
rsif.royalsocietypublishing.org
Research
Cite this article: Mireles V, Conrad TOF. 2018

Reusable building blocks in biological systems.

J. R. Soc. Interface 15: 20180595.

http://dx.doi.org/10.1098/rsif.2018.0595
Received: 5 August 2018

Accepted: 23 November 2018
Subject Category:
Life Sciences – Mathematics interface

Subject Areas:
biomathematics, evolution,

computational biology

Keywords:
module sizes, building blocks,

near decomposability, evolution of modularity,

modularity
Author for correspondence:
Victor Mireles

e-mail: syats.vm@gmail.com
Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.

figshare.c.4324070.

& 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Reusable building blocks in biological
systems

Victor Mireles1,2 and Tim O. F. Conrad1

1Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
2International Max Planck Research School for Computational Biology and Scientific Computing,
Max Planck Institute for Molecular Genetics, Berlin, Germany

VM, 0000-0003-3264-3687; TOFC, 0000-0002-5590-5726

One of the most widely recognized features of biological systems is their

modularity. The modules that constitute biological systems are said to be

redeployed and combined across several conditions, thus acting as building

blocks. In this work, we analyse to what extent are these building blocks reu-

sable as compared with those found in randomized versions of a system. We

develop a notion of decompositions of systems into phenotypic building

blocks, which allows them to overlap while maximizing the number of

times a building block is reused across several conditions. Different biologi-

cal systems present building blocks whose reusability ranges from single use

(e.g. condition specific) to constitutive, although their average reusability is

not always higher than random equivalents of the system. These decompo-

sitions reveal a distinct distribution of building block sizes in real biological

systems. This distribution stems, in part, from the peculiar usage pattern of

the elements of biological systems, and constitutes a new angle to study the

evolution of modularity.
1. Introduction
In many biological systems, one can identify sets of elements that act together in
performing some discrete physiological function [1], which have been called func-

tional modules. These modules can be, for example, genes that form a

signalling pathway, enzymes involved in a metabolic pathway, or microbial

species that co-occur in different ecosystems [2]. Furthermore, it has been

suggested that biological processes can be described in terms of modules [3].

In other words, the set of elements involved in a given process is the union

of some collection of modules that act as building blocks. For example, the

genes active in yeast during the hypo-osmotic shift are those regulated by

Cmk1 plus those regulated by Pbt1 [4]. The notion of modularity has been

further developed to include a hierarchical organization of modules [5,6], over-

lapping modules [7] or a dynamic membership of elements into modules [8],

ultimately yielding an intricate characterization of biological complexity.

The consequences that such a modular organization has for biological sys-

tems have been studied from many standpoints [9,10]. From an evolutionary

angle, modularity has been linked to evolvability [11] and robustness [12],

and evolutionary conserved modules have been studied in several taxa (e.g.

[13,14]). From a physiological point of view, functional modules have been

associated with responses to changing environments [15] and are thought to

be determined, at least in part, by regulatory mechanisms [16], often coupled

to physical processes affecting cells [17].

In general, modules are thought to exhibit at least two properties: indepen-

dence from one another, and reusability across different scenarios or conditions.

Independence of modules from each other [18] means that the elements

constituting one module interact more among themselves than with those con-

stituting another module. After fixing the set of elements one is dealing with
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(e.g. genes, traits or species), there are many choices for the

exact definition of interaction, each leading to different types

of modules: functional, evolutionary, variational, develop-

mental, etc. For in-depth discussions of these definitions,

the reader can refer to [10] and references therein. Indepen-

dence enables groups of elements to vary independently,

without altering, in a countervailing fashion, other character-

istics of the organism [19]. That is, modularity is a means for

reducing pleiotropic effects of genes, which, in turn, increases

evolvability [11].

Reusability is the quality of modules of being redeployed
and combined [20] across several conditions, playing the role

of reusable building blocks [21,22]. Just as genes can be co-

opted [23] to perform novel functions, sets of genes have

also been documented as having multiple uses, perhaps the

most famous case being the sonic hedgehog signalling path-

way. When a mechanistic description of the interactions

among elements is not known, the reusability of a set of

elements is often enough to consider it a putative building

block, as in the case of co-expression modules [24]. The

focus of this work is the role of modules as building blocks

and their reusability.

