
Using Multi-Task Learning-Based
Framework to Detect ST-Segment and
J-Point Deviation From Holter
Shuang Wu1†, Qing Cao1†, Qiaoran Chen2, Qi Jin1, Zizhu Liu1, Lingfang Zhuang1,
Jingsheng Lin3, Gang Lv3, Ruiyan Zhang1* and Kang Chen1*

1Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
2Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China, 3Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Artificial intelligence is increasingly being used on the clinical electrocardiogram workflows.
Few electrocardiograms based on artificial intelligence algorithms have focused on
detecting myocardial ischemia using long-term electrocardiogram data. A main reason
for this is that interference signals generated from daily activities while wearing the Holter
monitor lowered the ability of artificial intelligence to detect myocardial ischemia. In this
study, an automatic system combining denoising and segmentation modules was
developed to detect the deviation of the ST-segment and J point. We proposed a
ECG Bidirectional Transformer network that applied in both denoising and
segmentation tasks. The denoising model achieved RMSEde, SNRimp, and PRD values
of 0.074, 10.006, and 16.327, respectively. The segmentation model achieved precision,
sensitivity (recall), and F1-score of 96.00, 93.06, and 94.51%, respectively. The system’s
ability to distinguish the depression and elevation of the ST-segment and J point was also
verified by cardiologists as well. From our ECG dataset, 103 patients with ST-segment
depression and 10 patients with ST-segment elevation were detected with positive
predictive values of 80.6 and 60% respectively. Using Holter ECG and transformer-
based deep neural networks, we can detect subtle ST-segment changes in noisy ECG
signals. This system has the potential to improve the efficacy of daily medicine and to
provide a broader population-level screening for asymptomatic myocardial ischemia.
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1 INTRODUCTION

Cardiovascular disease management is becoming increasingly standardized, such as by establishing
chest pain centers and improving regional collaborative treatment networks. However, at least 290
million Chinese people are suffering from cardiovascular diseases, particularly ischemic heart disease
(IHD), and the morbidity and mortality of cardiovascular diseases are increasing annually (Du et al.,
2019;Ma et al., 2020). There are two points that cannot be ignored. The awareness rate of IHD risks is
lower than the prevalence rate (Garrido et al., 2020; Daponte-Codina et al., 2022), and the difficulty
in treating ischemia comes from poor regeneration of cardiomyocytes after IHD and myocardial
infarction (MI). Although the myocardium of the patients with chronic coronary syndrome has been
damaged, the tolerance of myocardial cells to ischemia increases due to the formation of coronary
collateral circulation. ST-segment changes of chronic coronary syndrome usually appear on the ECG
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when the patients have increased oxygen consumption of the
body, such as during exercise, while ST-segment changes of acute
myocardial infarction can appear when patients are at rest.
However standard ECG records myocardial electrical activity
when patients are in a calm state, such that an abnormal ECG
is less likely to be identified. Holter has the advantage of recording
heart electrical activity for longer periods, and the ischemic
alterations seen on Holter simultaneously during chest pain
bouts can assist in the diagnosis of angina. It also offers
higher diagnostic performances for painless myocardial
ischemia as well. Therefore, long-term monitoring and early
detection are critical.

Artificial intelligence (AI) has presented its ability to solve
complex and time-consuming problems, freeing cardiologists
from their heavy lifting. Our previous research (Du et al.,
2021) had proposed an FM-ECG AI-based model to identify
various cardiac abnormalities in 12-lead standard ECG data.
Furthermore, we believe that large-capacity long-term dynamic
electrocardiograms, Holter, are better suited to AI algorithms for
precisely analyzing every heartbeat to manually interpreting IHD
from such a large volume of ECG data, which is a time-
consuming task. Various automated algorithms for identifying
IHD and MI have been advocated because of the in-depth
integration of AI in medicine. Tadesse et al. (2021) proposed
an end-to-end algorithm for identifying the time occurrence of
MI using a 10 s 12-lead ECG. Their model could classify normal,
acute, recent, and old onset cases of MI, with AUROCs of 96.7,
82.9, 68.6, and 73.8%, respectively. Cho et al. (2020) developed an
algorithm to classify MI and non-MI using 12-lead and 6-limb
lead ECG data (500 Hz, 10s) with AUROCs of 0.902 and 0.880,
respectively. Zhao et al. (2020) developed an algorithm to detect
ST-segment elevated myocardial infarction (STEMI) using 667
STEMI ECG data. In the comparison test, their model
outperformed cardiologists. Martin et al. (2021) used lead II
ECG data from the PTB-XL database to develop a Deep-
LSTM network for detecting real-time MI. The proposed
model achieved an accuracy, recall, and specificity of 77.12,
75.85, and 83.02%, respectively. Makimoto et al. (2020)
developed a CNN to recognize MI using 289 ECG data from
the PTB database. They then examined the abilities of the model
and physicians to identify MI and non-MI. The CNN achieved a
higher f1 and accuracy. In cardiovascular diseases, changes in the
ST-segment on ECG are closely related to myocardial ischemia.
Xiao et al. (2018) proposed a CNNmodel to detect ST changes for
examining ischemia using ECG data selected from the long-term
ST Database that contains 65 24 h two-and fifteen three-lead
ambulatory records. Their CNN model achieved an AUC,
sensitivity, and specificity of 89.6, 84.4, and 84.9%, respectively.

