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The performance of artificial intelligence-driven technologies
in diagnosing mental disorders: an umbrella review
Alaa Abd-alrazaq 1, Dari Alhuwail2,3, Jens Schneider4, Carla T. Toro 4, Arfan Ahmed 1, Mahmood Alzubaidi 4,
Mohannad Alajlani5 and Mowafa Househ 4✉

Artificial intelligence (AI) has been successfully exploited in diagnosing many mental disorders. Numerous systematic reviews
summarize the evidence on the accuracy of AI models in diagnosing different mental disorders. This umbrella review aims to
synthesize results of previous systematic reviews on the performance of AI models in diagnosing mental disorders. To identify
relevant systematic reviews, we searched 11 electronic databases, checked the reference list of the included reviews, and
checked the reviews that cited the included reviews. Two reviewers independently selected the relevant reviews, extracted
the data from them, and appraised their quality. We synthesized the extracted data using the narrative approach. We included
15 systematic reviews of 852 citations identified. The included reviews assessed the performance of AI models in diagnosing
Alzheimer’s disease (n= 7), mild cognitive impairment (n= 6), schizophrenia (n= 3), bipolar disease (n= 2), autism spectrum
disorder (n= 1), obsessive-compulsive disorder (n= 1), post-traumatic stress disorder (n= 1), and psychotic disorders (n= 1).
The performance of the AI models in diagnosing these mental disorders ranged between 21% and 100%. AI technologies offer
great promise in diagnosing mental health disorders. The reported performance metrics paint a vivid picture of a bright
future for AI in this field. Healthcare professionals in the field should cautiously and consciously begin to explore the
opportunities of AI-based tools for their daily routine. It would also be encouraging to see a greater number of meta-analyses
and further systematic reviews on performance of AI models in diagnosing other common mental disorders such as
depression and anxiety.
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INTRODUCTION
Mental disorders affect a person’s psychological, social, behavioral,
and emotional wellbeing1. The impact of mental disorders is not
exclusive to the mind; one’s mental health state affects physical
wellbeing and vice-versa2. Globally, mental disorders account for
7% of all total disability-adjusted life years (DALYs) and affect
more than 1 billion people, especially those living in high and
upper-middle-income nations3. This burden is further exacerbated
by the fact that up to 50% and 90% of people with mental
disorders receive no treatment in high-income countries and low
resource settings, respectively4.
Diagnosing mental disorders is complicated by heterogeneity

in clinical presentation, symptomatology, and fluctuations in
the course of illness, further compounded by gaps in our
understanding of etiological mechanisms. Current practices to
diagnose mental disorders rely on frameworks outlined in the
Diagnostic and Statistical Manual of Mental Disorders (DSM-5)
and the International Classification of Diseases (ICD-11) manual.
Diagnosis is based entirely on subjective accounts from patients
on the one hand and observations and interpretations made by
clinicians on the other; objective measures are still not
available5. Furthermore, diagnosing mental disorders can be
time- and resource-intensive via administering diagnostic tools,
conducting interviews with relatives or caregivers, and taking
health histories.
Digital health tools and technologies offer great opportunities

to support and augment diagnostic and interventional aspects of

psychiatric care6. A leading and popular form of such digital
technologies is artificial intelligence (AI), which enables machines
to learn complex, latent rules and provide actionable conclusions
through understanding queries and sifting through and connect-
ing mountains of data points7. Advances in the use of AI for
diagnostic and therapeutic mental health interventions are on the
rise with multiple examples including social bots to support
dementia care, sexual disorders, and even virtual psychothera-
pists8–11. AI has great potential to reshape our understanding of
mental disorders and how to diagnose them. Leveraging AI to
study and make sense of complex patterns and interactions
between one’s genes, brain, behaviors, and experiences present
an unprecedented opportunity to improve early mental illness
detection and personalize treatment options5.
There have been a wealth of studies examining the accuracy

of AI models in diagnosing mental disorders such as Alzheimer’s
Disease (AD)12, schizophrenia (SCZ)13, bipolar disorders (BD)14,
posttraumatic stress disorders (PTSD)15, and obsessive-
compulsive disorder (OCD)16. Numerous systematic reviews
summarize the evidence resulting from these studies. Although
conducting an umbrella review (i.e., a review of systematic
reviews) is important to draw more accurate and comprehensive
conclusions on a particular topic, to our knowledge, no previous
umbrella reviews were published to summarize the evidence
about diagnostic performance of AI models for mental disorders.
This umbrella review aims to synthesize the previously published
evidence on the performance of AI models in diagnosing mental
disorders.
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RESULTS
Search Results
As presented in Fig. 1, we identified a total of 852 citations from
searching the bibliographic databases. The software EndNote
identified and removed 344 duplicates of the retrieved citations.
Screening titles and abstracts of the remaining 508 citations led to
excluding 446 citations. By reading the full text of the remaining
62 publications, we excluded 48 publications. An additional
systematic review was identified through checking the list of the
included reviews. In total, 15 systematic reviews were included in
the current review17–31.

