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A fluorescence polarization immunoassay (FPIA) for the determination of imidacloprid

(IMI) was developed with advantages of simple operation and short assay time. The

haptens of IMI, acetamiprid (ACE), and thiamethoxam (THI) were conjugated with

fluorescein isothiocyanate ethylenediamine (EDF) and 4′-Aminomethyl fluorescein (AMF),

respectively, to prepare six fluorescence tracers. The conjugation of IMI hapten and EDF

(IMI-EDF) was selected to develop the FPIA due to the largest fluorescent polarization

value increase in the presence of anti-IMI monoclonal antibody. Under the optimum

condition, the limit of detection, 50% inhibition concentration and detection range of the

FPIA were 1.7, 4.8, and 1.7–16.3 µg/L, respectively. The cross-reactivities (CRs) with the

analogs of IMI were negligible except for imidaclothiz with CR of 79.13%. The average

recovery of spiked paddy water, corn and cucumber samples were 82.4–118.5%with the

RSDs of 7.0–15.9%, which indicated the FPIA had good accuracy. Thus, the developed

FPIA was a potential tool for the rapid and accurate determination of IMI in agricultural

and environmental samples.

Keywords: imidacloprid, fluorescence polarization immunoassay, fluorescent tracers, pesticide residue, high

throughput detection

INTRODUCTION

Imidacloprid (IMI) [1-6(chloro-3-pyridylmethyl)-N-nitroimidazo-lidin-2-ylideneamine] is one of
the ultra-efficient neonicotinoid insecticides, which operates as a competitor to postsynaptic
nicotinic receptors in a central nervous system of the insect. Currently, IMI has been extensively
used in agricultural product in many countries because of its excellent insecticidal effectiveness
(Lee et al., 2001). However, IMI shows high toxicity to honeybees (Rebecca et al., 2020; Wang et al.,
2020) and its residues also have potentially hazardous for consumers and ecosystem (Ana et al.,
2019; Zhang et al., 2020). Therefore, it is necessary to monitor the IMI residual in agricultural and
environmental samples.

At present, the instrument-based methods, such as high-performance liquid chromatography
(HPLC) (Carretero et al., 2003; Saeedeh et al., 2020) and gas chromatography-tandem mass
spectrometry (Su et al., 2017; Massara et al., 2018), have been widely used for the determination
of IMI. Compared with instrument, immunoassay, as a rapid detection technique, has been widely
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used for the detection of small molecules due to its advantages
in simplicity, specificity, low consumption, and high sensitivity.
There are also many immunoassays that have been established
for the detection of IMI, such as enzyme-linked immunosorbent
assay (ELISA) (Watanabe et al., 2004; Brian et al., 2009; Navarro
et al., 2013), and immunochromatographic assay (ICA) (Xu
and Xu, 2012; Fang et al., 2015; Yang et al., 2018). However,
ELISAs require long incubation time and multi-step operation,
and ICAs generally provide qualitative or semi-quantitative
results. Fluorescence Polarization Immunoassay (FPIA), as a
homogeneous immunoassay, has attracted more and more
attention because of simple operation, short assay time and high
throughput (Smith and Eremin, 2008; Yue et al., 2014), and
has been used for determination of small molecular compounds
(Nasir and Jolley, 2002; Shim et al., 2004; Chun et al., 2009; Mi
et al., 2013). The general principle of FPIA for small molecule
is that the reaction between fluorescent tracer (fluorescein
labeled competing antigen) and antibody results in a change of
fluorescence polarization (FP) value. With the increase of the
concentration of analyte, the tracer bound to antibody would
decrease, which leads to the decrease of the FP value. Compared
with heterogeneous immunoassay, FPIA shows some valuable
advantages, such as simple operation (one step), short assay time
(10–20min) and good reproducibility due to less interference
from inner-filter effects (Anna et al., 2017; Elena et al., 2018;
Zhang et al., 2018). Besides, the application and popularity of
portable polarimeter makes FPIA show great potential in on-
site detection.

