResNet-101
had the lowest accuracy. This is demonstrated by the results of the train-and-test error rates
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which were statistically higher than those of ResNet-50 and 152 (Figure 2A). Meanwhile, no
significant difference is observed between ResNet-50 and ResNet-152. However, ResNet-152
still performs the best, having the lowest train-and-test error rates. Therefore, the ResNet-152
network was selected for the training process and video analysis in this study. ResNet-152 is
a convolutional neural network with 152 layers, and it has features to learn within various
abstraction levels to improve its performance [38]. Supporting our data, the ResNet-152
network was reported to achieve the highest accuracy in machine health monitoring. In
experiments to predict cancer and detect malignant and benign cells, ResNet-152 performed
better than ResNet-18, 50, and 101 [39]. It is an effective recommendation predictor with
high training and testing accuracy but requires a longer prediction time for interpretation.
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Figure 2. Train error rate (A) and test error rate (B) with p-cutoff evaluation results with 500,000
iterations in zebrafish heart chambers. The statistical difference was analyzed using ordinary one-
way ANOVA, followed by Dunn’s multiple comparison test. The different letters (a and b) indicate
significant differences with p < 0.05.

DLC effectiveness was determined using Euclidean distances between the location
labels (x and y coordinates) from training and testing [40]. The location of the centroid of
each label was then predicted by ResNet-152. In addition, based on the centroid location,
the position of the heart chamber was identified to study its movement. In relation to
movement, the x and y coordinates are crucial for counting the distance of pixels to find the
short and long axes of the heart chambers. A semi-automatic feature can be achieved by
involving machine learning algorithms to complete this task. The trained network provides
researchers with a quick and efficient method of quantifying cardiac parameters using
animal models studied in a laboratory.

Using ResNet-152, the videos were analyzed, and eight points on the heart chamber
outer area were labeled (Figure 3A). After the video was analyzed, the plot position of
each point was generated to resemble the trajectory of heart movement. Here, evidence
is provided to demonstrate the excellent performance of ResNet-152. Several cases of
trajectory positions are displayed in Figure 3. For example, Figure 3B shows the normal
condition of heart movement and position without any disturbance during video recording
(Video S1). Meanwhile, the other two figures (Figure 3C,D) display irregular cases with
atypical trajectory positions that were generated due to interference caused by a technical
problem or by the animal itself. In Figure 3C, the microscope slides moved slightly, but
DLC detected and labeled the movement precisely (Video S2). Another case is shown in
Figure 3D, which displays irregular label positions. This incident occurred because the fish
suddenly moved during the video recording. However, DLC could still follow the heart
chamber position precisely, as shown in the supporting videos (Video S3).
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Figure 3. The representative image plots of the ventricle chamber labeled by DLC. (A) Eight different
circle points label the ventricle of zebrafish larvae. (B) Plot created from normal placement without
interference. (C) Plot created from a microscope slide that was moving slightly. (D) Plot created from
the zebrafish heart that suddenly moved.

3.3. Cardiac Physiology Comparison between DLC and ImageJ in Control Animals

Data validation was performed for DLC by comparing it to the previously published
ImageJ Time Series Analysis (TSA) and kymograph (KYM) methods. Based on the re-
sults, the TSA, KYM, and DLC methods did not significantly differ in terms of heart rate
(Figure 4A). However, in terms of volume change, we found that there was no significant
different between these three methods, except the KYM method displayed a lower ESV
compared with DLC and TSA (Figure 4B,C). With the other cardiac parameters, the TSA
method displayed significantly more extensive results than DLC, as observed in normalized
stroke volume and cardiac output. However, no significant difference was found between
DLC and KYM in those parameters (Figure 4D,E). Meanwhile, in two other parameters,
shortening fraction and ejection fraction, TSA and KYM displayed significantly higher
outcomes than the DLC method (Figure 4F,G). Despite the different outcomes displayed in
some cardiac parameters, these methods still succeed in measuring cardiac physiology in
the animal model.
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methods in zebrafish. Results for heart rate (A), end-diastolic volume (B), end-systolic volume
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(G), from three methods were compared statistically by RM one-way ANOVA followed by Tukey’s
multiple comparisons test. Data are expressed as mean ± SD and significant differences (p < 0.05) are
indicated by lower case a, b, and c (n = 15).