Characteristics of included reviews
Interestingly, the included reviews were published between 2017
and 2020, and more than half of them (n= 8) were published in
2020 (Table 1). The included reviews were conducted in 7 different
countries, but more than half of them were conducted in Italy
(n= 5) and the United Kingdom (n= 4). All included reviews were
articles in peer-reviewed journals. Only four reviews had a
registered protocol. All studies except one stated that they
followed Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines.
With regards to the eligibility criteria, the included studies

focused on diagnosing 10 mental disorders, namely: Alzheimer’s
disease (AD) (n= 7), mild cognitive impairment (MCI) (n= 6), and
Schizophrenia (SCZ) (n= 3) (Table 2). While seven reviews focused
on any AI approach, another seven reviews focused merely on
supervised machine learning (SML), and one review focused on
deep learning (DL). SML uses labeled datasets to train algorithms
in order to predict or label new, unforeseen examples, SML is used
for classification and regression purposes. UML analyzes unlabeled

data to discover hidden features, patterns, and relationships in
data. Clustering, association, and dimensionality reduction are
three major applications of unsupervised learning models. It is
worth mentioning that most deep learning applications are based
on supervised learning. More than half of the reviews (n= 8)
focused on neuroimaging data for diagnosing mental disorders.
While seven reviews restricted the search to studies in the English
language, there was no language restriction imposed in six
studies. Eight studies applied time restrictions to the search while
the remaining studies did not.
Varied numbers of electronic databases were searched in the

included reviews. The most common databases used in the
included reviews are MEDLINE (n= 13), Web of Science (n= 7),
EMBASE (n= 6), PsycINFO (n= 5), and Scopus (n= 4) (Table 3).
Eight studies used either backward reference list checking (n= 7)
or forward reference list checking (n= 1) to identify further
studies. Two independent reviewers carried out the study
selection process in twelve reviews, performed data extraction
in four reviews, and assessed study quality in two reviews. The
quality of studies was assessed in nine reviews using six different
tools such as a revised tool for Quality Assessment of Diagnostic
Accuracy Studies (QUADAS-2) and Jadad rating system. Four
reviews synthesized the data using meta-analysis.
The number of retrieved studies in the included reviews ranged

from 52 to 7,991 (Table 4). The number of included studies in the
included reviews varied between twelve to 114. The size of data
sets used to train and validate models in the included studies
ranged between 10 and 7,026 data points. The included studies in
the included reviews used different types of data to train and
validate models, namely: neuroimaging data (n= 13), neuropsy-
chological data (n= 6), genetic data (n= 4), and Electroencepha-
lography (EEG) measures (n= 4). As shown in Table 5, many

Fig. 1 Flow chart of the study selection process: 852 citations were retrieved from searching the databases. Of these, 344 duplicates were
removed. Screening titles and abstracts of the remaining citations led to excluding 446 citations. By reading the full text of the remaining 62
publications, we excluded 48 publications. An additional systematic review was identified by checking the list of the included reviews. In total,
15 systematic reviews were included in the current.
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methods were used in the included studies, and the most
common ones were Support Vector Machine (SVM) (n= 13),
Random Forest (RF) (n= 10), Naïve Bayes (NB) (n= 7), k-Nearest
Neighbors (k-NN) (n= 5), and Linear Discriminant Analysis (LDA)
(n= 5). The models in the included reviews were validated using
only internal validation methods (n= 6) or both internal and
external validation methods (n= 3).

Results of study quality appraisal
Two thirds of the included reviews clearly stated the review
question or aim by identifying the AI approach of interest and its
aim, the target disease, and type of data for the model
development (Fig. 2). The eligibility criteria were detailed, clear,
and matched the review question in 13 reviews. Six studies

showed a clear and adequate search strategy that contained all
search terms related to the topic, Subject Headings, and limits.
Less than half (n= 7) of the included reviews used adequate
search sources such as searching multiple major databases and
backward and forward reference list checking. Only five reviews
assessed the quality of the included studies using a tool suitable
for the review question. The quality assessment was carried out by
two or more reviewers independently in only a single review. In
three reviews, bias and errors in data extraction were minimal,
given that at least two reviewers independently extracted the data
using a piloted tool. Publication bias and its potential impact on
the findings were assessed in only one review. All included
reviews used an adequate approach for data synthesis and
provided relevant research and practical implications based on the

Table 1. Meta-data of the included reviews.

Study Year Country Publication type Registered protocol Followed guidelines

Pellegrini17 2018 UK Journal article Yes PRISMAa

Billeci18 2020 Italy Journal article No PRISMAa

Sarica19 2017 Italy Journal article No PRISMAa

Ebrahimighahnavieh20 2020 Australia Journal article No No

Petti21 2020 UK Journal article No PRISMAa

Battista22 2020 Italy Journal article No PRISMAa

Law23 2020 UK Journal article No PRISMAa

de Filippis24 2019 Italy Journal article No PRISMAa

Steardo25 2020 Italy Journal article No PRISMAa

Bracher-Smith26 2020 UK Journal article Yes PRISMAa

Librenza-Garcia27 2017 Brazil Journal article No PRISMAa

Moon28 2019 South Korea Journal article Yes PRISMAa

Ramos-Lima29 2019 Brazil Journal article Yes PRISMAa

Bruin30 2019 Netherlands Journal article No PRISMAa

Sanfelici31 2020 Germany Journal article No PRISMAa

aPRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses, UK United Kingdom.

Table 2. Eligibility criteria of the included reviews.

