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Abstract

Despite numerous demonstrations that the immune system is activated in heart failure, negatively affecting patients’ out-
comes, no definitive treatment strategy exists directed to modulate the immune system. In this review, we present the evi-
dence that B cells contribute to the development of hypertrophy, inflammation, and maladaptive tissue remodelling. B cells
produce antibodies that interfere with cardiomyocyte function, which culminates as the result of recruitment and activation
of a variety of innate and structural cell populations, including neutrophils, macrophages, fibroblasts, and T cells. As B cells
appear as active players in heart failure, we propose here novel immunomodulatory therapeutic strategies that target B cells
and their products.
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Introduction

Heart failure (HF) is accompanied by a systemic
pro-inflammatory state,1 in which both the innate and adap-
tive immune system participate.2,3 Despite mounting evi-
dence linking inflammation and HF, specific
immunomodulatory therapies for HF have not been success-
fully developed. This is explained in part because not all the
components of the immune system have been thoroughly in-
vestigated in the context of HF, as is the specific role that
each immune cell plays in the heart. Germane to this discus-
sion is the fact that the accumulated evidence shows that B
cells, both directly (by secreting antibodies) and indirectly
(by antigen presentation and cytokines/chemokines secre-
tion), play an essential role in the progression of HF. There-
fore, we suggest that addressing B cells more than B-cell
products in HF patients may serve as therapeutic alternatives

for patients with treatment-refractory HF. In this review, we
present current evidence of the role of B cells in adverse car-
diac remodelling, highlighting that this role is independent of
aetiology, and introduce our ongoing investigations into
novel immunomodulatory therapeutic strategies that target
B cells and their products.

Antibody-mediated mechanisms that
contribute to cardiac dysfunction

Antibody-mediated contribution to cardiac injury includes, on
the one hand, direct consequences of anti-cardiac antibodies
binding to target cells and, on the other hand, the activation
of the complement system following the formation of
antigen–antibody complexes.
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Direct effects of anti-cardiac antibodies

In a study of end-stage failing human myocardium tissue, we
reported the presence of immunoglobulin G (IgG) deposits in
up to 70% of heart tissue evaluated. Approximately 50% of bi-
opsies stained positive for the IgG of the type 3 subclass, and
a smaller proportion was also positive for C3c deposition.4 As
the IgG3 subclass exhibit the most effective
complement-fixating activity,5 its presence in heart tissue
can provide powerful signals of cell injury and to recruit in-
flammatory cells. Remarkably, the presence of IgG3 and C3c
in the myocardium correlated significantly with the length
and severity of illness.4,6 The evidence provided by this large
cohort and others demonstrates a strong association of fail-
ing myocardium with B-cell activation and potentially B
cell-mediated injury in HF in humans.4,6,7 An experimental
model of ischaemic cardiac injury further supports the role
of cardiac autoantibodies.8 In this model, ischaemic injury in
control mice produced myocardial infarction (MI) and de-
pressed ejection fraction, while infarct size was reduced, with
cardiac function improved in Ig-deficient mice.8

Autoantibodies might cause injury either by directly
interacting with target receptors on heart cells or by trigger-
ing signals via their Fc-binding domain when it is interacting
with Fc γ-receptors (FcγR) present on the surface of a variety

of cells.9 Activation of FcγR via the antibody Fc-binding do-
main implies that antibody specificity is irrelevant for this
pathway. Therefore, a large proportion of, or perhaps all,
anti-cardiac antibodies have these potential effects. FcγRs
are present on cardiac fibroblasts10 and cardiomyocytes.11

FcγR signal transduction promotes fibrosis in cardiomyocytes
and reduced calcium transients, cell shortening, and induc-
tion of cardiac cell death through activation of apoptotic
pathways in myocytes8,10,11 (Figure 1A).

Autoantibodies target a variety of proteins. In the context
of HF, most identified antigens are present on the cell sur-
face. However, a smaller number of intracellular proteins
are also known as anti-cardiac antibodies targets, such as sar-
comere proteins (e.g. actin, myosin, and troponin).7,12–15 The
consequences of anti-cardiac antibodies presence on heart
physiology depend on their target and also on how they mod-
ulate activity (Table 1). For instance, the most extensively
studied antibodies are those that target G protein-coupled
membrane receptors.28 Anti-M2 receptor antibodies have
been associated with negative chronotropism at the sinoatrial
level,23,24 negative inotropism,29 and supraventricular
arrythmias.24 In contrast, antibodies specific to the β1-adren-
ergic receptor induce positive chronotropism and
inotropism,20,29 cardiac hypertrophy, desensitization to
catecholamines,21 and cardiomyocyte apoptosis.22 Clinically,