Reusability is mediated by several properties of biological

systems, such as the combinatorial nature of transcription

factor regulation [25], the different tissue specificities that inter-

actions of a given protein can have [26], or the multifunctional

nature of gene circuits [27].

The reuse of biological modules leads to an increase in

phenotypic variation by loosening the dependence on geno-

typic variation [28]. This is achieved by two pleiotropic

mechanisms, whose potentially deleterious effects are limited

by the independence of modules. The first mechanism mag-

nifies the variations in the loci encoding elements within

modules. If a module is reused in several conditions, the

effects of these variations are pleiotropic because they

appear under all of these conditions. The second mechanism

magnifies the variations in the loci that determine the reuse of

a particular module. If this reuse is increased by such a vari-

ation, all the processes within the module, as well as its

interactions with elements outside of it, will be available at

once under a new set of conditions. This is pleiotropic

because modules are not completely independent and thus

these intermodular interactions are multiple. This second

mechanism leads to the notion of modules as building

blocks that are combined verbatim into different phenotypes.

Descriptions of biological systems in terms of building

blocks are shorter than those in terms of their individual com-

ponents (in the Kolmogorov complexity sense), and this

reduction in description length increases with reusability. In

this context, a proposed building block can range from a

high reusability building block, providing parsimonious

descriptions of the observed phenotypes [29], to a single

use, ad hoc building block that is employed in a single con-

dition. While reusable building blocks have been widely

identified in biological systems, it is not clear if these are

the only systems which exhibit them, or if they do so in

some distinctive fashion. In this work, we aim at quantitat-

ively comparing the reusability of the building blocks

present in biological systems with that of those present in

random systems.

The reusability of building blocks is related to their size.

Smaller ones can, in principle, be more reusable because

very small sets of elements (e.g. singletons) are more likely
to be entirely present in many conditions than very large

sets. While this relationship between size and reusability

does not always hold, studying the building block size distri-

bution in biological systems is a good starting point for

studying the reusability of their building blocks.

In general, the study of module size distributions has

proven interesting from several standpoints. On the one

hand, as the work related to the size distribution of the para-

logue gene [30] and protein [31] families shows, it can aid in

developing models for the evolution of sets of biological

elements. In this sense, the understanding of the evolution

of modularity, which is still a topic of debate (e.g.

[6,32,33]), can be aided by studying the distribution of

module sizes. On the other hand, finding estimates of the dis-

tribution of module sizes can aid in the calibration of several

module-identifying algorithms (e.g. [34–36]) which have par-

ameters that influence which sizes of modules they can detect

(as discussed, for example, in [37]). Finally, as discussed in

[38], knowing the module size distribution can improve the

null models used for gene set enrichment analyses. We

believe these advantages to hold also in the particular case

of modules being studied in their capacity as building blocks.
2. Phenotypic building blocks
We wish to exclude from the discussion of this paper any

preexisting notions stemming from any of the many defi-

nitions of modularity available in the literature. In

particular, since this work focuses on the property of mod-

ules of being reusable across phenotypes, we wish to set

aside discussions regarding their evolutionary origin or the

mechanistic relationships between their constituents. There-

fore, we will build upon an abstract notion of module

which we call a phenotypic building block (PBB). This notion

aims at capturing the building block role of modules, with

respect to the phenotypes a system can exhibit under differ-

ent conditions. PBBs are thus derived from the observation

of a set of phenotypes, and their capacity as building

blocks is only with respect to these. In other words, the

only claim made is that PBBs build the observed phenotypes,

without any further assumption as to the underlying mech-

anisms. We now informally describe this notion, but the

reader is referred to appendix A for a concise definition,

and proofs of all the claims made in this section.