The studies mentioned above have contributed to AI-enabled
ECG analysis. Some studies included coronary angiography as the
gold standard for myocardial infarction (Cho et al., 2020; Zhao
et al., 2020), which makes the MI training data more reliable.
Moreover, we also found that most of the duration of the ECG
data used for analysis was 10s. Long-term ECG can help capture
discontinuous ECG abnormalities, such as the ST-segment
deviation of unstable angina and other myocardial lesions.
However, some challenges arise when analyzing ST-segment

changes on long-term ECG. First, although detecting subtle
changes in ECG waves early and with great precision is
necessary to reduce the risk of acute myocardial ischemia, a
significant amount of research has concentrated on arrhythmia
classification rather than on MI detection (Hong et al., 2020). A
main reason for this, we assume, is that interfered signals from
daily activities while wearing the Holter reduced the AI’s capacity
to diagnose IHD. Second, 12-lead ECG data should be used to
diagnose myocardial ischemia andMI, but some researchers have
only used the single-lead ECG data. Third, although public
datasets have ready-labeled and less noisy ECG signal, public
data are sometimes too clean to apply to the real world owing to
individual differences and the diversity and complexity of
diseases. Moreover, existing publicly accepted public datasets
for long-term ECG have been collected from abroad. Regional
differences may affect model results.

To alleviate the problems mentioned, we collected real-world
Holter ECG data, and the ECG Bidirectional Transoformer
network (EBTnet), which is a transformer-based structure, was
proposed to precisely detect the location and deviation of the ST-
segment and J point on 12-lead Holter ECG data at the beat level
and provide cardiologists with more accurate information about
myocardial ischemia.

To the best of our knowledge, this is the first study to examine
the prospect of combining ECG signal denoising and wave
segmentation in the same model structure with exceptional
accuracy to determine the position and the degree of IHD.

2 MATERIALS AND METHODS

2.1 Model
2.1.1 Overall Workflow
Figure 1 presents a schematic of the systemworkflow. The system
starts by cropping the long-term ECG signal into patches of 7168
sampling points. In every patch, each lead is processed using the
following procedures. Noises in the ECG signal is first eliminated
using a denoising model, followed by a segmentation model to
detect the QRS complex of the denoised ECG signal. Then, the
filtered denoised QRS complex was segmented from every beat.
The ST-segment and J point amplitude of deviation of each
denoised QRS complex were calculated to determine any
abnormal results. Abnormal results were recorded once all
leads were evaluated. The pre-setting rules are used to
determine the location and deviation of the ST-segment
depression and elevation and J point elevation. The frequency
and last times of the prediction were calculated in a
straightforward manner.

2.1.2 EBTnet Network Structure
In this section, we proposed EBTnet for both ECG denoising and
segmentation tasks. ECG classification models usually need to
capture the subtle changes in both rhythmic and waveform
characteristics to improve performance. The results of ECG
denoising and segmentation models are more dependent on
the learning of local waveform attributes (e.g., P-waves, QRS
complexes, and T waves) and less sensitive to rhythmic attributes.
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Inspired by a swin transformer, a shifted window attention
mechanism was applied, which exhibited a strong capacity to
capture feature representations in images. Our network applies
one-dimensional (1D) bidireciton-shifted window-based
transformer blocks (1D bidirectional SWT Blocks) to enhance
the learning of ECG characteristic waveform representations.

As shown in Figure 2, EBTnet comprised an encoder, a
decoder, and skip connections following a U-Net design
(Ronneberger et al., 2015). Given an input ECG signal, a patch
embedding layer with a stride of 2 was used to downsample the
input and learn low-level features. The encoder contained a series
of 1D bidirectional SWT Blocks and downsampling layers. The
1D bidirectional SWT Blocks were used to learn the relative local
morphological characteristics from the ECG representational
features. Downsampling layers reduced the length of ECG
features, resulting in two benefits: increasing the attention field
of each ECG feature patch because the window size was fixed for
the entire network, and improving computational efficiency. The
symmetric decoder was built with 1D bidirectional SWT Blocks,
upsampling layers, and skip connections. The length of the ECG
featureswas doubled by an upsampling layer, which aimed to
restore the spatial information. The 1D bidirectional SWT Block
in the decoder mainly fuses the upsampling features and
representational features from the corresponding encoder layer

through a skip connection. Eventually, the decode would restore
the size of the ECG representational features from the encoder to
the original input size. The last layer was a linear projection to
either the denoising ECG signal task or QRS complex semantic
segmentation task.

2.1.3 1D Bidirectional SWT Block
A 1D SWT bidirectional block was built by extending the one-
way window-partitioning strategy of the shifted window-based
multi-head self-attention (SW-MSA) module from a swin
transformer block using a bidirectional strategy. This shifted
operation was designed to add information connections
between neighboring ECG patches. However, we noticed that
this connection was not fully utilized because the shift was only
forward. Therefore, we added a backward shift to further increase
the number of neighboring connections. The combination of the
forward and backward shift directions in succession was called
bidirectional.

Figure 3 shows three successive 1D bidirectional SWT
blocks, each block built by SW-MSA, followed by two
multilayer perceptron (MLP) layers with GELU non-
linearity. A residual connection was applied, and
LayerNorm (LN) layer was used before each MSA and MLP
layer. The SW-MSA was configurated with unshifted, forward-

FIGURE 1 | Schematic workflow of diagnosing ST-segment depression and elevation, and J point elevation from Holter electrocardiogram signal.

FIGURE 2 | The architecture of the EBTnet.
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shifted, and backward-shifted directions respectively. The
transformer block can be formulated as follows:

ẑ1 � W −MSA(LN(ẑl−1)) + zl−1,

zl � MLP(LN(ẑl)) + ẑl,

ẑl+1 � SW −MSA(LN(zl)) + zl,

zl+1 � MLP(LN(ẑl+1)) + ẑl+1,

where ẑl and zl are the outputs of the SW-MSAmodule and MLP
module of block l, respectively. Self-attention was defined
similarly as in previous study (Vaswani et al., 2017), which is:

Attention(Q,K, V) � SoftMax(QKT��
d

√ + B)V,
Where Q,K,V ∈ RM×d represent the query, key, and value
matrices, respectively.