Figure 1 Antibody-dependent mechanisms. (A) IgG3 antibodies can exert their function by being recognized through their Fc by Fc (fragment crystal-
lizable region) γ-receptor (FCγR) (1, 2) or by binding to specific surface receptors influencing their activity, as occurs with M2-adrenergic and β1-adren-
ergic receptors (3). (B) Antibody-mediated disease may also induce the activation of the complement system via the classical pathway ending in
membrane attack complex (C5b-9) formation and chemotaxis of myeloid cells, allowing inflammation, fibrosis, and tissue dysfunction promoting hy-
pertrophy and arrhythmias. C5aR, C5a receptor; TNF-α, tumour necrosis factor-α; TGF-β, transforming growth factor-β. Original image created with
BioRender®.
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anti-β-receptor antibodies are the best characterized and are
associated with compromised left ventricular function,30 in-
creased incidence of ventricular arrythmias,21,23 and mortal-
ity in patients with HF.21,31 (Figure 1A).

Anti-cardiac tissue antibodies as
activators of complement

Activation of the complement system is a well described out-
come of the presence of antibodies. The complement system
is an integral part of the innate immune response activated in
HF through three pathways. The classical pathway is medi-
ated by IgG and IgM antibodies, while the mannose-binding
lectin pathway and the alternative pathway depend on pro-
perdin (positive activator of complement activation) and
plasma factor D.4,32–34 All three pathways lead to the activa-
tion of plasma proteins in a coordinated manner by forming
an enzymatic complex requiring the sequential formation of
protein fragments. Activated complement may exhibit three
downstream consequences: (i) induction of leukocyte chemo-
taxis by anaphylatoxins (C3a and C5a) through their respec-
tive receptors (C3aR and C5aR); (ii) opsonization (C3b, iC3b,
and C3d) to facilitate transport and removal of immune

complexes; and (iii) formation of the terminal membrane at-
tack complex (C5b-9) to directly lyse targeted cells32 (Figure
1B).

As mentioned earlier, we have evidenced the presence of
C3c in the myocardium, which correlated with the duration
and severity of illness.4 In a different study, HF patients exhib-
ited increased circulating levels of the cleavage end product
of complement activation C5b-9 compared with healthy con-
trols, and this similarly associated with severity. C5b-9 in-
duced tumour necrosis factor-α (TNF-α) expression in
cardiomyocytes,35 a cytokine known to contribute to cardio-
myocyte hypertrophy, cardiac fibrosis, and apoptosis, all of
which are critical components of injury in HF.36,37 Interest-
ingly, C5b-9 deposits were associated with IgG deposition
and TNF-α expression in failing myocardium of patients with
dilated cardiomyopathy (DCM).35

The anaphylatoxin C5a also plays a direct role in inotropic
dysfunction via C5aR-mediated signalling in cardiomyocytes,
as evidenced in murine sepsis models.38 C5a appears to have
an essential role in adverse cardiac remodelling, as C5aR an-
tagonism decreased cardiac hypertrophy and perivascular fi-
brosis in a murine model of hypertension.39 Additionally,
C5a is a potent chemokine that attracts myeloid cells to sites
of damage32 and is capable of activating TGF-β-dependent
pro-fibrotic pathways in the heart39 (Figure 1B).

Table 1 The specificity of cardiac autoantibodies identified in patients with HF

Antibody specificity Aetiology Findings Reference

Heart mitochondria: M7
(sarcosine dehydrogenase)

DCM, HCM, and
acute myocarditis

React with heart mitochondria Klein et al.16

Laminin DCM and myocarditis Unknown Wolff et al.17

Hsp60 DCM and AMI Unknown Latif et al.7

Actin, tropomyosin, and
myosin light chain

DCM Unknown Latif et al.7

Adenine nucleotide
translocator

DCM Cytotoxic damage and enhanced calcium
current in cardiac myocytes

Liao et al.18

β1-ARs DCM Related to ventricular arrhythmias and
sudden death, altering calcium
management, modifying action potential,
and apoptotic cell death

Liao et al.19;
Christ et al.20;
Iwata et al.21;
Jane-wit et al.22;
and Chiale et al.23

M2-muscarinic acetylcholine
receptors

DCM Play a role in mediating the development
of atrial fibrillation probably by a sinus
node dysfunction

Baba et al.24;
Chiale et al.23

Sarcolemmal Na-K-ATPase DCM Associated to ventricular tachycardia Baba et al.25

Cardiac myosin DCM and children
myocarditis

Impair myocyte contractility and suggest
being associated with protein kinase
A activation and non-recovery