In this paper, six fluorescent tracers were prepared
by conjugation of haptens of IMI, acetamiprid (ACE),
and thiamethoxam (THI) with fluorescein isothiocyanate
ethylenediamine (EDF) and 4′-Aminomethyl fluorescein (AMF),
respectively. A FPIA for the determination of IMI was developed
by employing anti-IMImonoclonal antibody (mAb, 3D11B12E5)
and IMI-EDF. The accuracy of the FPIA was evaluated by the
detection of IMI in spiked and authentic samples, and validated
by HPLC.

MATERIALS AND METHODS

Reagents
Imidaclothiz (97.82%) was provided by Nantong Jiangshan
Agrochemical and Chemicals Co., Ltd. (Jiangsu, China). IMI and
its other structural analogs were purchased fromDr. Ehrenstorfer
GmbH (Germany). The anti-IMI mAb (3D11B12E5) and IMI
hapten were prepared as described previously (Yang et al.,
2018). The haptens of ACE and THI were prepared as
described previously (Wanatabe et al., 2001; Kim et al., 2003).
N,N-Dimethylformamide (DMF), N, N′-Dimethylformamide
(DCC) and 4′-Aminomethyl fluorescein (AMF) were purchased
from Sigma-Aldrich Chemical Co., Ltd (St. Louis, USA).
Ethylenediamine (EDF) was prepared was described previously
(Ding et al., 2019).

Instruments and Equipments
The fluorescence intensity and FP value were measured by
Spectra Max M5 (Molecular Devices, Sunnyvale, CA, USA).

An Agilent 1260 HPLC equipped with an ultraviolet detector
(Agilent, Wilmington, DE, USA) was used to verify the accuracy
of the FPIA. Milli-Q purified water was obtained from a Milli-
Q purification system (Millipore, Bedford, MA, USA). Black
microplates (96-well) (3650, Corning Costar Corporation, NY,
USA) was used as a reaction vessel for the FPIA.

Preparation of Fluorescent Tracers
The haptens of IMI, ACE and THI were conjugated with EDF
and AMF to prepare the tracers for the development of the
FPIA. The procedure was carried out according to the previous
articles (Kolosova et al., 2003; Ma et al., 2016). Briefly, 40 µmol
hapten was dissolved in 0.5mL DMF containing 80 µmol DCC,
the mixture was stirred overnight at room temperature. After
centrifugation for 10min at 10,000 rpm, the supernatant was
collected. Then, 10mmol fluorescein (AMF or EDF) and 10µL of
triethylamine were added to 150 µL aforementioned supernatant
and the reaction was allowed to proceed for 4 h. The fluorescent
tracers (IMI-EDF, IMI-AMF, ACE-EDF, ACE-AMF, THI-EDF,
and THI-AMF) were purified by thin layer chromatography
(TLC). TLC boards were deployed in a chromatography cylinder
containing chloroform and methanol (4:1, v/v), until the liquid
moves to the top of plate (Xu et al., 2011). The major yellow
bands were collected and eluted with methanol. Meanwhile, the
Rf values of the yellow bands were calculated.

Procedure of FPIA
One hundred microliter IMI standard solutions (or matrix
solutions) and 50 µL fluorescent tracer in borate saline buffer
(BB) were added to non-binding black microplates. Then, 50 µL
mAb 3D11B12E5 in BB was added to the microplates to measure
the FP value by SpectraMaxM5 with the excitation wavelength of
492 nm and the emission wavelength of 526 nm.

Optimization of Assay Conditions
In this study, the experimental parameters (concentration of
antibody, incubation time, organic solvent, ionic strength, and
pH) were investigated to improve the sensitivities of the FPIA.
Under 6,400-fold dilution of the tracer, the FP values of the FPIAs
with serial concentrations of mAb 3D11B12E5 (from 0.07 to 2.14
mg/L) were detected in the absence of analyte. When the FP
value reached 50–80% of the FPmax, the mAb concentration was
desirable. The FPIA was used to detect IMI under the varying
incubation time (from 0 to 15min) and the serial working buffer
with difference methanol content (0, 5, 10, 20, 30, and 40%), ionic
strength (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6mol/L) and pH (4.4, 5.4, 6.4,
7.4, 8.4, and 9.4). The parameters that made the FPIA showed the
lower IC50 and higher FPmax/IC50 values were desirable.