FIGURE 3 | Three successive 1D bidirectional SWT blocks. Each SW-MSA is configured with unshifted, forward-shifted, backward-shifted, respectively.

FIGURE 4 | The illustration of SW-MSA module with (A) unshifted (B) forward-shifted, and (C) backward-shifted.
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The unshifted SW-MSA is a regular window-based multihead
self-attention. As shown in Figure 4A, the input feature with
length L was evenly partitioned into 112 windows of size L

112 in a
nonoverlapping manner. The forward-shifted SW-MSA is shown
in Figure 4B, where each ECG patch was shifted forward by half
of one window length, which is 56 � 112

2 . This operation was
implemented by arranging 56 lengths from the beginning to
appending the ending of the feature. This was followed by regular
window partitioning. Figure 4C shows the backward-shifted SW-
MSA. Each ECG patch was shifted backward by half of the
window. This operation is implemented by arranging 56
lengths from the end to appending the beginning of the
feature. The window size parameter chosen was purely result-
oriented, which details are shown in Supplementary Table S1.
And the comparison between our 1D Bidirectional SWT Block
and the regular SWT Block in denoising and segmentation tasks
are shown in Supplementary Table S2.

2.1.4 Multitask Inheritance Training Scheme
Although the denoising and segmentation tasks shared the same
architecture, training was performed separately. To enhance
connections between the two tasks, we applied a multitask
inheritance training scheme. First, the two tasks were trained
from scratch, where both the encoder and decoder use a random
weight initialization. Next stage, we repeated the training task.
The difference was that the weights of the encoder from each task
were initialized from the weights of another task encoder in stage
one. For example, the encoder weights of the model trained from
the denoising task in first stage were used as the initialization
encoder weights of the segmentation task model in the next stage.
We believed that both denoising and segmentation models
required a strong encoder to capture deeper ECG
characteristic waveform representations. Thus, the encoder of
each model was learned from the current task and inherits the
knowledge of another task. As for the data corruption concern
between the two tasks, when splitting the training, validation, and
testing datasets for the two tasks, we ensured that the training set
from one task will not be corrupted by another task’s validation
and test set.

2.2 Data Collection and Processing
2.2.1 Development Data Preparation
In this study, our ECG data comprised retrospective data from
adult patients (age ≥18 years). We collected two Holter ECG
(paper speed, 25 mm/s; amplification, 10 mm/mV; sampling
rate, 500 Hz) datasets: the R-ECG and the E-ECG. The R-ECG
dataset was used to develop the entire system, involving

276 12-lead Holter ECG records from the Department of
Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao
Tong University School of Medicine. The E-ECG dataset, as
the external test dataset, was collected from the Department of
Cardiovascular Medicine Ruijin Hospital Yuanyang Brunch,
involving 155 12-lead Holter ECG records. All the Holter data
were recorded using the same Holter electrocardiograph
device. All subjects wore the Holter monitoring device for
at least 12 h. The age distribution of the R-ECG dataset was
62.79 ± 14.78 years, with female and male percentages of 50.86
and 49.14%, respectively, in the R-ECG dataset. In the E-ECG
dataset, the age distribution of 155 subjects was 63.43 ±
14.06 years, with female and male percentages of 43.87 and
56.13%, respectively (Table 1). Figure 5 provides the structure
of our dataset.

Anonymized data were used to ensure patient confidentiality.
The algorithm team received anonymized data with only patients’
age and sex information for the subsequent model development.
Informed consent was not required, because the ECG data were
anonymized and deidentified.

2.2.1.1 Denoising Dataset
We built a mixed noise dataset to eliminate the various noise
types in the Holter ECG, which included the following:

i. The MIT-BIH Noise Stress Test Database (NSTDB) contains
two noisy leads with a length of 650,000 sampling points and
360 Hz with three common nose types: muscle artifacts,
electrode motion, and baseline wander (Moody et al., 1984;
Goldberger et al., 2000). The data were resampled to 500 Hz
to match our dataset standard.

ii. The Holter noise dataset was selected from 107 subjects,
including clean and noisy signals. Each period of the
signals lasted approximately 5 min.

iii. Holter noise signals were collected from daily exercise such as
jogging, climbing stairs, sitting, walking etc. These data lasted
approximately 2 h and were recorded from one subject. This
dataset (recorded in 12 leads with 500 Hz sampling rate)
represents noise types produced from daily exercise to some
extent.

The generation of noisy signals is as follows:

Synthesized noise ECG � clean ECG + α1 × noise ECG1

+ α2 × noise ECG2

where clean ECG and noise ECG were cropped from clean and
noise period signals separately under the same lengths; the period
was randomly cropped during training and fixed cropped during
validation and testing. In addition, α1 and α2 were randomly
generated between 0–0.5 during training, using a fixed random
seed during the validation and test stages. The synthesized noise
ECG was used as the input and the clean ECG was the ground
truth of the model.

The de-noising dataset contains 1626 clean samples and 678
noise samples from 108 subjects, the length of a sample is 7168
sampling points (14.336 s). In the inter-analysis, the data of the

TABLE 1 | Characteristics of R-ECG and E-ECG

Characteristics R-ECG E-ECG

Number of subjects 276 155
Age, mean ± SD 62.79 ± 14.78 63.43 ± 14.06
Male (%) 50.86% 43.87%
Female (%) 49.14% 56.13%
Heart rate, mean ± SD 73.54 ± 11.74 74.13 ± 11.55
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107 subjects were randomly grouped by a 7:1:2 ratio into training
set (n = 75), validation set (n = 10), and testing set (n = 22). And
in the intra-analysis, the data of 1626 clean samples and 678 noise
samples were randomly grouped by a 7:1:2 ratio into training set
(1138 clean, 474 noise), validation set (163 clean, 68 noise), and
testing set (136 clean, 325 noise).