Warraich et al.12;
Simpson et al.13

cTnI DCM and AMI Less ventricular function after acute
myocardial infarction than patients with
negative titres and associated with
improved survival in patients with
chronic DCM, but not ICM

Leuschner et al.14;
Doesch et al.15

KChIP2 DCM and AMI Associates with cell death on
in vitro assays

Landsberger et al.26

ATP synthase β-subunit End-stage HF Unknown Youker et al.4

CS End-stage HF IgG CS autoantibodies in transplanted
hearts of patients vs. natural IgM
autoantibodies in healthy controls

Petrohai et al.27

DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; AMI, acute myocardial infarction; β1-ARs, β1-adrenergic receptors; HF,
heart failure; cTnI, cardiac troponin I; KChIP2, Kv channel-interacting protein 2; CS, citrate synthase.
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Triggers of B-cell activation and
anti-cardiac antibodies in heart failure

About 10% of B cells are present in healthy hearts, as demon-
strated in various mouse models.40–42 There, B cells are in-
volved in modulating the myocardial immune cell traffic as
well as left ventricular structure and function.42 Similarly, in
patients with failing heart tissue, B cells are present in the
intravasculature and in close contact with the endothelium.42

Following cardiac damage, damage-associated molecular pat-
terns (DAMPs) are released from damaged cardiac cells,
interacting with antigen-presenting cells such as B cells.2,43

Therefore, B cells have an important role in cardiac tissue
and can undergo DAMP-mediated activation, which in turn ac-
tivates T cells, overall contributing to the pro-inflammatory
milieu. In mouse cardiac tissue, B cells are present in the same
proportion as neutrophils.41 Neutrophils are the leading infil-
trating cells during MI2,44 and are the most abundant cells in
peripheral blood counts of patients along with the progression
of ischaemic HF.45 It has been reported that B cells and neu-
trophils act cooperatively,46,47 allowing an antibody
response,46 but B cell-helper neutrophil interactions in the
heart remain to be studied. However, there are at least three
mechanisms for the formation of anti-cardiac cell autoanti-
bodies. First, autoreactive naïve B cells evade negative selec-
tion mechanisms in the bone marrow, which then capture,
process, and present cardiac antigens (cAgs) through major
histocompatibility complex-II molecules to activate
autoreactive T helper cells.48,49 Second, large antigens with re-
petitive sequences can generate a T cell-independent humoral
response, a mechanism previously proposed for the formation
of myosin autoantibodies.50 Third, memory B cells could be
activated by contact with low doses of cAgs re-encounters,
causing T-cell activation and their differentiation to
long-lived antibody-producing plasma cells.51 This final mech-
anism is particularly relevant because it would allow maintain-
ing a constant autoantibodies production. All of these findings
are consistent with the clinical observation that a higher num-
ber of B cells, naïve and memory, during an ST-segment eleva-
tion MI (STEMI), are associated with increased mortality.52

Although the presence of self-reactive lymphocytes is a
prerequisite for the development of autoimmunity, the pres-
ence of inflammatory milieu is necessary to avoid peripheral
tolerance while promoting autoreactive cell full activation.53

HF can be thought as chronic inflammatory state,1,54 in which
increased levels of pro-inflammatory cytokines trigger im-
mune activation upon cAgs encounter. This inflammatory
state becomes more severe in terminal stages of the disease,
as TNF-α levels increase substantially with advancing New
York Heart Association (NYHA) stages. The rise in TNF-α levels
is explained as TNF-α is released from the failing myocardium
into circulation.37,55 Chronic inflammation is further pro-
moted by peripheral nuclear factor-κB activation secondary

to widespread tissue hypoxia and free radical generation in
advanced HF.54 This concept has been documented previ-
ously, in the context of diabetes mellitus type 1, where in-
creased local concentrations of TNF-α in pancreatic islets
resulted in enhanced T-cell autoreactivity to β cells.56 Fur-
thermore, considering that TNF-α is produced in Th1 inflam-
matory reactions, the increase in Th1:Th2 ratio is associated
with adverse cardiac remodelling and impaired function fol-
lowing MI57 and in decompensated HF.58 This is consistent
with results showing that peripheral Th cells are associated
with left ventricular dysfunction.59 Interestingly, interferon-γ
(IFN-γ) was significantly elevated in patients with NYHA III–
IV compared with NYHA I–II patients 30 days after MI.57

Th1 response facilitates the activation of B cells.60,61 IFN-γ in-
duces IgG3 expression,62 which is consistent with IgG3 de-
posits in failing myocardium.4,6 Finally, IgG3 deposits in
patients failing heart tissue are accompanied by mixed in-
flammatory infiltrates of B cells, T cells, and macrophages.6