Study Target disorder AI approach Type of data Language restrictions Time limit

Pellegrini17 AD & MCI UML, SML, DL Neuroimaging data No restriction January 1, 2006–September 30, 2016

Billeci18 AD & MCI SML Neuroimaging data NR January 1, 2010–2019

Sarica19 AD & MCI SML Neuroimaging data English January 1, 2007–May 1, 2017

Ebrahimighahnavieh20 AD & MCI DL Neuroimaging data English No restriction

Petti21 AD & MCI UML, SML, DL Neuropsychological tests English January 1, 2013–August 8, 2019

Battista22 AD & MCI SML Neuropsychological tests English January 1, 2010–July 15, 2018

Law23 AD & DLB SML EEG measures English No restriction

de Filippis24 SCZ UML, SML, DL Neuroimaging data No restriction No restriction

Steardo25 SCZ SML Neuroimaging data No restriction No restriction

Bracher-Smith26 SCZ, BD, ASD, AN UML, SML, DL Genetic data English No restriction

Librenza-Garcia27 BD UML, SML, DL No restriction No restriction January 1, 1960–January 1, 2017

Moon28 ASD UML, SML, DL Neuroimaging data No restriction No restriction

Ramos-Lima29 PTSD UML, SML, DL No restriction No restriction January 1, 1960–May 1, 2019

Bruin30 OCD SML Neuroimaging data NR No restriction

Sanfelici31 Psychotic disorders SML No restriction English No restriction

AD Alzheimer’s disease, AI Artificial intelligence, AN Anorexia nervosa, ASD Autism spectrum disorder, BD Bipolar disease, DL Deep learning, DLP Dementia with
Lewy bodies, EEG Electroencephalography, MCI Mild cognitive impairment, NR Not reported, OCD Obsessive-compulsive disorder, PTSD Post-traumatic stress
disorder, SCZ Schizophrenia, SML Supervised machine learning, UML Unsupervised machine learning.
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Table 3. Search sources, study selection, data extraction, quality assessment, and data synthesis in the included reviews.

Study Databases searched Reference
list
checking

Number of reviewers Quality
assessment tool

Meta-analysis

Study
selection

Data
extraction

Quality
assessment

Pellegrini17 MEDLINE, Elsevier, IEEE Xplore, Science
Direct, ACM Digital Library, Web of Science

No 2 NR NR QUADAS-2 No

Billeci18 MEDLINE No 2 NR NA No No

Sarica19 MEDLINE, Scopus, Web of Science, Google
Scholar

No 2 NR NA No No

Ebrahimighahnavieh20 IEEE Xplore, ScienceDirect, SpringerLink,
ACM Digital Library, Web of Science, Scopus

Forward 1 NR NR Tool developed
by the authors

No

Petti21 MEDLINE, Web of Science, Ovid No 2 NR NA No No

Battista22 NR Backward 2 NR NR QUADAS-2 Yes

Law23 MEDLINE, EMBASE, PsycINFO Backward 2 2 NR Joanna Brigg
Institute

No

de Filippis24 MEDLINE, EMBASE, PsycINFO, Cochrane
Library

Backward 2 NR NR Jadad
rating system

No

Steardo25 MEDLINE, EMBASE, PsycINFO, Cochrane
Library

Backward 2 2 NR Jadad
rating system

No

Bracher-Smith26 MEDLINE, PsycINFO, Web of Science,
and Scopus

No 2 2 2 PROBAST No

Librenza-Garcia27 MEDLINE, EMBASE, Web of Science Backward 2 NR NA No Yes

Moon28 MEDLINE, EMBASE, CINAHL, PsycINFO,
IEEE Xplore

No 2 2 2 QUADAS-2 Yes

Ramos-Lima29 MEDLINE, EMBASE, Web of Science Backward 2 NR NR Tool developed
by the authors

No

Bruin30 MEDLINE Backward NR NR NA No No

Sanfelici31 MEDLINE, Scopus Backward NR 2 NA No Yes

NA Not applicable, NR Not reported, PROBAST Prediction model risk of bias assessment tool, QUADAS-2 Revised tool for Quality Assessment of Diagnostic
Accuracy Studies.

Table 4. Search results and dataset features in the included studies in the included reviews.

Study # of retrieved
studies

# of included
studies

Dataset size Data type

Pellegrini17 7991 111 100–902 Neuroimaging data, CSF biomarkers, Demographic data, Genetic data,
Biological data

Billeci18 52 21 31–330 Neuroimaging data

Sarica19 70 12 26–870 Neuroimaging data

Ebrahimighahnavieh20 NR 114 43–2,464 Neuroimaging data, Genetic data, Demographical data, Clinical data,
CSF biomarkers Neuropsychological test

Petti21 2,447 33 10–484 Neuropsychological tests (Speech and language data)

Battista22 203 59 22–7,026 Neuropsychological data, Biological data, Neuroimaging data,
Demographical data, Clinical data

Law23 1,264 43 61–654 EEG measures, Neuroimaging data, CSF biomarkers

de Filippis24 2,386 35 34–734 Neuroimaging data

Steardo25 660 22 40–737 Neuroimaging data

Bracher-Smith26 1,241 13 20–5,554 Genetic data

Librenza-Garcia27 757 51 42–4,488 Neuroimaging, Genetic data, EEG measures, Neuropsychological tests,
Serum biomarkers

Moon28 348 43 20–2,686 Neuroimaging data, EEG measures, Neuropsychological tests,
Biochemical data

Ramos-Lima29 806 49 25–391 Neuroimaging data, Neuropsychological data, EEG measures, Biological
data, Clinical data

Bruin30 170 12 20–172 Neuroimaging data

Sanfelici31 1,103 44 38–202 Neuroimaging data, Clinical data

CSF Cerebrospinal Fluid, EEG Electroencephalography.
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findings. Supplementary Table 1 shows reviewers’ judgments
about each appraisal item for each included review.