3.4. Cardiac Physiology Assessment in Zebrafish Embryos after Chemical Treatment

To improve the performance of the DLC network dataset further, we selected two
chemicals (ethanol and ponatinib) previously reported to cause cardiovascular defects. Both
the ethanol 2% and ponatinib 2.5 ppm groups induced heart deformation and pericardial
edema in zebrafish embryos at 3 dpf (Videos S4 and S5, respectively). Based on the
results, the trained network also detected and labeled the ventricle chamber despite heart
malformation due to chemical exposure. After the cardiac parameters were calculated, it
was revealed that the heart rate, EDV, ESV, stroke volume, and cardiac output from both
the ethanol and ponatinib groups showed significant reduction compared with the control
(Figure 5A–E). Meanwhile, for the shortening fraction and ejection fraction endpoints, only
the ponatinib group displayed a significant reduction (Figure 5F,G).

Based on the time interval between heartbeats, HRV for the control, ethanol, and
ponatinib-treated groups was calculated using the Poincaré plot. Using an ellipse-fitting
method, the plot was adjusted using two indices: the standard deviation of instantaneous
beat intervals (sd1) and the continuous long-term between two successive peak intervals
(sd2). Based on the results, ponatinib caused significant increases in both sd1 and sd2
values, which indicates the higher irregularity of heartbeat compared with the control
(Figure 5A,B). In sync with the heartbeat dynamic volume-change patterns (Figure A3), the
chemical-treated group, especially ponatinib, had the highest standard deviation value in
the Poincaré plot (Figure 6C–E).
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Figure 6. Heart rate variability evaluation in zebrafish embryos after exposure to ethanol 2% and
ponatinib 2.5 ppm. Data analyses were conducted based on the standard deviation 1 (sd1) (A) and
standard deviation 2 (sd2) (B) of the heart chamber generated by Poincaré Plot (C–E). The sd1 and sd2
results were statistically analyzed by Kruskal–Wallis test, followed by the uncorrected Dunn’s test.
Data are expressed as mean ± SD, and statistical difference is indicated by **** p < 0.0001 (n = 20).

4. Discussion

In this study, the zebrafish was chosen as an animal model for studying the cardiovas-
cular system. Zebrafish have a rapid reproduction rate, and the embryo has a transparent
body, making it possible to observe the heart and its contractility easily. The zebrafish
heart has a simple architecture that consists of two major chambers: a ventricle and an
atrium [41]. In this study, we focused on ventricular analysis. Throughout the cardiac
cycle, the image of the zebrafish heart was imaged in a lateral position with the ventricle
section clearly visible, while the atrium was laid outside the plane of focus. Compared
with the atrium, the ventricle is primarily spherical and elongated (ovoid) in morphology,
with a spherical index of 0.83 [42]. On the other hand, the atrium has an irregular shape
which is ineffective for morphology-based quantification. In clinical analysis, ventricular
length is more reliable because it can also be measured during echocardiography [43].
Several publications also preferred to focus only on the ventricular area of the zebrafish for
cardiovascular research [44–46].

4.1. Advantages and Limitations

The main advantage of the DLC code is that it provides a graphical user interface
(GUI) with simple steps for frame extraction, point labeling, training, and video analysis to
retrieve the pose data [22]. Without putting any visible markers on the locations of interest,
the system can achieve human-level accuracy using only a small number of training images.
Furthermore, DLC is a free, open-source software, with a large-scale discussion forum. It is
an excellent motion analysis tool applied in diverse organisms, such as rodents, primates,
insects, and fish. The deep features allow DLC to extract body parts despite various
background challenges or camera distortions [47]. In addition, DLC possesses a refinement
step to take advantage of different scenarios for improving tracking performance [48]. DLC
can predict the points without requiring consistency across the frames. It can also retrieve
or locate the points of some features that are not initially detected due to occlusions or
motion blurs, a capacity lacking in other tracking methods [49,50].