Cardiac antigens may be a consequence of the expression
of neo-antigens and/or the failure of the mechanisms of
self-tolerance post-cardiac injury. However, there is evidence
of cross-reactivity from antibodies towards non-cardiac pro-
teins, which also interact with the myocardium and alter its
function. A well-documented example is the case of anti-
Sjögren’s syndrome, where related antigen A (anti-SSA or
Ro) antibodies are typically present in autoimmune disorders
like Sjögren’s syndrome and systemic lupus erythematosus
(SLE). These antibodies can cross-react with both T-type
Ca2+ channels (CaV3.1 and CaV3.2) and L-type Ca2+ channels
(CaV1.2 and CaV1.3), causing conduction disorders such as si-
nus bradycardia and atrioventricular block.63 Similar observa-
tions have been documented for autoantibodies recognizing
the NaV1.5 sodium channel and those targeting the KV11.1,
KV1.4, or KV7.1 potassium channels.63 This alternative mech-
anism is not necessarily caused by autoreactivity, as it can oc-
cur in response to infection, which generates
antibody-mediated cardiac injury by molecular mimicry. For
instance, in patients with rheumatic heart disease, antibodies
against streptococcal N-acetylglucosamine and α-helical
coiled-coil M proteins cross-react with cardiac myosin and
can produce myocardial damage.64

In patients with HF, mechanisms involving both
autoreactivity and molecular mimicry may be taking place fol-
lowing exposure to antigens that are normally ‘hidden’ from
the immune system (as occurs in myocardial injury from any
cause), a context in which autoantibodies, as well as other
cellular and soluble inflammatory mediators, may arise and
cause damage.28

Antibody-independent mechanisms

B cells can alter the cardiac function and induce remodelling
by secreting factors that influence cardiomyocytes, cardiac
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fibroblasts, and leukocytes. B-cell depletion in mouse models
of HF resulted in a decrease in infarct size, adverse ventricular
remodelling, and protected ventricular function,65,66 as well
as an attenuated hypertensive response.67 The protective
consequences on B-cell depletion were not recapitulated
when T cells were eliminated in this model.66 B-cell depletion
was accompanied by a significantly decrease in TNF-α, inter-
leukin (IL)-1β, IL-18, and BNP serum levels, myocardium apo-
ptosis, and IgG depositions65–67 in which the pro-
inflammatory, pathological phenotype was restored when B
cells were reintroduced.66,67

A recent report demonstrated that cardiac fibrosis was de-
pendent on the direct modulation of a specific cardiac B-cell
subset (CD19+CD11b�).40 In this mouse model of HF, it was
previously demonstrated that the splenic plasma cells (CD19+-

CD138+) and activated B cells (CD19+CD86+) are increased,67

which could migrate to the heart.42 Activated B cell secretes
cytokines and chemokines that may be directly involved in

pathways that lead to adverse cardiac remodelling such as in-
creased recruitment of monocytes, higher differentiation of
pro-fibrotic macrophages, and increased expression of TGF-
β, collagen-I, and IL-1β by fibroblast and macrophages.65,67

Activated B cells recruited inflammatory monocytes (Ly6C+)
to the myocardium in a CCL7-dependent fashion contributing
to adverse ventricular remodelling65 that is impaired by B
cell-activating factor (BAFF) neutralization, which promotes
B-cell depletion. Patients’ CCL-7 serum levels positively corre-
lated with increased risk of death and recurrent infarctions
after acute MI.65 Therefore, systemic depletion of B cells is
likely to reduce macrophage-induced myocardial damage.
As antigen-presenting cells, activated B cells can activate
CD4+ T cells and promote their differentiation into the Th1
phenotype. In turn, Th1 cells may stimulate cardiac fibrosis
through direct cell-to-cell interaction with cardiac fibroblasts,
favouring their transition to TGF-β and collagen-producing
myofibroblasts.68 Consequently, B cells promote a full

Figure 2 Antibody-independent mechanisms. After cardiac ischaemic and non-ischaemic injury, B cells become activated and proliferate in response to
damage-associated molecular patterns (DAMPs) that are released (from damaged cells and tissues) in response to cardiac injury. Their activation has
been associated with chemotaxis of LyC6 + CCR2

+
monocytes, which are involved in pathogenic remodelling and inflammation (1), though CCL7. The

secretion of pro-inflammatory cytokines is associated with fibrosis and detrimental function (2) as well as with proper cell activation and cell differen-
tiation. The promotion of T-cell activation and differentiation to the Th1 phenotype might be mediated by antigen cell presentation by B cells. This
response contributes to the inflammatory milieu and may subsequently stimulate cardiac fibrosis through cardiac fibroblasts (3). BAFF-R, B
cell-activating factor receptor; BCR, B cell receptor; CCL7, C–C motif chemokine ligand 7; CCR2, C–C chemokine receptor type 2; CD, cluster of differ-
entiation (CD19 and CD20); IFN-γ, interferon-γ; IL-1β, interleukin-1β; Th1, type 1 helper T cell; TGF-β, transforming growth factor-β; TNF-α, tumour ne-
crosis factor-α. Original image created with BioRender®.
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expression of HF and downstream cardiac injury by mediating
immune cells chemotaxis and activation, and these are im-
paired in the absence of B cells.