Results of studies
The included reviews assessed the performance of AI models in
diagnosing 8 mental disorders: Alzheimer’s disease, mild cognitive
impairment, schizophrenia, autism spectrum disorder, bipolar
disease, obsessive-compulsive disorder, post-traumatic stress
disorder, and psychotic disorders. The performance of the AI
models in diagnosing these mental disorders is presented in the
next subsections.
Alzheimer’s disease (AD) is a neurodegenerative disorder

characterized by an ongoing decline in brain functions such as
memory, executive functions, and language processing32. Four
reviews assessed the performance of AI classifiers in differentiat-
ing AD from healthy control (HC) using neuroimaging data17–20

(Table 6). The number of mutual studies was five between
Pellegrini et al.17 and Ebrahimighahnavieh et al.20 and four
between Pellegrini et al.17 and Sarica et al.19. Accuracy, sensitivity,
and specificity of the classifiers in these four reviews ranged from
56% to 100%, 37.3% to 100%, and 55% to 100%, respectively

(Table 6). None of these reviews pooled the results using meta-
analysis due to the high heterogeneity in the used classifiers, data
types, data features, and types of validation.
Two other reviews examined the performance of AI classifiers in

differentiating AD from HC using neuropsychological data21,22.
There are four mutual studies between the two reviews. Accuracy
of the classifiers in these reviews ranged from 68% to 100% (Table
6). One of these reviews meta-analyzed sensitivities and specifi-
cities reported in eleven studies and showed a pooled sensitivity
of 92% and a pooled specificity of 86%22.
Three reviews examined the performance of AI classifiers in

differentiating AD from mild cognitive impairment (MCI) using
neuroimaging data17,18,20 (Table 7). There are five mutual studies
between Pellegrini et al.17 and Ebrahimighahnavieh et al.20.
Accuracy, sensitivity, and specificity of the classifiers in these
three reviews ranged from 56% to 100%, 40.3% to 100%, and 67%
to 100%, respectively (Table 7). None of these reviews pooled the
results using meta-analysis due to the high heterogeneity. One
other review examined the performance of AI classifiers in
differentiating AD from MCI using neuropsychological data21.
Accuracy of the classifiers in that review varied between 68% to
86% (Table 7).

Table 5. Features of models in the included studies in the included reviews.

Study Classification algorithm type Type of validation

Pellegrini17 Fuzzy, HMM, k-NN, LASSO, LBP, LDA, MIL, NN, PNN, QDA,
QDC, RF, RLR, SRC, SVM, ν-MKL

NR

Billeci18 AdaBoost, DS, EGB, LDA, LinReg, LogReg, NB, PLSDA,
RF, SVM

Internal validation (K-fold cross-validation & Leave One Out cross
validation)

Sarica19 RF Internal validation (K-fold cross-validation, Leave One Out cross
validation) & External validation

Ebrahimighahnavieh20 AE, CNN, DNN, MLP, RNN, DBN, DBM, DPN Internal validation (K-fold cross-validation, Train-and-test, Leave
One Out cross validation)

Petti21 DT, LogReg, NB, SVM NR

Battista22 BN, GC, LDA, linReg, LogReg, NB, NN, RF, SVM Internal validation (K-fold cross-validation, Train-and-test, Nested
Cross Validation, Leave One Out cross validation)

Law23 RF, SVM NR

de Filippis24 AE, DBN, DNN, ENet, GC, GNet, LASSO, LDA, LogReg,
MPA, RDA, RF, Ridge, SRBVS, SVM, TBMFA, ν-MKL

Internal validation (K-fold cross-validation, Leave One Out cross
validation)

Steardo25 SVM NR

Bracher-Smith26 AdaBoost, BFT, BN, DT, DTNB, EC, GBM, k-NN, LASSO, NB,
MDR, NN, RF, Ridge, SVM

Internal validation (K-fold cross-validation, Train-and-test, Leave
One Out cross validation, Apparent validation) & External
validation

Librenza-Garcia27 ANN, BN, CRT, DT, k-NN, LASSO, LR, MFA, MLR, MDL, NB,
NN, NSC, RBFN, RF, SVM

NR

Moon28 ANN, DNN, DT, Fuzzy, GBM, k-NN, LDA, logReg, MLP, NB,
PLSDA, RF, SVM

Internal validation, External validation, and both

Ramos-Lima29 SVM, DBN, k-NN, MLP, NB, SMO, TL NR

Bruin30 LogReg, SVM Internal validation (Leave One Out cross validation & Train-and-
test)

Sanfelici31 RF, SVM Internal validation (K-fold cross-validation, Leave One Out cross
validation)