A limitation of DLC is that this software requires modern computational hardware,
such as graphical processor units (GPUs), in order to deliver fast and efficient results. GPUs
are necessary to manage and improve memory to accelerate graphics rendering, which is
useful for machine learning [51]. Another consideration is that the convolutional networks
analyze images based on the scale in pixel size; thus, larger images will be processed
more slowly [52]. In this study, we considered using 1280 × 720 as maximum resolution
videos; however, the choice of resolution still depends on the performance of each computer.
Furthermore, DLC is designed for general purpose, so it cannot track any occluded points
and does not rely on heuristics, such as a body model [53]. In addition, high-resolution



Biology 2022, 11, 1243 13 of 18

videos were required in this study to observe and monitor heart movement. Thus, we
used a high-quality charged-coupled device (CCD) and digital microscopy with higher
magnification to capture the heart chamber. With this set-up, DLC delivered sharp and
detailed visual colors allowing us to clearly mark and label the edge of the heart. Camera
settings were also adjusted to ensure optimal recording results.

4.2. Cardiac Physiology Comparison between DLC and ImageJ Methods

In comparison, these three methods displayed identical results in terms of cardiac
rhythm, as indicated by the heart rate values. In the TSA method, the heartbeat was
measured by dynamic pixel changes of blood in the heart chamber. The dynamic pixel
changes showed that, during the systolic phase, the pixel intensity increased when the
hemocytes were pumped out from the heart chamber, while during the diastolic phase,
lower pixel intensity was observed [31]. On the contrary, DLC measured the heart volume
changes by the location of labels generated. Meanwhile, the KYM method used a similar
approach by detecting heart chamber movement (contraction and relaxation), but was
still limited by manual selection. Each method in this study successfully measured the
heart rate equally well, which demonstrates that these methods are able to identify and
determine the diastolic–systolic stage (heartbeats) either by pixel intensity changes or
chamber movement. However, the statistical comparison showed significant differences in
some cardiac parameters between the newly developed method (DLC) and the previously
published methods (TSA and KYM). To obtain the cardiac parameters from the TSA and
KYM methods, it required several steps, including manual counting [5]. In addition, most
of the tools in the ImageJ software is a freehand ruler, which might cause inaccuracy,
especially if the heart chambers are small [15]. Since the regions of interest (ROI) in the TSA
method are selected manually by using a circle tool with a limited size selection [31], the
results might be affected depending on the users. The heart diameter at the diastolic stage
(heart relaxation) and systolic stage (heart contraction) were then manually measured by
drawing a straight line on a single frame as representatives in ImageJ. Similarly, for the
KYM method, the user must draw a line from the inner part of the heart to the outermost
area during diastole. This line is fixed; thus, the heart movement detection is limited by the
predefined line boundaries. In addition, ROI selection is also limited due to possible image
noise (random variation of brightness) potential in certain heart regions. Another problem
is that fish embryos might float in the mounting medium, which can cause a shift in the
pixel intensity pattern. However, in DLC, the shift or floating movement from the animal
models in the mounting medium can still be analyzed without any problems. Unlike the
TSA and KYM methods, DLC also provides functionality that enables users to confirm the
output results based on the labeled videos and x–y positions of whole video frames. This
evidence might explain the difference in cardiac performance results retrieved from these
two different methods since the outcomes of the ImageJ-based method is mainly affected
by the ROI selection. The limitations of the TSA and KYM methods are also the reason for
researchers using a different approach, such as the machine learning method, to collect
and process data more comprehensively. Based on these findings, we conclude that the
DLC method is more advanced and reliable because it uses a machine learning approach,
requires less user involvement, and includes functionality that enables users to confirm the
reliability of the training model.