2.2.1.2 QRS Complex Segmentation Dataset and Annotation
Creation
The QRS complex segmentation dataset contains 276 samples
from 116 subjects, with a sample length of 7168 sampling points
(14.336 s). In the inter-analysis, the data of the 116 subjects were
randomly grouped in a 7:1:2 ratio into the training set (n = 80),
validation set (n = 12), and testing set (n = 24). In the intra-
analysis, the data of 276 samples were randomly grouped in a 7:1:
2 ratio into a training set (n = 193), validation set (n = 27), and
testing set (n = 56).

This dataset was labeled by a primary cardiologist and a
post-graduate student and then reviewed by two senior
cardiologists. Two labels were created to annotate the QRS
complex: Calculated-QRS (CQRS) and Noised-QRS (NQRS).
CQRS denotes that the ECG signal quality of the currently
labeled heartbeat is sufficient to calculate the amplitude of the
ST-segment. In contrast, NQRS indicates that the current
heartbeat will be culled from the calculation process because
noise inference around the currently labeled heartbeat will
influence the calculation of the ST-segment and J point
amplitude. Further, Not-QRS (NOQRS) is used to mark
points that do not belong to the QRS complex.

2.2.2 Prediction Post-processing
To determine the position of the J point to confirm the location of
the ST segment and isoelectric reference line (IRL), to then
calculate the ST-segment and J point amplitude of deviation,
we labeled QRS complexes beats by beats. The ST segment was
defined from the J point to 60–80 ms after the J point. And We
used the position of the Q-Q interval of each heartbeat as the IRL:

IRL(i,l) � (Q(i,l) + Q(i+1,l))
2

where i denotes the heart beat number, l the lead number, and Q
the onset point of the QRS complex.

The position of the ST segment changes with the heart rate
(HR). As the heart rate increases, the ST-segment shortens. The
position of the ST-segment should be adjusted by the HR, as
follows (Smrdel and Jager, 2008; Sharma et al., 2017):

STi �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

J(i) + 80ms, ifHR(i) < 100 bpm
J(i) + 72ms, if 100 bpm≤HR(i) < 110 bpm
J(i) + 64ms, if 110 bpm≤HR(i) < 120 bpm
J(i) + 60ms, if 120 bpm≤HR(i)

According to the anatomy of the heart, leads I, aVL, and -aVR are
lateral limb leads; leads II, III, and aVF are inferior limb leads; leads
V1 and V2 are septal leads; leads V3 and V4 are anterior leads; and
leads V5 and V6 are anterolateral leads. On this basis, we divided
them into six groups; lead aVR was divided into one group
separately, while the other groups remained unchanged. Outliers
are defined as follows (Crawford et al., 1999; Ibanez et al., 2018):

FIGURE 5 | The structure of our datasets.
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i. ST-segment elevation (STE): At least two adjacent leads with
ST-segment elevation at J point ≥0.25 mV when a male is
younger than 40 years old, ≥0.2 mV in males aged ≥40 years
or ≥ 0.15 mV in females in leads V2–V3 and/or ≥0.1 mV in
the other leads.

ii. ST-segment depression (STD): At least two contiguous leads
in each group with ST-segment depression ≥0.05 mV.

iii. J point elevation: Compared with the earlier
electrocardiogram, new J point elevation ≥0.1 mV in all
leads (in the absence of V2 and V3 leads).

All outliers should last for a minimum period of 1 min after
the first outlier appeared.

2.2.3 Model Comparison and Validation on Public
Databases
We further validated the performance of the proposed models.
We chose DENS-ECG (Peimankar and Puthusserypady, 2021),
FCN (Chiang et al., 2019), Unet_LUDB (Moskalenko et al., 2020),
1D CNN Unet and DRnet (Qiu et al., 2021) to compare the
models’ performance on denoising and segmentation tasks. We
further validated the performance of our proposed system on
Long-term ST database (LTST DB) (Jager et al., 2003). The Long-
term ST database contains 20–24-h ambulatory 2- or 3- lead ECG
recordings sampled at 250 Hz from 80 subjects. Each record
includes beat-by-beat QRS complex annotations and ST-segment
measurements. In our study, the outliers were defined in line with
guideline and the standards differed across leads. Therefore, the
data without lead name were excluded. 46 2-lead and 3 3-lead
ECG recordings were chosen as external validation. To match our
standard and model input size, we chose the protocol C (Vmin =
100 μV and Tmin = 60 s) as annotation information and all data
were resampled to 500 Hz.

2.2.4 Statistical Analysis
The difference between the denoised and original groups before
and after denoising was assessed using a paired t-test. The
difference in segmentation model performance between the
test dataset from R-ECG and E-ECG was assessed using an
independent-samples t-test. The two-sided statistical
significance was set at p < 0.05. All data were analyzed using
IBM-SPSS® version 26.0 (IBMCorp., Armonk, NY, United States,
2019).

2.3 Performance Evaluation
In denoising task, we chose the AdamW optimizer for 300 epochs
under a cosine decay learning rate scheduler (Kingma and Ba,
2014). An initial learning rate of 0.0001, and batch size of 64 were
used. The mean absolute error (MAE) was selected as the loss
function. The evaluation metrics included the root mean square
error decrease (RMSEde), improvement of signal-to-noise ratio
(SNRimp), and percentage root mean square difference (PRD).
RMSEde is calculated using RMSEin to reduce RMSEout, and a
larger RMSEde indicates a better noise reduction performance.
RMSEde was obtained using the following expression:

RMSE de � RMSEin − RMSEout

RMSEin �

���������������
1
N

× ∑N
n�1

(xi − x̂i)2
√√

RMSE out �

���������������
1
N

× ∑N
n�1

(xi − ~xi)2
√√

SNRimp is calculated using SNRout to reduce SNRouint, and a large
SNRimp indicates better noise reduction performance. SNRimp

was obtained using the following expression:

SNRimp � SNRout − SNRin

SNR in � 10 × log10( ΣN
n�1x

2
i

ΣN
n�1(xi − x̂i)2)

SNR out � 10 × log10
⎛⎝ ∑N

n�1x
2
i

ΣN
n�1(xi − ~xi)2

⎞⎠
The RPD measures the quality of recovery from the noise

signal. A lower PRD value indicates better design quality. The
RPD is expressed as follows:

PRD �
�����������
ΣN
n�1(xi − ~xi)2
ΣN
n�1x

2
i

√
× 100,

where xi is the value of sampling point i in the clean signal, and x̂i

is the value of sampling point i in the input noise signal. ~xi is the
value of sampling point i in the output denoised signal, and N is
the length of the ECG signal.