Specificity
A series of IMI analogs standard solutions were prepared
and analyzed by the FPIA. The FPIA standard curves for
different analogs were established to obtain 50% inhibition
concentration (IC50). The IC50 values produced by analogs
were used to calculate the cross-reaction (CR) according to the
following formula:

CR(%) = [IC50(IMI)/IC50(analog)]×100
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Analysis of Spiked Samples
The IMI-free samples (corn, cucumber and paddy water,
confirmed by HPLC) were collected from a farm in Nanjing,
China, which were spiked with IMI at the final concentrations
of 100, 500, and 1,000 µg/kg for corn and cucumber, final
concentrations of 10, 50, and 100 µg/L for paddy water.
The paddy water samples were filtered and directly analyzed
using FPIA after mixing with an equal volume of 2× BB
buffer. For other spiked samples, 10 g homogenized samples
were weighed and extracted with 20mL 80% methanol-BB.
After vortexing for 5min and ultrasonic for 10min, the
supernatants were separated by centrifugation for 10min at
4,000 rpm, and adjusted to 25mL. The concentrations of
IMI in the spiked samples were analyzed by FPIA after
appropriate dilution.

The Correlation of FPIA With HPLC
Seven samples containing incurred residues (two paddy waters,
two corns and three cucumbers were collected from a local farm
in Nanjing, China) were simultaneously analyzed by HPLC and
FPIA. The pretreatments of the samples for the FPIA were the
same as the spiked samples described above. For HPLC, 20mL
paddy water was extracted by 40mL acetonitrile by vortexing for
10min. Subsequently, 5 g sodium chloride was added to stratify
acetonitrile and water. The half of acetonitrile (20mL) was
transferred and evaporated to dryness with a rotary evaporator
at 40 ◦C. The other samples (20 g) were extracted by vigorously
shaking for 1 h with 50mL of 80% acetonitrile aqueous solution.
After filtration, the solution was then stratified with 5 g sodium
chloride. And then, 20mL of acetonitrile were transferred and
evaporated to dryness with a rotary evaporator at 40◦C. The

FIGURE 1 | Synthesis of fluorescent tracers.

TABLE 1 | The polarization of tracers.

Solutions Tracers

IMI-AMF Rf = 0.7,

3,200

IMI-EDF Rf = 0.6,

25,600

THI-AMF Rf = 0.6,

6,400

THI-EDF Rf = 0.5,

6,400

ACE-AMF Rf = 0.7,

1,600

ACE-EDF Rf = 0.6,

6,400

BB Fluorescence value 106.03 64.98 81.24 84.12 129.78 123.3

Polarization value 44.52 64.92 46.51 51.38 39.29 43.90

BB with antibody Fluorescence value 106.02 39.95 82.55 80.11 124.5 109.62

Polarization value 44.83 149.78 47.33 63.45 39.32 60.09

TABLE 2 | The polarization of antibody concentration.

Antibody (mg/L) 2.14 1.07 0.54 0.27 0.13 0.07 Buffer

Polarization value 235.50 228.69 222.95 163.87 134.75 115.28 61.79

Fluorescence value 41.00 39.92 39.17 49.01 51.21 54.24 74.73
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extracts were dissolved with 5mL of acetonitrile:water (70:30,
v/v) and the concentrations of IMI were detected by HPLC with a
Eclipse plus C18 column (4.6mm× 250mm× 5µm). Amixture
of acetonitrile:water (70:30, v/v) was used as the mobile phase at
a flow rate of 1.0 mL/min at 30◦C. The detection wavelength was
270 nm and the injection volume was 20 µl (Yang et al., 2018).