B cells undergo activation following acute decompensation
of HF, as indicated by the increased expression of CD69 in
patients.69 Higher concentrations of BAFF correlated with in-
creased risk of death or reinfarction.65 Furthermore, TNF-α-
secreting B cells in patients with DCM are associated with en-
hanced cardiac fibrosis, as demonstrated by late enhance-
ment on cardiac magnetic resonance imaging and higher
levels of serum pro-collagen type III.36 Thus, B cells may also
directly participate in cardiac remodelling through
up-regulation of TGF-β and IL-6 and further maintenance of
a detrimental inflammatory environment via TNF-α, IL-1β,
and IL-6 production (Figure 2).

Altogether, B cells initiate a self-perpetuating cycle of car-
diac injury through antibody-independent and
antibody-dependent mechanisms (Figure 3), in which damage
causes leakage of intracellular proteins and activation of
self-reactive B cells against other myocardial components.
This damage is further exacerbated by the phenomenon of
epitope spreading.70 Cardiac autoantigens are ubiquitously
present in the myocardium and, as such, cannot be fully
cleared by the ensuing inflammatory reaction. Therefore, it
seems logical that the inflammatory response continues

indefinitely and is amplified with every new insult to the myo-
cardium (e.g. a new infarct or acute decompensation of HF).
Accordingly, antibody and complement deposits tend to be
more frequent in the late stages of HF.4 Importantly, this
may partially explain why HF tends to follow an adverse nat-
ural history independently of current treatment strategies,
which only target neuroendocrine components of the
disease.

Potential endogenous modulators of
B-cell response in heart failure

There are at least two possible mechanisms that regulate
B-cell function in the HF setting. The interaction of the neuro-
endocrine system and immune cells and the role of regula-
tory B and T cells (Bregs and Tregs, respectively).

First, both T and B cells express β2-adrenergic receptors,
71

and activation of T and B cells in the presence of norepineph-
rine enhances cytokine and IgG secretion, respectively.72 This
implies that high levels of catecholamines may exacerbate im-
mune activation in HF. In accordance, B cells from patients
with congestive HF display intracellular Ca2+ leak due to
ryanodine receptor (RyR1) phosphorylation, possibly as

Figure 3 B cells play a central role in heart failure. After the cardiac injury, damage-associated molecular patterns (DAMPs) are recognized, processed,
and presented by resident B cells that become activated in a T-dependent mechanism. In response, B cells secrete cytokines and chemokines that con-
tribute with the inflammatory milieu along with the activated T cells mainly by a Th1 response (tumour necrosis factor-α and interferon-γ). Cell recruit-
ment as monocytes (Mn) become activated, promoting fibrosis, hypertrophy, and tissue remodelling. The inflammatory milieu allows autoreactive B
cells to become fully activated and differentiated into a memory B cell or plasma cell that produces mainly IgG3 antibodies against cardiac proteins.
This induces further myocardial damage by antibody-dependent mechanisms.
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consequence of catecholamine overproduction, although
their functional role in this context has not been evaluated,
intracellular Ca2+ is fundamental to B-cell activation.73 Inter-
estingly, it has also been shown that catecholamines enhance
monocyte mobilization from the bone marrow following
MI,74 which may be synergistic with B cell-derived CCL7 in
generating myocardial damage65 and promoting vascular
disease.

Second, Bregs have a role in suppressing self-reactive B
cells in various autoimmune diseases, and dysregulation of
Bregs has been proposed as a mechanism of autoimmunity.
Although specific surface marker or transcription factor pro-
files for Bregs subsets have not been clearly defined, these
cells are primarily characterized by the expression of the
anti-inflammatory cytokine IL-10 and the induced suppres-
sion of T-cell responses, including the impairment of cyto-
kine secretion by Th1 and Th17 lymphocytes.75,76 This
implies that Bregs may protect against contractile dysfunc-
tion by interfering with the pro-inflammatory environment.
Consistently, decreased levels of IL-10 have worsened car-
diac remodelling in murine models of angiotensin
II-induced cardiac injury.77 However, evidence of the role
of Bregs in human HF has only been addressed by two con-
tradictory reports. The first study showed increased num-
bers of circulating Bregs (CD19+CD5+CD1d+IL10+) in
patients with DCM.78 The second study reported opposite
results, albeit in a different Breg cell subpopulation (CD19+-

CD24hiCD27+IL10+), which also showed a decreased poten-
tial to suppress the TNF-α production by T cells.79

Therefore, further studies to evaluate the role of Bregs in
HF are warranted.