4.3. Comparison of the Cardiac Parameters between Control and Chemical-Treated Zebrafish

As previously reported, ethanol and ponatinib exposure causes heart developmental
defects [33,54]. Li et al., 2016 reported that zebrafish larvae exposed to 2% ethanol displayed
incomplete and damaged blood vessels, alteration in permeability, decreased blood volume,
and a deformed heart [32]. Similar to our study, the heart volume became much smaller,
and the heart rate decreased. Pericardial edema was observed, caused by the damaged
dorsal aorta and arteries that disrupted the blood and fluid circulation [55]. Ponatinib,
as low as 3 µM, was reported to induce severe cardiac edema, blood vessel disorders,
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and narrowing of the dorsal aorta [33]. Similar to our study, ponatinib was also reported
to reduce the shortening and ejection fraction in zebrafish [56]. In terms of heart rate
variability, ponatinib induces high irregularity. This chemotherapeutic agent is known
to be highly related to arrhythmias and contributes to various ECG changes [57]. All the
cardiovascular disorders in the experiment were well evaluated using the newly developed
method. Despite the abnormalities caused by ethanol and ponatinib, our DLC-training
network performed well in defining the ventricle chamber of zebrafish embryos. Shrinkage
and downsizing of the atrium chamber were also observed in both chemical-treated groups.
The present results also provide additional evidence that it is preferable to focus the analysis
on the ventricular section since its morphology is still well recognizable despite alteration
of cardiac morphology due to chemical exposure.

5. Conclusions

In conclusion, a trained DLC model for automatic detection of the ventricle chamber
in zebrafish was established. Using the ResNet-152 network, we retrieved the x–y coordi-
nates of each labeled position, which were then used to calculate several multiple cardiac
parameters. This study also revealed that the DLC method displayed identical results
in term of cardiac rhythm compared to the previous published TSA and KYM methods.
However, in some cardiac parameters, different results were obtained, which might be due
to manual measurement and ROI selection-dependency from the ImageJ-based method.
Compared with these previous methods, DLC has the advantage of real-time labeling of the
whole video frames, with full automation. In addition, the DLC model was also trained to
recognize the ventricle chamber despite disruption in cardiac morphology and pericardial
edema resulting from ethanol or ponatinib exposure. With this trained model, improvement
and increased robustness in detection in zebrafish embryo heart videos were achieved. In
the future, hopefully, this trained DLC network can be enhanced with additional training
dataset videos from various cardiovascular studies so that this model network can further
contribute to a better understanding and investigation of the existing cardiovascular system
and abnormalities. It is also necessary to compare this newly developed method to another
deep learning tool that uses a similar approach in the future.

Supplementary Materials: The following supporting information can be downloaded, Video S1: The
heart outlook able to be labeled by DLC in zebrafish embryos aged at 3dpf. https://drive.google.
com/file/d/1OM-ZBYPc0e1n_warEe35fS776Trl_xDf/view?usp=sharing (accessed on 10 August
2022). Video S2: The heart outlook able to be labeled by DLC in zebrafish embryos aged at 3dpf
even if the detected subjects are sliding slowly during video recording. https://drive.google.com/
file/d/1ZyvO7lYFcJHgyi1pqjv5hJcEK39gu6YD/view?usp=sharing (accessed on 10 August 2022).
Video S3: The heart outlook able to be labeled by DLC in zebrafish embryos aged at 3dpf even
if the detected subjects suddenly move from their original position. https://drive.google.com/
file/d/1rryMmJEXdeADXwB0L76osGoQHDnnpSJ4/view?usp=sharing (accessed on 10 August
2022). Video S4: The abnormal heart outlook (edema) able to be labeled by DLC in zebrafish
embryos aged at 3dpf exposed to 2% ethanol. https://drive.google.com/file/d/1_GXMhrdjVcmK1
U5ASM6IF_adx15-IbpM/view?usp=sharing (accessed on 10 August 2022). Video S5: The abnormal
heart outlook (edema) able to be labeled by DLC in zebrafish embryos aged at 3dpf exposed to
2.5ppm Ponatinib. https://drive.google.com/file/d/1PlhvEM9lwVtaIFfPFDkvXZZCEk9Ubq81/
view?usp=sharing (accessed on 10 August 2022).
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