RESULTS AND DISCUSSION

Selection of Fluorescent Tracers
Three haptens of IMI, ACE and THI were conjugated with EDF
and AMF, respectively (Figure 1), which yielded six fluorescent
tracers (IMI-EDF, IMI-AMF, ACE-EDF, ACE-AMF, THI-EDF,
and THI-AMF). The tracers were purified using TLC, the yellow
bands with Rf = 0.6 for IMI-EDF, Rf = 0.7 for IMI-AMF, Rf = 0.6
for ACE-EDF, Rf = 0.7 for ACE-AMF, Rf = 0.5 for THI-EDF and
Rf = 0.6 for THI-AMFwere collected (Supplementary Figure 1).
The tracers were diluted to fluorescence intensity near 100.
The dilution times were 1,600, 6,400, 6,400, 6,400, 3,200, and
25,600 for IMI-AMF, IMI-EDF, THI-AMF, THI-EDF, ACE-AMF,
and ACE-EDF, respectively (Supplementary Table 1). Under the
dilutions, the tracers prepared by EDF (IMI-EDF, THI-EDF,
and ACE-EDF) could bind with mAb 3D11B12E5 to increase
the FP values, but the FP values of the tracers prepared by
AMF (IMI-AMF, THI-AMF, and ACE-EDF) were not changed
(Table 1). This result indicated that EDF was more suitable
for the preparation of tracers, probably because EDF has a
longer spacer. As expected, IMI-EDF showed the largest FP value
increase, so it was chosen to develop the FPIA.

Optimization of the FPIA
As shown in Table 2, the FP value increased with the increasing
concentration of mAb 3D11B12E5. When the concentration of
mAb was 0.13 mg/L, the FP value was 134.75, which was in

FIGURE 2 | The standard curve of FPIA for IMI.

the range of the 50 to 80% of combination. The IC50 values of
the FPIA with different incubation time were in the range of
5.75 and 5.89 ng/mL (Supplementary Figure 2A), which were
no significant difference. Therefore, the FP values could be
determined immediately after addition of mAb 3D11B12E5.
The organic solvent is essential reagent in extraction and
dissolution of pesticide, which usually shows great influence on
immunoassays. Methanol is commonly used in immunoassays
because of its relatively weak effect on immunoreactions between
antibody and antigen. As shown in Supplementary Figure 2B,
with the increase of methanol content, the IC50 values increased

TABLE 3 | Cross-reactivity of IMI toward some of its analogs by FPIA.

Compound Structure IC50 (µg/L) CR (%)

Imidacloprid 4.8 100.0

Imidaclothiz 6.1 79.1

Clothianidin 64.4 7.6

Thiacloprid 125.8 3.9

Acetamiprid 166.3 2.9

Nitenpyram 250.1 1.9

Dinotefuran 458.9 1.1

Thiamethoxam >10,000 <0.05
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and the mPmax/IC50 values decreased. Finally, the maximum
tolerance to methanol of the FPIA was 5%. The optimal
concentration of Na+ and pH were 0.1 mol/L and 7.4,
respectively, because the FPIA showed the highest FPmax/IC50

(Supplementary Figures 2C,D).