In the segmentation task, the optimizer was AdamW for 300
epochs using a cosine decay learning rate scheduler. And initial
learning rate of 0.0001 and batch size of 64 were used. The loss
function chosen was cross-entropy loss function. This study used
precision, recall, and F1 are defined as follows:

Precision � True Positive

True Postive + False Postive

Recall � True Postive

True Postive + False Negative

F1 � 2 ×
Precision × Recall

Precision + Recall

where each sampling point is calculated individually.

3 RESULTS

3.1 Denoising Model
We compared the performance between our model and the
comparison models in inter- and intra-analyses, as well as in
one-stage and two-stage (shown in Table 2). All four encoder and
decoder models gain a better performance on multitask
inheritance training scheme than training from scrath in both
inter- and intra-analyses. All models gained better performance
of RMSE de, SNRimp, and PRD on intra-analysis than inter-
analysis in both training schemes. In inter-analysis, compared
with other models, our model achieved better performances in
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both one- and two-stage training schemes with RMSE de,
SNRimp, and PRD values of 0.074, 9.851, and 16.550 and
0.078, 10.903, and 14.726, respectively. Figure 6 shows the
inter-analysis denoising results of different methods on
multitask inheritance training scheme. The Five-fold Cross
validation of inter-analysis in denoising task is shown in
Supplementary Tables S3, S4.

We then compared the distribution of NQRS and CQRS
between original ECG signals (original group) and denoised
ECG signals (denoised group) in the same dataset
(Figure 7). The denoised group showed significantly more
CQRS labels and less NQRS lables than the original group
(p < 0.0001). In this work, we demonstrated that the great
performance of our denoising model and the impact of
signals quality on the segmentation model results. Good
signal quality is essential to improve the performance of
segmentation model.

3.2 QRS Complex Segmentation Model
Tables 3, 4 present the segmentation performances between
our model and the comparison models in inter- and intra-
analyses, as well as training from scratch and multitask
inheritance training schemes. All four encoder and decoder
models performed better in the multitask inheritance training
scheme than in the training from scratch in both inter- and
intra-analyses. Our model achieved better performances than
the other models in both inter- and intra-analyses. The
precision, recall, and F1 of CQRS in the inter-analysis were
96.00, 93.06, and 93.17%, respectively. The precision, recall,
and F1 of CQRS in the intra-analysis were 95.68, 96.04, and
95.86%, respectively. Figure 8 shows the inter-analysis
segmentation results of different methods on multitask
inheritance training scheme. The results showed that our
model was sufficiently accurate in distinguishing the QRS
complex, which laid the foundation for our subsequent
processing. The Five-fold Cross validation of inter-analysis in
segmentation task is shown in Supplementary Tables S3, S4.

3.3 Model’s Prediction Result
Table 5 presents the statistical outcome of our model’s
prediction of STD and STE in every lead group of the-ECG
and R-ECG test datasets. From the R-ECG dataset, our model
detected STD in 2 patients in the lateral limb leads (I, aVL),
100 patients in the inferior limb leads (II, III, aVF), 11 patients
in the aVR lead, 6 patients in the septal leads (V1, V2), 19
patients in the anterior leads (V3, V4), and 97 patients in the
anterolateral leads (V5,V6). Four patients had inferior leads
(II, III, aVF),3 patients had aVR lead, 3 patients had septal
leads (V1, V2), 4 patients had anterior leads (V3, V4), and 1
patients had anterolateral leads (V5,V6) with STE. In the
E-ECG dataset, our model detected STD in 2 patients in the
lateral limb leads (I, aVL), 23 patients in the inferior limb
leads (II, III, aVF),1 patients in the aVR lead, 2 patients in the
septal leads (V1, V2), 4 patients in the anterior leads (V3, V4),
and 20 patients in the anterolateral leads (V5,V6). One
patients had inferior leads (II, III, aVF), 1 patient had
septal leads (V1, V2), 2 patient had anterior leads (V3, V4)
with STE.

The prediction of the model was then double-checked to
ensure that the outliers were correct (Table 6). In the R-ECG
dataset, 103 patients with STD and 10 patients with STE were
detected with positive predictive values of 80.6 and 60%,
respectively. In the E-ECG dataset, 68 patients with STD and
4 patients with STE were detected with positive predictive values
of 76.5 and 50%, respectively. The performance of our model on
LTST DB is shown in Supplementary Table S5. And our model
achieved positive predictive values (precision) of STD and STE
with 97.37 and 82.35%, respectively. This result shows the
robustness and generalization of our model.

4 DISCUSSION

With the rapid development of computer vision and its in-depth
application in the medical field, we discovered that AI can capture
higher-dimensional information that is different from human

TABLE 2 | The comparison results of denoising models.