AE Auto-Encoder, AN Anorexia nervosa, ANN Artificial Neural Network, BFT best-first tree, BN Bayesian Network, CHR clinical high risk; CIF Conditional Inference
Forests, CNN Convolutional Neural Networks, CRT Classification and Regression tree, DBM Deep Boltzmann Machine, DBN Deep Belief Network, DNN Deep
Neural Network, DPN Deep Polynomial Network, DS Decision Stump, DTNB Decision Table Naïve Bayes, EC Evolutionary Computation, EGB Extreme Gradient
Boosting, ENet Elastic Net, GBM Gradient Boosting Machine, GC Gaussian Classifier, GNet Graph Net, HMM Hidden Markov Model, k-NN K-Nearest Neighbors,
LASSO Least Absolute Shrinkage and Selection Operator, LBP Local Binary Patterns, LDA Linear Discriminant Analysis, LinReg Linear Regression, LogReg Logistic
Regression, MDL Minimum Description Length, MDR Multifactor Dimensionality Reduction, MFA Mixture Factor Analysis, MIL Multiple Instance Learning, MLR
Multivariate Logistic Regressions, NSC Nearest Shrunken Centroids, MLP Multi-Layer Perceptron, MPA Multivariate Pattern Analysis, NB Naïve Bayes, NN Neural
Networks, NR Not reported, OPLS Orthogonal Projections to Latent Structures, PLSDA Partial Least Squares Discrimination Analysis, PNN Probabilistic Neural
Network, QDA Quadratic Discriminant Analysis, QDC Quadratic Discriminant Classifier, RBFN Radial Basis Function Network, RDA Regularized Discriminant
Analysis, RF Random Forest, Ridge Ridge Regression, RLR Regularized Logistic Regression, RNN Recurrent Neural Network, SMO Sequential Minimal
Optimization, SRBVS Sparse-Representation-Based Variable Selection, SRC Sparse Representation Classification, SVM Support Vector Machine, TBMFA
Translation Based Multimodal Fusion Approach, TC trauma-exposed controls, TL Transfer Learning, ν-MKL Multiple Kernel Learning.
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One review assessed the performance of AI classifiers in
differentiating AD from Lewy body dementia (LBD) using EEG
measures23. Accuracy, sensitivity, specificity, and AUC of the
classifiers in this review ranged from 66% to 100%, 76% to 100%,
77% to 100%, and 78% to 93%, respectively.
Mild cognitive impairment (MCI) refers to deterioration in

cognitive functions (e.g., memory, thinking, and language) that
is detectable but it is less severe than the deterioration in
patients with AD33. MCI represents a transitional stage between
the expected cognitive decline associated with normal aging

and the more severe decline of dementia33. Four reviews
assessed the performance of AI classifiers in differentiating MCI
from HC using neuroimaging data17–20 (Table 8). The number of
mutual studies was five between Pellegrini et al.17 and
Ebrahimighahnavieh et al.20 and four between Pellegrini
et al.17 and Sarica et al.19. Accuracy, sensitivity, and specificity
of the classifiers in these four reviews ranged from 47% to
99.2%, 24.3% to 98.3%, and 47.1% to 97%, respectively (Table 8).
None of these reviews pooled the results using meta-analysis
due to the high heterogeneity.

Fig. 2 Review authors’ judgments about each appraisal item: The quality of the included reviews was assessed against appraisal items.
Yes (green) refers that study meets the item, thereby, it has a good quality in terms of that item. No (red) refers that study did not meet the
item, thereby, it has poor quality in terms of that item. Unclear (yellow) refers that we could not appraise the study in terms of the item due to
the lack of reported information. Not applicable (gray) refers that the appraisal item is not applicable to the systematic review as it does not
include a feature that the item assesses.

Table 6. Classifier performance in differentiating AD from HC.

Study AI approach Accuracy (n) Sensitivity (n) Specificity (n) AUC (n)

Neuroimaging data

Pellegrini17 UML, SML, DL 71–98.1 (68) 60–99.2 (68) 75.9–98.3 (68) NR

Billeci18 SML 56–100 (21) 37.3–100 (14) 55–100 (14) NR

Sarica19 SML 87–98 (4) NR NR NR

Ebrahimighahnavieh20 DL 75–100 (83) 73–100 (52) 80–100 (52) NR

Neuropsychological data

Petti21 UML, SML, DL 68–95 (17) NR NR NR

Battista22 DL 72–100 (18) 73–100 (13) 77–100 (13) 79–98 (5)

AD Alzheimer’s disease, AI Artificial intelligence, AUC Area under the Curve, DL Deep learning, HC Healthy controls, n number of studies reported the
corresponding measure, SML Supervised machine learning, NR not reported, UML Unsupervised machine learning.

Table 7. Classifier performance in differentiating AD from MCI.