Consider a system made up of a fixed set of elements

which expresses different phenotypes. An example of such

a system is the collection of genes in an individual, each

of which is expressed differently in different tissues, or

under different conditions. A PBB is a set of elements

that is employed as a whole, in combination with other

such blocks, to form the set of elements present in a set

of phenotypes.

In this scenario, the different phenotypes can be decom-

posed as the union of a set of such PBBs. After performing

such a decomposition, one can speak of the reusability of a

PBB: the number of different phenotypes in which it is

employed. It can be proven that, given a set of observations

of such a system across several phenotypes, there are many

possible ways to decompose it into PBBs, as illustrated in

figure 1. However, it is possible to find a decomposition in

which the average reusability of its PBBs is maximal, and
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these we call k-maximally reusable decompositions (k-MRD),

when they are made up of k PBBs.

We must note that the reusability of a k-MRD increases as

k, the number of PBBs, increases. However, this increase in

reusability is not the same for all systems. Furthermore, the

relationship that k and the reusability of k-MRDs hold in a

particular system is inherent to properties of the system

itself, such as the frequency with which each element is

used across all conditions, or the total number of different

presence/absence profiles of elements. In what follows, we

study both random and biological systems, and shed some

light on the relationship between k and the reusability of

their k-MRDs. We are specifically interested in (i) seeing

what part of this relationship is consistent across different

systems and (ii) seeing how different this relationship is in

real systems as opposed to random ones.
3. Data from biological systems and their
random equivalents

In this work, we have studied biological systems of two

kinds: protein expression profiles across tissues and miRNA

expression across different conditions. Furthermore, for each

of them, we have created randomized versions in order to

assess the relevance of the reusability of their PPBs.

The presence and absence of proteins in different tissues

of one organism is a particularly relatable example of a

fixed repertoire of elements (the proteins encoded in the

genome) being deployed in different combinations and lead-

ing to different functionalities. A detailed investigation of

these presence and absence patterns was carried out in the

work of Souiai et al. [39], who focused on the interactions

between proteins. Here, we complement that work by pro-

viding an analysis of the PBBs that could be used to

describe the different phenotypes studied, with particular
attention to their reusability. We do so using the same data.

The data describing these different presence/absence

patterns are obtained by equating the presence of a single

expressed sequence tag (EST) with the presence of the protein

encoded by the corresponding gene. As discussed in [40],

EST data are at least as good as those produced by other

technologies for quantifying the presence/absence of genes.

The second type of data we use is miRNA expression data, as

measured by quantitative reverse transcription–polymerase

chain reaction (RT-PCR) [41]. The regulation of miRNA is influ-

enced by both gene regulation and external chemical stimuli

[42], thus making miRNA presence/absence patterns a reflec-

tion of both endogenous and exogenous factors. Importantly,

miRNA expression data have the advantage of being small

enough that one can produce and analyse several replicates of

the random equivalents of them. We use the datasets that are

listed as using the platform GPK13987 in the Gene Expression

Omnibus [43].1 For these datasets, a threshold of 35 PCR cycles

without detection was used to consider a miRNA not present

in a condition. We tested with values for this threshold between

25 and 35 and found no difference in the results shown here.

In order to characterize biological systems in terms of the

obtained bounds on reusability, we compare with decompo-

sitions of two types of randomized equivalents of the real

matrices studied, which we briefly describe here and in

detail in appendix B. The first type are random binary

matrices such that the number of elements active in every

condition remains the same as in the real matrix, but the

identity of these elements is randomized. We call these

density-preserving random matrices (DP-Rand).

The second type of randomized matrices preserve the dis-

tribution of element usage, that is, there is the same number of

condition-specific elements, the same number of elements

active in two conditions and so on. Element usage is also

known as expression breadth [40]. We call this second type

row sum sequence-preserving random matrices (RSS-Rand).
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We use these kind of matrices because the element usage of all

observed datasets greatly differs from the binomial one

expected for DP-Rand matrices (see figure 5 and electronic

supplementary material, figure S1). This observed element-

usage distribution exhibits a great number of constitutive

elements, and thus enforces the existence of very large, very

reusable PBBs.