Model Training from scratch Multitask inheritance training

RMSEde SNRimp PRD RMSEde SNRimp PRD

Inter-analysis DENS_ECG 0.028 2.546 38.541 - - -
FCN 0.045 4.689 30.117 0.068(+0.022) 5.079(+0.390) 28.791(-1.326)
Unet_LUDB 0.058 6.625 24.099 0.062(+0.004) 7.323(+0.698) 22.236(-1.863)
1D CNN Unet 0.065 7.959 20.668 0.069(+0.004) 8.775(+0.816) 18.814(-1.854)
1D CNN Unet + DRnet 0.067 0.353 19.844 - - -
EBTnet 0.071 9.269 17.774 0.074(+0.003) 10.006(+0.737) 16.327(-1.447)

Intra-analysis DENS_ECG 0.058 6.541 35.842 - - -
FCN 0.068 8.409 28.908 0.070(+0.002) 9.049(+0.640) 26.852(-2.056)
Unet_LUDB 0.062 7.255 22.322 0.066(+0.004) 8.072(+0.817) 20.400(-1.922)
1D CNN Unet 0.068 8.790 18.363 0.073(+0.005) 9.672(+0.882) 16.967(-1.396)
1D CNN Unet + DRnet 0.072 0.369 17.599 - - -
EBTnet 0.074 9.851 16.550 0.078(+0.004) 10.903(+1.052) 14.726(-1.824)

Inter-analysis: The training, validation, and testing set were divided based on subjects.
Intra-analysis: The training, validation, and testing set were divided based on samples.
The bold values not in parentheses are the results of our model (EBTnet). And the bold values in parentheses indicate that the results of multi-task inheritance training are better than the
results of training from scratch.
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thinking habits. A medical student must study for several years
before becoming a physician. Qualified cardiologists require
substantial professional training and experience to develop the
ability to identify complicated ECG information independently.
Furthermore, objective issues such as the unequal distribution of
medical resources may affect the diagnosis quality. In contrast to
doctors’ traditional learning methods, AI shows excellent
homogeneity and accuracy, potentially narrowing the gap
between outstanding physicians and rural doctors. Our
previous research (Du et al., 2021) proposed an FM-ECG AI-
based model to identify various cardiac abnormalities using 12-
lead standard ECG data, with ECG images as the model input. It
can also prove that AI can discover more information hidden in

subtle ECG waveform changes, or that AI is a microscope in the
world of data.

Some studies divided their datasets based on samples (Zhao
et al., 2020), while others based on subjects (Xiao et al., 2018; Cho
et al., 2020; Makimoto et al., 2020; Martin et al., 2021). In our
study, we compared inter- and intra-analyses. Our models
achieved impressive performances in both inter- and intra-
analyses. The models’ performance on the intra-analysis of
denoising and segmentation was better than inter-analysis.
However, splitting datasets based on samples may have cross-
contaminated the training, validation, and testing datasets,
particularly in standard 10s 12-lead ECG. Therefore, we
preferred the inter-analysis results.

FIGURE 6 | The inter-analysis denoising results of different methods on multitask inheritance training scheme. (A) Ground-truth ECG. (B) Noise-convolved ECG.
(C) Denoised ECG by 1D CNN Unet. (D) Denoised ECG by FCN. (E) Denoised ECG by Unet_LUDB. (F) Denoised ECG by EBTnet.
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Based on our research, we wanted to further explore the
application value of AI algorithms in Holter ECG, thus, we
developed an automatic system to detect ST-segment and J
point using Holter ECG data. To learn characteristic waveform
representations from ECG signals, we proposed a 1D
bidirectional SWT Block that employs a window-based
transformer mechanism for signal data. We discovered that
using only one time-series dimension is sufficient for position
embedding in a 1D bidirectional SWT Block, which preserves the
properties of the ECG signal and brings it closer to the
transformer’s native input. According to the results, our

models outperformed the other models in both denoise and
segmentation tasks. The denoising model achieved RMSE de,
SNRimp, and PRD values of 0.074, 10.006, and 16.327,
respectively. Our segmentation model achieved precision,
recall, and F1 scores of 94.51, 96.00, and 93.06%, respectively.
These result reveals that developing a high specificity model to
detect ST-segment deviation and J point elevation is possible.
Hypothesizing that AI explores higher-dimension information
that humans cannot paraphrase and AI can provide more novel
ECG digital labels that are different from our knowledge systems
to diagnose cardiac disease are reasonable.

The Holter ECG is recorded for a long time, and dividing it
into a image every 10 s as model input would require a lot of
computing resources. Therefore, we chose a 1D original ECG
signal as the model input. Another advantage for using a 1D
signal is that it contains the most primitive unprocessed
information, whereas 12-lead ECG images are pre-processed
by its ECG recording machine.

Prior deep learning studies have achieved strong performances in
clinical medicine (Hamet and Tremblay, 2017). With the rapid
development of mobile and wearable ECG technologies, several
excellent ECG algorithms have emerged (Attia et al., 2019). Most
existing AI-based ECG studies use public data sets to train their
models. Unexpectedly, when applied in the clinical environment, the
performance of the model still cannot satisfy clinical demands. To a
certain extent, this can be attributed to the quality of real-world ECG
data, which are more complex and variable than public datasets.
Caused by daily activities such as body movement and clothing
friction while wearing the ECG recorder, particularly the Holter
recorder, more interfered signals would be in the 1D original ECG
data. However, it requires high-quality signal data to precisely detect

FIGURE 7 | The distribution of NQRS and CQRS before and after
denoising in R-ECG and E-ECG datasets. Data are expressed as mean ± SD.
The difference between un-denoise and denoise groups was analyzed by
paired t-test, and the difference between R-ECG and E-ECG was
analyzed by independent-samples t-test. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001, and ns denoted no significance difference.

TABLE 3 | The comparison results of segmentation models in the inter-analysis.