Study AI approach Accuracy (n) Sensitivity (n) Specificity (n) AUC (n)

Neuroimaging data

Pellegrini17 UML, SML, DL 64.8–85.6 (8) 40.3–87 (8) 67–94.1 (8) NR

Billeci18 SML 56–92 (6) NR NR NR

Ebrahimighahnavieh20 DL 62.5–100 (27) 62.3–100 (15) 67.2–100 (15) NR

Neuropsychological data

Petti21 UML, SML, DL 68–86 (3) NR NR NR

AD Alzheimer’s disease, AI Artificial intelligence, AUC Area under the Curve, DL Deep learning, MCImild cognitive impairment, n number of studies reported the
corresponding measure, SML Supervised machine learning, NR not reported, UML Unsupervised machine learning.
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Two other reviews examined the performance of AI classifiers in
differentiating MCI from HC using neuropsychological data21,22.
Four studies were mutual studies between the two reviews.
Accuracy of the classifiers in these reviews ranged from 60% to
98% (Table 8). Only one of these reviews meta-analyzed
sensitivities and specificities reported in nine studies and showed
pooled sensitivity and specificity of 83% each22.
Three reviews examined the performance of AI classifiers in

differentiating MCI converting to AD (MCIc) from MCI non-
converting to AD (MCInc) using neuroimaging data17,19,20 (Table
9). The number of mutual studies was five between Pellegrini
et al.17 and Ebrahimighahnavieh et al20 and four between
Pellegrini et al.17 and Sarica et al.19. Accuracy, sensitivity, and
specificity of the classifiers in these three reviews ranged from
47% to 96.2%, 42.1% to 99%, and 51.2% to 95.2%, respectively
(Table 10). None of these reviews pooled the results using meta-
analysis due to the high heterogeneity.
Another review examined the performance of AI classifiers in

differentiating MCIc from MCInc using neuropsychological data22.
Accuracy, sensitivity, specificity, and AUC of the classifiers in this

review ranged from 61% to 85%, 50% to 91%, 48% to 91%, and
67% to 93%, respectively. This review meta-analyzed sensitivities
and specificities reported in ten studies and showed a pooled
sensitivity of 73% and a pooled specificity of 69%.
Schizophrenia (SCZ) is a long-term serious mental disorder, in

which patients are not able to differentiate between their
thoughts from reality due to disturbances in cognition, emotional
responsiveness, and behavior34. Two reviews investigated the
performance of AI classifiers in differentiating SCZ from HC using
neuroimaging data24,25. There are 15 mutual studies between the
two reviews. Accuracy, sensitivity, and specificity of the classifiers
in the two reviews ranged from 61% to 99.3%, 57.9% to 100%, and
40.9% to 98.6%, respectively (Table 10). None of these reviews
pooled the results using meta-analysis. One review examined the
performance of AI classifiers in differentiating SCZ from HC using
genetic data26. Accuracy and AUC of the classifiers in this review
ranged from 40% to 86% and 54% to 95%, respectively.
Bipolar disorder is a mood disorder that is characterized by

mood fluctuations between symptoms of mania or hypomania
and depression35. One review assessed the performance of

Table 8. Classifier performance in differentiating MCI from HC.

Study AI approach Accuracy (n) Sensitivity (n) Specificity (n) AUC (n)

Neuroimaging data

Pellegrini17 UML, SML, DL 61.8–92.7 (30) 49.5–94.8 (30) 47.3–90.8 (30) NR

Billeci18 SML 47–97.7 (10) 24.3–95 (4) 66.4–97 (4) NR

Sarica19 SML 58.4–82.3 (3) NR NR NR

Ebrahimighahnavieh20 DL 55.2–99.2 (53) 52–98.3 (34) 47.1–95 (32) NR

Neuropsychological data

Petti21 UML, SML, DL 73–88.1 (4) NR NR NR

Battista22 DL 60–98 (16) 45–97 (13) 67–100 (14) 63–99 (7)

AI Artificial intelligence, AUC Area under the Curve, DL Deep learning, HC Healthy controls, MCI mild cognitive impairment, n number of studies reported the
corresponding measure, SML Supervised machine learning, NR not reported, UML Unsupervised machine learning.

Table 9. Classifier performance in differentiating MCIc from MCInc.

Study AI approach Accuracy (n) Sensitivity (n) Specificity (n) AUC (n)

Neuroimaging data

Pellegrini17 UML, SML, DL 56.1–82.5 (38) 56.2–94.2 (38) 51.2–89 (38) NR

Sarica19 SML 58.4–82.3 (4) NR NR NR

Ebrahimighahnavieh20 DL 47–96.2 (27) 42.1–99 (19) 53–95.2 (19) NR

Neuropsychological data

Battista22 DL 61–85 (19) 50–91 (16) 48–91 (16) 67–93 (14)

AI Artificial intelligence, AUC Area under the Curve, DL Deep learning, MCIc MCI converting, MCInc MCI non-converting, n number of studies reported the
corresponding measure, SML Supervised machine learning, NR not reported, UML Unsupervised machine learning.

Table 10. Classifier performance in differentiating SCZ from HC.