For a given dataset, real or random, k-MRDs are com-

puted for all possible values of k, and for each of them

three quantities are extracted: mean PBB size, maximum

PBB size and entropy of the PBB reusability distribution.

This last quantity measures how uniformly reusable the

PBBs of a decomposition are: it is low if all PBBs have the

same reusability, and high if reusabilities are uniformly dis-

tributed. In order to compare real datasets and their

randomized equivalents using one of these quantities, we

measure the average, over k, ratio between the quantity in
the randomized dataset and the quantity in the real dataset

(e.g. figure 2).
4. Results
The PBBs that constitute k-MRDs are, on average, smaller in

biological systems than in their random equivalents, while,

simultaneously, the maximum PBB size is larger (see figure

2 for an example using a miRNA expression dataset and

figure 3 for an example using the protein expression data).

For the average PBB size to remain low in the presence of

such large PBBs, the rest of the PBBs must be very small.

While the maximum PBB size is a direct consequence of the

element usage distribution, and can thus be replicated by

the RSS-Rand equivalents of a system, the same cannot be

said of the mean PBB size (figure 4 top and middle). We

should note that the element usage is markedly different

from the expected (binomial) distributions of row sums of a

random matrix with the same density (figure 5).

A smaller PBB size implies, for any fixed number of PBBs,

a smaller overlap between them. Therefore, these results

imply that biological systems can be decomposed into less

overlapping, more independent PBBs than random systems,

which is a corroboration of the near-decomposability [44]

property of natural systems. That being said, the fact that

mean PBB size is more similar between real systems and

their RSS-Rand equivalents than between real systems

and their DP-Rand equivalents suggests that some part of

this near decomposability could be due to the element

usage distribution.

Even though these decompositions are maximally reusa-

ble, real biological systems have PBBs of a wider range of

reusabilities, as opposed to random systems (figure 4

bottom). Having PBBs of more uniformly distributed reus-

abilities implies the presence of both condition-specific

PBBs and constitutive or almost constitutive PBBs. The

latter kind of PBBs is also the largest in all of the real systems

analysed here (see figure 3 top for an example). If one ana-

lyses decompositions which are not maximally reusable, the

existence of large PBBs is preserved, but these are not necess-

arily the most reusable ones (see figure 6 for an example on a

miRNA expression dataset for k ¼ 26).

It is important to mention that, of the nine systems

studied, four had average reusabilities close (within one

standard deviation of the mean) to the ones exhibited

by their DP-Rand equivalents, and one of them had an aver-

age reusability close to the ones exhibited by its RSS-Rand

equivalents. Average reusability, therefore, cannot be said

to be characteristically high in biological systems.

Analysing the presence/absence of proteins in 21 human

tissues using the data from [39], we find that several of the

PBBs found in k-MRDs are functionally relevant (figure 7).

Specifically, for a wide range of k, k-MRDs include more

PBBs which are significantly (p , 0.01 after Bonferroni cor-

rection for multiple testing) enriched for gene ontology

terms than those found using agglomerative clustering

based on Jaccard distances (a commonly used method that,

in the case of binary expression, guarantees proteins grouped

together are co-expressed in the greatest possible number of

tissues). This is despite the fact that the criteria for finding

k-MRDs is simply to maximize reusability, without including

any additional biological information.
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5. Discussion
Within the framework presented here, any system can be

decomposed into PBBs. PBBs represent reusable modules

which can be redeployed and combined across different conditions
[20]. However, these redeployments can differ across systems

and identifying these differences can serve as a way to com-

pare both systems and collections of conditions. Since
reusability is often mentioned as a property of biological

modules, it would be desirable to understand in which

sense is this reusability characteristic of biological systems.

Let us recall that, for a given k, the k-MRD is just one in

many decompositions of a system into k PBBs. Since the cri-

terion for finding k-MRDs is to maximize reusability, and

no other biological information is taken into account, we

cannot make any claim about their biological relevance.
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However, their mean reusability is, by definition, an upper

bound on the mean module reusability of any decomposition

into k modules, in particular any whose modules are in some

sense biologically relevant.