Model Label Training from scratch Multitask inheritance training

F1 (%) Precision (%) Recall (%) F1 (%) Precision (%) Recall (%)

DENS_ECG NOQRS 95.41 96.46 94.37 - - -
CQRS 60.99 53.23 71.40 - - -
NQRS 0.00 0.00 0.00 - - -

DRNET NOQRS 99.21 99.44 98.97 - - -
CQRS 89.64 87.00 92.44 - - -
NQRS 42.35 45.61 39.53 - - -

FCN NOQRS 99.33 99.29 99.38 99.30 98.96 99.65
CQRS 90.04 88.53 91.61 91.55 94.76 88.55
NQRS 42.08 51.68 35.49 45.38 43.95 46.91

Unet_LUDB NOQRS 99.41 99.33 99.49 99.36 99.13 99.58
CQRS 93.79 91.74 95.93 94.06 92.96 95.19
NQRS 22.24 70.33 13.21 24.59 77.56 14.61

1D CNN Unet NOQRS 99.50 99.56 99.44 99.51 99.45 99.56
CQRS 93.22 93.13 93.31 94.48 95.17 93.80
NQRS 62.45 60.36 64.70 64.16 62.33 66.11

EBTnet NOQRS 99.47 99.53 99.40 99.52 99.44 99.61
CQRS 93.83 94.50 93.17 94.51 96.00 93.06
NQRS 69.62 64.07 76.24 71.85 68.50 75.54

The bold values not in parentheses are the results of our model (EBTnet). And the bold values in parentheses indicate that the results of multi-task inheritance training are better than the
results of training from scratch.
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subtle changes in J point and ST-segment deviation. Therefore, we
collected Holter ECG from the Ruijin Hospital, Shanghai Jiao Tong
University School ofMedicine. Then, we proposed a denoisingmodel
to reduce the disturbance of the interfered signals. We compared the
distribution of NQRS and CQRS before and after denoising using the
same dataset (Figure 7). A significant difference was observed
between the two groups. The denoised group showed more CQRS
and less NQRS labels than the original group (p < 0.0001). These
results suggest that our denoising model has sufficient capacity to
handle noisy signals and is conducive to the subsequent detection
accuracy. There is no significant difference between R-ECG and
E-ECG in each group, indicating that our model is sufficiently robust
enough to handle different datasets.

Since AI has been applied to ECG diagnosis in recent years,
arrhythmia has attracted the attention of several research teams.
Andrew et al. (Hannun et al., 2019) used a deep neural network to
analyze ECG data collected by a single lead ambulatory ECG
monitoring device, and the performance of their model was better
than that of professional physicians. Some researchers have
developed a CNN deep learning algorithm to classify AF, I-AVB,
left and right bundle branch blocks, atrial premature beats, and
premature ventricular contraction on standard 12-lead ECG records
(Oh et al., 2018; Jeong and Lim, 2021). However, in terms of shifting
the detection yield to myocardial ischemia and MI, however, certain
flaws have been encountered. Arrhythmia can be diagnosed with two
or three leads, whereas myocardial ischemia requires at least 12 leads
to affirm that the myocardial damaged position, as ECG waveforms
can be different in each lead when coronary artery damage occurs in
different locations. Moreover, the dynamic change of the ST-segment
in myocardial ischemia andMI is difficult to be captured by standard
12 leads ECG continuously, particularly in unstable angina.

To precisely identify the IHD, the proposed model is designed to
recognize the QRS complex to calculate the ST-segment and J point
deviation on 12 leads Holter ECG. Table 5 presents the statistical
results of our model. The J point masks the end of the ventricular
depolarization and the start of repolarization. The deviation of the J
point generally does not exceed 0.1mV, itmight suggest cardiac injury
otherwise. The precise positioning of the J point is also of great
significance. For example, it can be used to calculate PJ interval, which
indicates the conduction abnormalities when it is prolonged more
than 0.27 s. Althoughwe did not find patients with J point elevation in
our dataset, we found patients with STE and STD, which proves that
our system can positioning J point with excellent ability. Inferior wall
myocardial injuries are more common in patients with myocardial
injuries (Warner and Tivakaran, 2021). More STDs were detected in
the inferior leads (II, III, aVF) (Shah et al., 1983). Although inferior
myocardial infarction has a better prognosis than other cardiac
locations, we should note that it can be associated with right
ventricular infarction, which portends a worse outcome. STE was
always detected during the super-acute and acute periods of STEMI;
therefore, we captured less STE in our dataset than STD. We double-
checked the model’s prediction to confirm whether the outliers were
correct (Table 6). In the R-ECG dataset, STD and STE were detected
with positive predictive values of 76.9 and 64%, respectively. In the
E-ECG dataset, STD and STE were detected with positive predictive
values of 85.7 and 55.5%, respectively. STEMI accounts for 30% of
acute coronary syndromes, whereas acute coronary syndromewithout
significant STE accounts for 70%. Patients with STD accounted for
approximately 31% of acute coronary syndromes without significant
STE, whereas STD combined with T-wave inversions accounted for
16% (Bhatt et al., 2022). Our results are consistent with the
distribution of disease characteristics. STE can present as MI, acute

TABLE 4 | The comparison results of segmentation models in the intra-analysis.