Study AI approach Accuracy (n) Sensitivity (n) Specificity (n) AUC (n)

Neuroimaging data

de Filippis24 UML, SML, DL 61–99.3 (28) 57.9–100 (20) 40.9–98.6 (20) NR

Steardo25 SML 61–99.3 (22) 65–100 (17) 40.9–98.6 (17) 61–91.4 (3)

Genetic data

Bracher-Smith26 DL 40–86 (5) NR NR 54–95 (5)

AI Artificial intelligence, AUC Area under the Curve, DL Deep learning, HC Healthy controls, n number of studies reported the corresponding measure,
SCZ Schizophrenia, SML Supervised machine learning, NR not reported, UML Unsupervised machine learning.
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AI classifiers in differentiating bipolar BD from HC using
neuroimaging data27. Accuracy, sensitivity, and specificity of the
classifiers ranged from 55% to 100%, 40% to 100%, and 49% to
100%, respectively (Table 11). This review examined the perfor-
mance of AI classifiers in differentiating BD from HC using
neuropsychological data27. Accuracy of classifiers varied between
71% and 96.4% (Table 11). This review also investigated the
performance of AI classifiers in differentiating BD from major
depressive disorder using neuroimaging data. Accuracy, sensitiv-
ity, and specificity of the classifiers ranged from 54.76% to 92.1%
(n= 7), 57.9 to 83% (n= 3), and 52.1 to 90.9% (n= 3), respectively.
Another review used genetic data and AI classifiers to differentiate
BD from HC26. Accuracy and AUC of the classifiers ranged from
54% to 77% and 48% to 65%, respectively (Table 11).
Autism spectrum disorder (ASD) is a group of disorders (e.g.,

autism, childhood disintegrative disorder, and Asperger’s disorder)
that starts usually in the preschool period and is characterized by
difficulties or impairment in communication and social interac-
tion36. One review investigated the performance of AI classifiers in
differentiating ASD from HC using neuroimaging data28. Accuracy,
sensitivity, and specificity of the classifiers in the review ranged
from 45% to 97%, 24% to 100%, and 21% to 100%, respectively
(Table 12). The review meta-analyzed sensitivities and specificities
of AI classifiers based on structured MRI (sMRI) in 11 studies. The
review found a pooled sensitivity of 83%, a pooled specificity of
84%, a pooled AUC of 90%28. The review also meta-analyzed
sensitivities and specificities of deep neural network-based
classifiers in one study (five samples) that used functional MRI
(fMRI) as a predictor. The review found a pooled sensitivity of 69%,
a pooled specificity of 66%, and a pooled AUC of 71%28.
The review assessed the performance of AI classifiers in

differentiating ASD from HC using a neuropsychological test
(behavior traits)28. Accuracy, sensitivity, and specificity of the
classifiers in the review ranged from 78.1% to 100%, 64% to 100%,

and 48% to 97%, respectively (Table 12). Further, the review tested
the performance of AI classifiers in differentiating ASD from HC
using biochemical features28. Accuracy, sensitivity, and specificity
of the classifiers in the review ranged from 75% to 94%, 77% to
94%, and 67% to 93%, respectively (Table 12). The review also
examined the performance of AI classifiers in differentiating ASD
from HC using EEG measures28. Accuracy, sensitivity, and
specificity of the classifiers in the review ranged from 85% to
100%, 94% to 97%, and 81% to 94%, respectively (Table 12). The
review did not conduct a meta-analysis for the above-mentioned
results due to heterogeneity between samples28.
Posttraumatic stress disorder (PTSD) refers to feelings of fear,

anxiety, irritability, terror, or guilty that result from remembering
very stressful, life-threatening, frightening, distressing events that
a patient lived through or witnessed in the past37. One review
examined the performance of AI classifiers in differentiating PTSD
from HC29. Accuracy of the classifiers using neuroimaging data
varied between 89.2% and 92.3% (n= 3). The review also assessed
the performance of AI classifiers in differentiating PTSD from
trauma-exposed controls29. Accuracy of the classifiers using
neuroimaging data varied between 67% and 83.6% (n= 4).
Meta-analysis was not carried out in the review.
Obsessive-compulsive disorder (OCD) is a mental health

condition in which an individual has frequent intrusive thoughts
that lead him or her to perform repetitive behaviors, which may
affect daily activities and cause severe distress38. One review
assessed the performance of supervised machine learning
classifiers in distinguishing OCD from HC using neuroimaging
data30. Accuracy, sensitivity, and specificity of the classifiers in the
review ranged from 66% to 100% (n= 11), 74.1% to 96.2% (n= 6),
and 72.7% to 95% (n= 6), respectively. The review did not pool
the results using meta-analysis.
Psychotic disorders are a group of mental disorders in which a

patient has incorrect perceptions, thoughts, and inferences about

Table 11. Classifier performance in differentiating BD from HC.

Study AI approach Accuracy (n) Sensitivity (n) Specificity (n) AUC (n)

Neuroimaging data

Librenza-Garcia27 UML, SML, DL 55–100 (8) 40–100 (12) 49–100 (12) NR

Neuropsychological data

Librenza-Garcia27 UML, SML, DL 71–96.4 (3) NR NR NR

Genetic data

Bracher-Smith26 UML, SML, DL 54–77 (4) NR NR 48–65 (3)

AI Artificial intelligence, AUC Area under the Curve, BD bipolar disorders, DL Deep learning; HC Health control, n number of studies reported the corresponding
measure, SML Supervised machine learning, NR not reported, UML Unsupervised machine learning.

Table 12. Classifier performance in differentiating ASD from HC.