While high average reusability of their PBBs does

not seem to be a defining feature of biological systems,

the uniformity of the distribution of PBB reusabilities, as

quantified by its Shannon entropy, does seem capable of

distinguishing real biological systems from at least two

kinds of random systems. This uniformity in the distribution

is greatly influenced by the presence of large constitutive or
almost constitutive PBBs, which seems to be a hallmark of

biological systems.

The intuition that reusability of a PBB is anticorrelated

with its size is wrong in the case of biological systems. On

the one hand, these systems exhibit very large constitutive

PBBs. On the other, even when these systems are decom-

posed into very small PBBs some of them are condition

specific. These particular distributions of PBB sizes and reus-

abilities hint at bounds on the processes shaping the modular

organization of biological systems. For example, if one adopts

the theory that modules have evolved as a response to
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changing but recurrent environments [15], these distributions

could shed some light on the magnitude and frequency of

these changes. See appendix C for a brief discussion.

Interestingly, the particular PBB size distribution exhib-

ited by the real systems analysed is approximated by

random systems in which element usage is the same as in

the real system. PBB size distribution conveys information

about the near decomposability of a system, since, for a

fixed number of PBBs, larger average PBB size implies more

overlap among them, which in turn implies less indepen-

dence. It should also be noted that the distribution of PBB

size found in biological systems is not only present in

k-MRDs. Indeed, less reusable decompositions also exhibit

many small and some very large PBBs (although the latter

are not necessarily highly reusable). These two facts suggest

that part of the observed independence of biological modules

could be due to the peculiar element usage distributions

found in nature: one in which both seldom used and

always used elements are overrepresented.

This particular U-shaped element usage distribution, or

expression breadth, has been reported in humans [40] and

mice [46], and is also present in all the species studied in

[47] (electronic supplementary material, figure S1). There is

evidence that similar usage distributions are present if one

considers the presence/absence of genes across species [48],

as well as in artificial systems [49], where they have been

related to the overall frequency of components [50]. While
there are many studies regarding the adaptive nature of mod-

ularity, there are, to our knowledge, no studies on the fitness

of distributions of individual element usage. On the contrary,

non-adaptive explanations for the U-shaped distributions of

genes across species have been put forward [51,52] which

suggest that drift is responsible for genes being present in

few genomes while selection imposes genes present in many.

Studying the relationship between element usage distri-

bution and modularity can aid not only in understanding

the evolutionary origins of the latter. It can also serve as a

tool for the assessment of the significance of any putative

module or sets of modules. In the field of ecological inter-

actions, it was long ago recognized that any identification

of communities should be considered against the backdrop

of a null model which takes into account the column and

row sums of presence/absence matrices [53]. We believe

that the results shown here highlight the need for such a

null model for biological modularity which takes into

account, among other things, module size and element

usage distributions.
Data accessibility. All data used in this work are publicly available in the
cited sources: Gene Expression Omnibus [43],2 and electronic sup-
plementary materials of [39,47]. An implementation of the
algorithm used for decompositions can be found at https://github.
com/syats/ModuleReusability.
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Appendix A. Definition of phenotypic building
blocks and decompositions
We consider a system consisting of m different elements, or

units U ¼ {u1, u2, . . ., um}. This system is observed under

n different conditions. From these observations, we derive

a presence/absence matrix C [ f0, 1gm�n. The set of

elements active in the ith condition is denoted by ci, and cor-

responds to the set of non-zero entries of the ith column of

matrix C.