Model Label Training from scratch Multitask inheritance training

F1 (%) Precision (%) Recall (%) F1 (%) Precision (%) Recall (%)

DENS_ECG NOQRS 90.87 97.39 85.18 - - -
CQRS 48.57 34.78 80.45 - - -
NQRS 0.00 0.00 0.00 - - -

DRNET NOQRS 99.21 98.93 99.48 - - -
CQRS 89.59 91.58 87.69 - - -
NQRS 45.99 47.65 44.45 - - -

FCN NOQRS 99.34 99.18 99.50 99.29 99.30 99.29
CQRS 91.52 89.83 93.29 93.56 92.07 95.11
NQRS 45.90 68.50 34.52 49.98 69.41 39.05

Unet_LUDB NOQRS 99.35 99.47 99.23 99.25 99.14 99.35
CQRS 91.36 86.93 96.27 93.23 91.52 95.00
NQRS 27.81 49.94 19.27 30.07 72.04 19.00

1D CNN Unet NOQRS 99.50 99.54 94.63 99.54 99.58 99.51
CQRS 94.63 94.31 94.96 95.21 94.15 96.29
NQRS 71.23 74.43 68.31 73.59 80.37 67.87

EBTnet NOQRS 99.57 99.52 99.63 99.61 99.53 99.70
CQRS 95.38 95.43 95.34 95.86 95.68 96.04
NQRS 76.76 79.75 73.99 78.75 85.70 72.84

The bold values not in parentheses are the results of our model (EBTnet). And the bold values in parentheses indicate that the results of multi-task inheritance training are better than the
results of training from scratch.
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pericarditis, myocarditis, vasculitis, and hyperkalemia. However, the
cases presenting with STE were assumed to be STEMI. STEMI is the
primary cause of STE and is a medical emergency that requires
prompt recognition and treatment (Chandra et al., 2011). Therefore,
fewer STEswere found amongHolter-wearing patients. In our dataset,
the number of patients with STE was small, and the results may have
improved if the dataset had a larger positive sample size.

For unstable angina and stable angina pectoris, approximately
half of the 12-lead standard ECG is normal when the diseases is
resting. Holter can record ECG for at least 24 h, and the ischemic

changes shown on ECG at a corresponding time during chest
pain attacks can determine the diagnosis of angina. In addition,
painless myocardial ischemia can be detected using a Holter ECG
recorder. Moreover, it would benefit patients with slight
myocardial ischemic symptoms who have a high risk of
cardiovascular or sudden cardiac death. Although Holter has
the above advantages for detecting myocardial ischemia, it is
rarely applied to automated myocardial ischemia monitoring.
Owing to the existing Holter equipment failure to detect ST-
segment with high precision, the result of the deviation of the ST-
segment does not help in diagnosis. That is, diagnosing silent

TABLE 5 | The distribution of the ST-segment depression and elevation in every
lead group.

Datasets Type I, aVL II, III, aVF aVR V1, V2 V3, V4 V5, V6

R-ECG STD 2 100 11 6 19 97
STE 0 4 3 3 4 1

E-ECG STD 1 23 1 2 4 20
STE 0 1 0 1 2 0

TABLE 6 | The result of cardiologist’s manual verification to validate the result of
our model.

STD STE

Our system Cardiologist Our system Cardiologist

R-ECG 103 83 10 6
E-ECG 68 52 4 2

FIGURE 8 | The inter-analysis segmentation results of different methods on multitask inheritance training scheme. (A) Ground-truth ECG. (B) 1D CNN Unet. (C)
FCN. (D) Unet_LUDB. (E) EBTnet.
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myocardial ischemia is still challenging since physicians cannot
analyze each heartbeat from 24 h of Holter ECG data.

The proposed system can provide more accurate information
with an excellent ability to handle large amounts of data to
cardiovascular system regarding whether the patients suffer
from myocardial ischemia while wearing Holter ECG recorders.
Furthermore, the accurate detection of the ST-segment and J point
may be a powerful force in resolving the excessive false alarms that
afflict current ST monitoring software.

4.1 Limitation
Several limitations of this study should be noted. First, it was
performed at a single center in Shanghai, China. Using external
real-word data sets from other regions is necessary for further
verification and analysis to ensure the validity of our AI model
worldwide. Second, the proposed model trained with ECG data only
incorporated age, sex, with biomarkers, medicines, or other history
information. Additional patient data may have further improved the
diagnostic value of our model and led to the discovery of previously
unknown conscious ECG information. Third, rather than using the
gold standard of coronary heart disease, such as coronary
angiography, our system’s conclusions were confirmed only by
cardiologists. In terms of models, the proposed denoising model
performes well in some inferred signals, but it is powerless with
severe noise signals, such as part of the lead falling off or vigorous
clothing friction. Moreover, to a certain degree, our model’s
diagnostic result may lack continuity and the period of STD is
discontinuous. This is because of our model judgment rules: an
abnormal condition is assessed as the associated abnormal label and
noted on the table only if it lasts for at least 1 min. The present QRS
complex is not be included in the computation if the model deems a
QRS complex as NQRS. Therefore, once an NQRS label appears in a
segment of the ST-segment abnormal ECG signal, our results show
the characteristics of the discontinuous distribution.

4.2 Future Study
We have investigated the possibility of applying AI to analyze ECG
images and 1D signals. Future directions are related to improving
the establishment of the Holter ECG dataset and merging of illness
information in more dimensions. First, more information about
the patient history and various inspection results will be recorded.
Patients who have a gold standard for CHD will be chosen as the
control group to verify our results. Other information such as
echocardiogram, electrolyte, blood lipid level, blood pressure, and
blood sugar can provide model more dimensional information to
diagnose and further predict potential diseases. Second, in the
current study, we failed to find patients with J point elevation, but
we expect that with additional Holter ECG data, we can screen
patients with J point elevation and follow them for years. We may
then look for a link between J point elevation and heart diseases end
events, as well as predict critical events such as ventricular

fibrillation and SCD. Third, in terms of AI models, we will
build a multi-label AI model to classify arrhythmia, MI, and
other disorders such as myocarditis and hyperkalemia using
long-term ECG data. Finally, future studies, particularly large
multicenter prospective cohort studies, would be conducted to
assess the prediction level of the AI model.

5 CONCLUSION

In conclusion, we proposed a transformer-structure-based
automatic system combining denoising and segmentation
modules, which can be applied to identify ST-segment and J
point abnormalities in patients from long-term Holter ECG data.
The proposed system has the potential to assist in clinical decisions
while reducing the burden on doctors with fewer medical resources.
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