Regulatory T cells can regulate the activity of autoreactive
B cells by two mechanisms: first, avoiding autoreactive B cells
to become activated. Tregs have direct actions on B cells by
inhibiting immunoglobulin class switching, inducing
apoptosis,80 and inhibiting their activation and proliferation
via interaction between programmed death-1 and pro-
grammed death-1 ligand present on the surface of Tregs.81

This could partially explain why lower circulating Tregs are as-
sociated with left ventricular dysfunction and poor prognosis
in patients with HF,82,83 as supported by the evidence in mu-
rine models of lupus, in which depletion of Tregs increases
the production of autoantibodies while their administration
has the opposite effect.84 Second, Tregs can also acquire an
inflammatory phenotype and contribute to adverse myocar-
dial remodelling, as was shown in a murine model of ischae-
mic cardiomyopathy, by increasing the expression of IFN-γ
and TNF-α.85 This could create a permissive environment for
autoreactive B cells to become activated to produce
pro-inflammatory cytokines and autoantibodies that exacer-
bate the initial insult. This evidence indicates that Tregs’ in-
teraction with B cells needs to be evaluated as Tregs could
also represent a potential target for immunomodulatory ther-
apies in HF.

B cells as a therapeutic target in heart
failure

Immunomodulatory strategies for HF to date have mostly
targeted autoantibodies and pro-inflammatory cytokines
and have produced inconclusive results with subtle condition
improvements only. These strategies include selective inhibi-
tion of TNF-α, immunoadsorption, intravenous immunoglob-
ulin, therapeutic plasma exchange, and non-specific
immunomodulation with autologous apoptotic cells, which
are all reviewed in detail elsewhere.43,55,86

The reasons why these therapeutic approaches have not
resulted in definite clinical improvement remain elusive, but
some hypotheses in which B cells are involved can be
drawn. TNF-α blockers have been associated with worsen-
ing HF and mortality. Although interventions decreased
levels of TNF-α, myocardial function did not improve.87,88

It was previously observed that treatment with anti-TNF-α
blockers alters the distribution of peripheral blood B cells
by increasing the frequency of pre-switch IgD+CD27+ mem-
ory B cells in non-responder patients with rheumatoid ar-
thritis (RA).89 This could favour cAgs recognition by these
cells and results in their differentiation to
antibody-producing plasma cells. In addition, it is worth
noting the signalling amplification of the immune activation
that occurs in HF, in which many other pro-inflammatory
cytokines and mediators, not just TNF-α (such as IL-1β
and IL-6), are responsible for continued myocardial
damage.1 These other mediators, either directly, by induc-
ing cardiac dysfunction, or indirectly, by activating effector
functions of various classes of immune cells, including B
cells, can also promote the progression of HF.

On the other hand, immunoadsorption, plasma exchange,
and intravenous immunoglobulin, which non-specifically de-
plete antibodies from the patient, have been associated
mostly with significant improvements in cardiac function, in
the short term.69,90,91 However, the long-term benefit is un-
clear, as cardiac autoantibodies reappear in a proportion of
treated patients who eventually may require a heart trans-
plant or a ventricular assist device.91 This is consistent with
the fact that these therapies target the damage-mediating
product but not its source. Indeed, eventual disease relapse
may be related to the reappearance of anti-cardiac antibodies
produced by terminally differentiated B cells. This prompted
the non-specific immunomodulation strategy employed in
the ACCLAIM trial, in which apoptotic autologous cells were
injected to patients with the rationale that apoptotic cells
would induce a systemic anti-inflammatory response by po-
larizing phagocytic cells to an alternatively activated pheno-
type, promoting decreased inflammatory myocardial
damage.92 However, only a small subset of patients with
non-ischaemic HF demonstrated significant benefit.92 It has
been observed that some patients with chronic inflammation
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had impaired clearance of apoptotic cells that eventually
leads to secondary necrosis and damage.93

Novel strategies targeting other immune components are
currently undergoing evaluation in clinical trials.94 Here, con-
sidering the evidence described earlier, we discuss and evalu-
ate the possibility of new treatment strategies that directly
target B cells in HF.