A phenotypic building block (PBB) is a set b , U, and a

decomposition is a set of PBBs {b1, b2, . . . bk} such that for

i [ {1, 2, . . ., n} we have that ci ¼ < j[si bj for some set of indi-

ces si , {1, 2, . . ., k} . A set of PBBs can also be represented by

an indicator matrix B [ f0, 1gm�k such that B[x, j ] ¼ 1 if and

only if ux [ bj. Matrix B represents a decomposition into k
PBBs if and only if there exists a matrix S(B) [ f0, 1gk�n

such that C ¼ s(B S(B)), where s is the signum function,

equal to 1 if its argument is positive and 0 otherwise. The reu-

sability of a PBB bj is given by
P

i S(B)[j, i], the number of

conditions i for which bj , ci. The reusability of a decompo-

sition is the average reusability of its PBBs, which can be

computed by

R(B) ¼ 1

k
0T

k S(B)0n,

where 0l is an all-ones vector of size l.
We make two additional assumptions: (1) that the set of

elements active in one condition cannot be a subset of those

active in another and (2) that n � k � m. Assumption 1 is

done without loss of generality: consider a set of conditions

encoded by a matrix C such that ci1 , ci2 . We can then

build a matrix C0 that is identical to C except it lacks the

i2’th column and in its place has a column with ones for the

elements of ci2 n ci1 . C0 satisfies assumption 1 and a decompo-

sition of it is also a decomposition for C. We assume the first

inequality in assumption 2 because we want decompositions

to be exact, that is, kC 2 s (B S(B))k ¼ 0. The second inequal-

ity of assumption 2 is because a collection of singleton PBBs

are, trivially, a decomposition of C (C ¼ ImC for Im the m �
m identity matrix). Within this range, there is always at

least one decomposition for each value of k.
A.1. Finding decompositions
Given the presence/absence matrix C and k, a number of

PBBs, there are, in general, many possible decompositions

of C into k PBBs, even after accounting for permutations of

the columns of B (figure 1). In this work, we are particularly

interested in decompositions whose PBBs are as reusable as

possible. We note that, on average, the smaller a PBB is, the

more conditions it can take part in, simply because it is

more likely that all of its elements are present in a condition.

Therefore, we choose decompositions with the smaller poss-

ible PBBs as a starting point for finding those with highest

reusability.

Finding decompositions consisting of small PBBs is

equivalent to requiring B to be as sparse as possible. In this

work, we used the algorithm presented in [54] to find

matrices B with few non-zero entries. In brief, the algorithm

iteratively finds, for a given matrix C, several possible

decompositions into k PBBs. From each of them, it generates

several sparser decompositions into k þ 1 PBBs by moving

elements shared by two existing PBBs to a new PBB. This pro-

cess can only go on as long as PBBs overlap, which happens if

k � r(C ), the number of different rows of the matrix C (not to

be confused with the binary rank of matrix C). Notice that

this algorithm forces pairs of elements that are present in

exactly the same conditions to also be present always in the

same PBBs. For each of the decompositions output by this

algorithm, we maximize its average reusability by gradient

ascent. This is done by removing elements from PBBs

(i.e. 1’s are removed from matrix B) as long as the identity

C ¼ s (B S) holds from some matrix S. The elements are

removed in order, starting from the one whose removal

increases the average reusability of B the most. A Python

implementation of this algorithm is available at: https://

github.com/syats/ModuleReusability.

Note that the problem we are dealing with has a discrete

space of solutions (binary matrices), as well as a discrete

objective function (average PBB reusability). For this reason,

a combinatorial algorithm such as the one chosen is more

suitable than continuous methods, such as alternating gradi-

ent descent or its variations used in sparse coding algorithms

(e.g. [55,56]).

We call the decomposition of a matrix C into k PBBs

which are as reusable as possible a k-maximally reusable

decomposition (k-MRD). The two most important features

of k-MRDs are that they constitute a decomposition as

defined above, and that the PBBs that constitute them are

maximally reusable. The PBBs of a k-MRD can overlap

among themselves, although they tend not to because maxi-

mizing reusability tends to minimize overlap. Importantly,

rather than making any assumption regarding k, the

number of PBBs, we explore the interplay between k and

the PBB size and reusability distributions of k-MRDs. These

distributions are different for different matrices C. We call the

reusability of a k-MRD of a system the average k-reusability

of the system.

We do not presume that any one of the PBBs constituting

a k-MRD is functionally, evolutionarily or otherwise relevant.