Sensitivity and Specificity
The FPIA for IMI was developed in a competitive format. With
the increase of concentration of IMI, the IMI-EDF bound tomAb
3D11B12E5 would decrease, which resulted in the decrease of FP
value. Under the optimal conditions, the standard curve of the
FPIA for IMI was shown in Figure 2. The IC50, limit of detection
(LOD, IC10) and linear range were calculated as 4.8, 1.7, and 1.7–
16.3 µg/L, respectively. Compared with the reported articles, the
FPIA showed higher sensitivity (IC50) than the enzyme-linked
immunosorbent assay (ELISA) with IC50 of 17.3 ng/mL (Jae et al.,
2001) and inner filter effect (IFE) immunoassay with SC50 (the
concentration recovering 50% saturation of the signal) of 18.7
µg/L (Si et al., 2018). Although the FPIA had lower sensitivity
than the fluorescence-based immunoassay (FIA) with IC50 of
1.3 ng/mL (Li et al., 2019) and the lateral flow immunoassays
(LFIAs) with IC50 values of 0.13 and 0.14 ng/mL (Tan et al., 2020),
it had advantages of simpler operation and high-throughput
test. Importantly, the maximum residue limits (MRL) of IMI on
agricultural products are in the range of 0.05 to 10 mg/kg in
China, for example, the MRLs of IMI are 0.05 mg/kg for corn and
1 mg/kg for cucumber. Besides, and the range of MRLs are 0.01
to 50 mg/kg in Food and Agriculture Organization of the United
Nations (FAO), and the MRLs for cereal grains and cucumber
are 0.05 and 1 mg/kg, respectively. The sensitivity of the FPIA
could meet the requirements for the detection of IMI under an
appropriate pre-treatment.

The CRs of the FPIA for the analogs were negligible (≤7.6%)
except for imidaclothiz with CR of 79.1% (Table 3), because
they both have nitro-dihydroimidazol-amine group, which was
an important part for antibody recognition. According to the
reported articles, most immunoassays for IMI showed CR with
imidaclothiz. Si et al. (2018) reported an IFE immunoassay
showed 90.3, 32.7, and 32.8% CRs for imidaclothiz, thiacloprid,
and chothianidin, respectively. Guo et al. (2021) developed a
fluorescence resonance energy transfer (FRET) immunoassay for
IMI, which had 74.4% CR with imidaclothiz.

Matrix Effect and Recovery of Spiked
Samples
The sample matrix could affect the accuracy of the immunoassay
and is usually removed by dilution with buffer. As shown in
Supplementary Figure 3, the matrix interference of corn and
cucumber could be eliminated after 16-fold dilution, and paddy
water was 2-fold dilution at least, because the standard curve
prepared by the diluted matrix were closest to the standard curve
prepared by buffer. Under the dilutions, the average recoveries of
FPIA for spiked samples were range in 82.4–118.5% with relative
standard deviation (RSD) of 7.0–15.9% (Table 4).

TABLE 4 | Recovery of IMI in spiked samples.

Samples Spiked concentration Recovery (%) RSD (%)

(µg/L or µg/kg)

Paddy water 10 89.1 11.2

50 103.0 7.0

100 118.5 12.5

Corn 100 86.0 15.9

500 84.1 10.9

1,000 108.5 14.1

Cucumber 100 82.4 9.0

500 83.0 8.3

1,000 108.5 13.2

FIGURE 3 | Correlation between FPIA and HPLC for the concentrations of IMI

in authentic samples.

The Validation of FPIA With HPLC
Seven authentic samples were tested by HPLC and FPIA
simultaneously. There were good correlations between FPIA and
HPLC, because the slope value of correlation curve was very close
to 1 (y = 0.975x - 0.286, R2 = 0.980) (Figure 3). These results
indicated that the FPIA were reliable for quantitative detection of
IMI in authentic samples.

CONCLUSIONS

In this study, serial tracers were prepared by conjugation of IMI,
ACE, and THI haptens with EDF and AMF. The tracer of IMI-
EDF was employed to develop a FPIA for IMI because of the
largest FP value increase in the presence of mAb. The FPIA was
a homogeneous one-step assay that does not require incubation
and washing. The samples can be tested directly after simple
processing. The LOD, IC50 value and the linear range of the FPIA
were 1.7, 4.8, and 1.7–16.3 µg/L, respectively. The FPIA showed
the CR of 79.1% for imidaclothiz. In addition, the results of the
FPIA for the authentic samples were in good agreement with
those of HPLC. Therefore, the FPIA can be used to detect IMI in
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agricultural and environmental samples. Besides, the FPIA also
can combine with the portable polarimeter to realize quickly and
on-site detection.
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