Rituximab (RTX) is a chimeric monoclonal antibody that
targets CD20, a membrane-spanning protein present exclu-
sively in the majority of B lineage cells (except pro-B cells
and plasma cells).95 RTX exerts its B cell-depleting action by
binding to CD20 molecules on the B cell’s membrane, activat-
ing the classical pathway of the complement system, facilitat-
ing cell-mediated cytotoxicity and apoptosis.96 Clinical
experience with RTX is extensive, and it is currently approved
for the treatment of haematological malignancies and proto-
typical autoimmune diseases, such as RA.51 Although RTX
clears virtually all CD20+ B cells from peripheral blood, B cells
residing in secondary and tertiary lymphoid organs may sur-
vive depletion.95,97 Notwithstanding, repopulation with bene-
ficial B-cell subsets may follow treatment with RTX. For
instance, patients with thrombotic thrombocytopenic pur-
pura treated with RTX demonstrated slow regeneration of
memory B-cell subsets, and BAFF-R expression was reduced
in all B-cell subsets after RTX.98 As BAFF is a crucial survival
signal for B cells, the decreased in BAFF-R expression could
potentially hinder autoreactive B-cell maturation in the pe-
riphery and hence could be a long-lasting indirect benefit of
RTX in HF patients. After RTX, B-cell repopulation may also
be characterized by higher proportions of IL-10-producing
Bregs,51 which may also benefit patients with HF. However,
experience with the drug has revealed potential adverse ef-
fects and variable responses between patients, as well, differ-
ential susceptibility to RTX-mediated depletion within B-cell
subpopulations.95

Thus, the use of RTX as a therapeutic agent in HF could
lead to a decrease in circulating cardiac autoantibodies, B
cell-derived cytokines, and activation of self-reactive T cells,
which jointly could potentially prevent further progression
of HF.

Tschöpe et al. 99 have recently published a case series of
six patients with refractory inflammatory DCM treated with
RTX. Five patients had a favourable response to RTX, as indi-
cated by decreased NYHA functional class at 8 weeks of
follow-up, improved left ventricular ejection fraction, and de-
creased B-cell infiltrates in endomyocardial biopsies. How-
ever, one patient did not improve: NYHA class did not
change, left ventricular ejection fraction remained signifi-
cantly compromised, and, paradoxically, infiltrated B cells in
the myocardium nearly doubled. Although the authors did
not propose an explanation to this non-responder pheno-
type, we hypothesize that it may be related to an
unfavourable B-cell subset that is resistant to depletion by
RTX, as was described in patients with RA.

Our group designed a phase II, single-centred prospective
clinical trial. We propose that RTX may be safely used as ad-
junctive therapy in the management of treatment-refractory
HF. Our ongoing study includes patients with ejection fraction
≤40%, NYHA functional class III/IV, who are unresponsive to
standard HF treatment and have not previously been treated
with an immunosuppressive drug. RTX dose will mimic that
already applied to post-transplant patients and patients with
RA, based on prior evidence of safety.100

After RTX, B-cell repopulation may also be characterized
by higher proportions of IL-10-producing Bregs,51 which
may also benefit patients with HF. However, experience
with RTX has revealed potential adverse effects and vari-
able responses between patients, as well as differential sus-
ceptibility to RTX-mediated depletion within B-cell
subpopulations.95

The use of BAFF antagonists may be another therapeutic
possibility in HF. The BAFF-directed antibody belimumab is
currently approved for treatment-resistant SLE in adults, re-
ducing flares and overall disease activity when used in combi-
nation with standard therapy.101 However, it is known that
belimumab only partially inhibits the production of IgG auto-
antibodies, as it depletes both naïve and activated B cells, but
not memory B cells.51 Considering that pathogenic autoanti-
bodies in HF are mostly of the IgG3 class and that B-cell sub-
sets in this context are largely unknown, further research is
necessary to justify its use in HF.

There are other B cell-target therapies, but they are less
extensively studied, only on patients with lymphoma or one
autoimmune disease (SLE and RA), with recent available data
(2018).102 A comparative study between RTX and abatacept,
a B–T cell co-stimulatory inhibitor, showed that RTX had bet-
ter outcomes in terms of failure defined as all cause death.103

Determination of B-cell subsets in
heart failure patients

The strategies mentioned earlier exhibit varied depletion effi-
cacy depending on B-cell subsets.95,101 If B cell-depleting
strategies are to be used for the treatment of HF, then the
characterization of B-cell profiles, as has been determined
in the setting of prototypical autoimmune diseases,101 could
be useful from a clinical standpoint.