Rather, by finding maximum reusability decompositions we

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://docs.python.org/2/library/random.html
https://docs.python.org/2/library/random.html
https://github.com/syats/ModuleReusability
https://github.com/syats/ModuleReusability
https://github.com/syats/ModuleReusability
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describe a property of the system as a whole: i.e. we ask how

reusable are the modules the system can be decomposed

into, and how are their sizes distributed. It is clear that, if

modules are indeed present in the system, there might be

no biological process compelling them to be of maximum

reusability or minimal size. However, by finding k-MRDs

we provide an upper bound for the average PBB reusability

of any decomposition, including those in which PBBs

have a biological basis, or comply with some definition of a

biological module.
J.R.Soc.Interface
15:20180595
Appendix B. Randomized equivalents
Given a presence/absence matrix C [ f0, 1gm�n, two kinds of

randomized versions of it are created.

The first are density-preserving random matrices (DP-

Rand). The process to create these starts with a matrix R of

the same dimensions as C, whose entries are drawn from a

uniform distribution between 0 and 1. Then those entries of

R which are smaller than the density of C are set to 1, the

rest are set to 0. A postprocessing step takes place, in which

all rows and columns of R are checked to ensure none have

zero sum; if any do, then an entry is set to 1 in it, and an

entry chosen at random from R is set to 0. This process is

repeated until all rows and columns have non-zero sum.

Finally, the matrix is checked as described below for con-

ditions contained in others; if rejected, it is discarded and

another created from scratch.

The second type of matrices are RSS-preserving random

matrices (RSS-Rand). These preserve the distribution of the

row sum sequence in the input matrix C, which is a stronger

condition than either preserving the per column density or

preserving its row sum distribution. That is, if the original

matrix has nq rows with q ones, then the random matrix

will also have nq rows with q ones. The process to generate

this random matrix starts with an empty matrix, R.

Then, for every row index x [ {1. . .m}, the row sum

nx ¼
P

i C[x, i] is computed, and nx entries of R are chosen

at random without replacement using the function sample
from the random module of Python v.2.7.3 These entries are

set to 1 in the x’th row of R. Afterwards, the rows of R are

shuffled, and finally the matrix is checked as described
below for conditions contained in others; if rejected, it is dis-

carded and another created from scratch.

One of the assumptions in this work is that, in the

matrices being decomposed, the set of elements active in

one condition cannot be a subset of those active in another.

In the case of randomly generated matrices R, this is checked

after generation by computing RRT, and checking if its i1, i2
entry is strictly smaller than

P
x R[i1, x]. If this is not the

case, the matrix is discarded and a new one is generated.

For all miRNA datasets 50 DP-Rand and 50 RSS-Rand

equivalents were computed, while for the EST-based protein

expression data only four of each kind were computed.
Appendix C. Alternating modular fitness
functions and PBBs
Kashtan & Alon [15] introduce a model of the evolution of

modularity, in which the modules found in the evolved (arti-

ficial) individuals correspond to common features in two

alternating fitness functions used for selection in an artificial

evolution experiment. More concretely, the population in

these experiments consists of circuits made of logic gates.

These circuits undergo variation by rewiring, and are evalu-

ated for selection by matching their computed truth table to

that of target logic functions. Two target functions G1 and

G2 are alternated every 20 generations and the resulting best-

adapted individuals can not only correctly compute both func-

tions (a few generations after the switch), but also exhibit a

modular design. This modular design consists of sets of

gates that are not removed or rewired when a switch in

target function occurs. In a sense, these ‘conserved’ sub-circuits

are equivalent to the PBBs introduced in this work.

We posit that if the changes in target functions are drastic,

then adaptations for one environment would be mostly use-

less for another, thus leading to low reusability of

components. On the contrary, if functions G1 and G2 are simi-

lar, then large reusable modules will appear. The more

similar the functions are, the larger the reused modules will

be. It is in this sense that we can infer the magnitude of

changes in the environment (target functions) by observing

the size distribution of PBBs.
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