First, it would help predict which subsets of patients are
more likely to respond to treatment or have a sustained clin-
ical response, a concept supported by studies in RA in which
patients who had higher proportions of double-negative na-
ïve B cells (CD19+IgD�CD27�) and lower percentages of
plasmablasts (CD19+IgD+CD27++) and memory B cells (CD19+-

IgD+CD27+CD95�; CD19+CD27+) were more likely to have a
favourable clinical response with RTX.104,105 Furthermore,
the clinical response in RA patients treated with RTX
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correlated positively with the depletion of the pre-switch
memory B cells (CD19+IgD+CD27+CD95�), which is the in-
creased cell population in response to anti-TNF-α therapy.89

These findings suggest that patients with higher numbers of
memory B cells or plasmablasts that might correspond to
those with increased disease activity are more likely to be re-
sistant to therapy. As discussed earlier, memory B cells are re-
sponsible for the swift humoral immune response that occurs
upon re-encounter with antigen.51 However, plasmablasts
are short lived in peripheral blood before they home to bone
marrow, mucosal tissues, or sites of ongoing inflammation.50

Therefore, their presence may imply current autoantigen pre-
sentation and B-cell activation. In patients with HF, the rela-
tive abundance of these subsets could precipitate a
detrimental feedback loop of myocardial injury, as described
earlier. Supporting this concept, van den Hoogen et al. have
recently reported that patients with HF had increased propor-
tions of circulating plasmablasts and decreased
transitional/regulatory B cells compared with healthy con-
trols. Interestingly, stratified analysis revealed that these dif-
ferences were more pronounced in patients with ischaemic
HF, which likely reflects the nature of the insult to the
myocardium.6

Ischaemic damage results in massive cardiomyocyte necro-
sis and leak of cAgs to the circulation, while non-ischaemic in-
sults result in increased wall stress with a less significant
release of cAgs. Although the observation of increased
plasmablasts did not reach statistical significance, this was
likely due to small sample size (n = 10), as we have also iden-
tified increased circulating plasmablasts in 21 patients with
HF (unpublished data). Furthermore, patients admitted for
STEMI had significantly higher total B-cell counts than
no-STEMI and control groups, in which naïve and memory B
cells demonstrated a strong positive correlation with tropo-
nin I and creatine kinase levels (plasmablasts were not
measured).52 Interestingly, the increased level of circulating
memory B cells correlated with the 6 month probability of
death from admission, as calculated with the GRACE score.52

The fact that STEMI, by definition, is indicative of cardiomyo-
cyte death and the release of intracellular products and that
increased B-cell counts were observed in this group, together
with the observation that patients with ischaemic HF tend to
have higher levels of plasmablasts,6 further supports the in-
volvement of B cells in myocardial damage, as previously re-
ported in murine models.65

Furthermore, knowledge of the relative proportions of
B-cell subsets in HF may explain why most, but not all,
end-stage HF patients have antibody-dependent-mediated
myocardial damage. Indeed, a considerable fraction of
end-stage HF patients lacks antibody or complement de-
posits in the myocardium.4,69 These deposits being ob-
served more often in more severe HF patients or longer
time since diagnosis4 suggest that cumulative insults to
the myocardium are bypassing peripheral tolerance

mechanisms due to continued exposure of cardiac self-
antigens, resulting in higher proportions of pathogenic B
cells. Hence, knowledge of which B-cell subsets are altered
throughout the spectrum of HF could be helpful to clarify
this hypothesis.

Finally, evidence that specific B-cell subsets cause disease
progression would strongly support the claim for developing
novel selective immunotherapies or treatments.

Conclusions

Heart failure is characterized by a maladaptive process of car-
diac interstitial fibrosis and contractile dysfunction, which
may be initiated and maintained following insults to the myo-
cardium. Among many processes that lead to HF, B cells are
highlighted as playing a prominent role in its progression, re-
gardless of aetiology, through mechanisms that are depen-
dent and independent of antibody production. These
mechanisms include secretion of pro-inflammatory
cytokines,36 monocyte recruitment following myocardial
injury,65 and interaction with CD4+ T helper cells, with a sub-
sequent amplification of the inflammatory cascade.49 On the
other hand, the production of antibodies directed against
cAgs,4 predominantly of the IgG3 subtype, may fix and acti-
vate complement to promote myocardial inflammation, in-
jury, and remodelling.4,35,38,39 Then, apoptosis66 and cardiac
functional impairment alter cardiac contraction and heart
rate28,29 (Figure 3). Additionally, regulatory T-cell82 and
B-cell dysfunction79 may further enhance self-reactive B-cell
responses in HF. Further research must confirm which B-cell
subpopulations may mediate continued myocardial damage
in HF, as this would support trials of more selective therapeu-
tics, possibly decreasing the scope of adverse events linked to
the currently available therapies.
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