Study AI approach Accuracy (n) Sensitivity (n) Specificity (n) AUC (n)

Neuroimaging data

Moon28 UML, SML, DL 45–97 (20) 24–100 (20) 21–99 (20) NR

Neuropsychological tests

Moon28 UML, SML, DL 78.1–100 (9) 64–100 (9) 48–97 (9) NR

Biochemical features

Moon28 UML, SML, DL 75–94 (5) 77–94 (5) 67–93 (5) NR

EEG measures

Moon28 UML, SML, DL 85–100 (4) 94–97 (4) 81–94 (4) NR

AI Artificial intelligence, ASD autism spectrum disorder, AUC Area under the Curve, DL Deep learning, HC Healthy control, SML Supervised machine learning, n
number of studies reported the corresponding measure, NR not reported, UML Unsupervised machine learning.
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external reality although there is contrary evidence39. One review
examined the performance of AI classifiers in differentiating
patients with a high risk of developing psychotic disorders from
HC using neuroimaging data or neuropsychological tests31.
Sensitivity and specificity of the classifiers in the review ranged
from 60% to 96% (n= 12) and 47% to 94 (n= 12), respectively.
The review meta-analyzed sensitivities and specificities of AI
classifiers in 12 studies and found a pooled sensitivity of 78% and
a pooled specificity of 77%31.

DISCUSSION
This umbrella review provides an evidence map of the state of the
art of AI technologies in diagnosing mental health disorders. The
15 included systematic reviews focused on diagnosing 8 mental
disorders. Considering the probability for MCI to progress into
clinically diagnosed AD paired with our still limited understanding
of contributing factors, it is hardly surprising that more than 200
original studies and 40% of the included reviews focused on AD
and MCI.
We also observe that the reported pooled sensitivity of 92% and

specificity of 86% for classifying AD vs. HC is higher than for
classifying MCI vs. HC (83% pooled sensitivity and specificity), and
both are higher than for classifying MCIc vs. MCInc (73% pooled
sensitivity and 69% specificity)22. This may be attributed to the
fact that AD is a neurodegenerative disease, thereby, there is a
continuum ranging from AD on one extreme to HC on the other.
Accordingly, discerning extremal cases seems intuitively easier
than between more similar stages. This is in line with the reported
performances for differentiating PTSD from HC being higher than
from trauma-exposed controls29. However, we would also like to
point out that the same review reports methods with better
performance than the pooled sensitivities and specificities quoted
above. This raises the question if such pooling is meaningful from
the point of a user, since it obfuscates the existence of better
diagnostic tools in the same review.
For classifying SCZ vs. HC, we observe that neuroimaging data

tends to lead to better-performing classifiers than genetic data.
Unsurprisingly, using genetic data alone leads to significantly
lower performance, reflecting that both genetic and environ-
mental factors causing SCZ are described in the literature40.
Likewise, classifying BD from HC using genetic data alone shows
lower performance. It is interesting to note that for BD vs. HC,
neuropsychological data seems to achieve decent accuracy (71%-
96.4%) more reliably than neuroimaging data (55%-100%).
However, this may also be a result of low sample count (n= 3
using neuropsychological data, n= 8 using neuroimaging data).
For discriminating ASD from HC, most data types can support

methods with good accuracy but using biochemical features or
EEG measures lead to a significantly increased sensitivity and
specificity. Structured MRI leads to better-pooled specificities and
sensitivities when compared to functional MRI. This can be
attributed to two reasons: (1) sMRI findings resulted from pooling
12 samples from 10 different studies while fMRI resulted from five
samples from only two studies, and (2) the deep neural network
(DNN) was used as a classifier in the fMRI studies whereas it was
used as a classifier in only one sMRI study28.
One review showed promising results regarding the perfor-

mance of AI models in distinguishing OCD from HC using
neuroimaging data. These results should be interpreted carefully
for three reasons. First, these results are based on studies with
small samples (i.e., 20-172). Second, most included studies used
cross validation methods to assess the performance of their
models, which is not the most suitable method when the sample
size is small. Third, large heterogeneity in OCD patients and the
classification features in the included studies.
We found acceptable pooled sensitivity (78%) and pooled

specificity (77%) for differentiating patients with a high risk of

developing psychotic disorders from HC. However, the authors of
that review could not draw a definitive conclusion about
applicability of AI models due to high clinical and methodological
heterogeneity in meta-analyzed studies.
Reporting practices in the original literature continue to

severely hinder statistical meta-analysis of results. On the one
hand, the reported up-to-perfect performance for many tasks by
the included studies signals a new age of AI, where, given the
right modality and amount of data impressive results are reported
tasks with real-world significance. However, considering that many
original studies seemingly choose performance metrics at random
could suggest a definition of success by choice of metric rather
than by the task at hand. This, in turn, leaves us with an
ambivalent feeling regarding the usefulness of attempts of such
analyses (as, e.g., performed by Battista et al.22). Between two
competing methods that (a) are properly validated with a large
enough cohort, (b) have shown sufficient generalization (e.g., in
the form of an external validation) and that (c) use the same data
modality, the one with the better performance should be chosen.
This underscores the importance of following proper reporting
practices, since statistical evaluation (from a clinical, not techno-
logical point of view) otherwise seems moot.
The included reviews focused on the performance of AI models

in diagnosing 8 mental disorders. However, our search process did
not pick up on systematic reviews for several other mental
disorders, such as major depressive disorder (MDD), anxiety,
eating disorders, and personality disorders. Thus, there is a need
to conduct systematic reviews to synthesize the evidence on
performance of AI models in diagnosing such mental disorders.
The systematic review of AI studies differentiating high-risk

psychosis cases with healthy controls31 is a case example of where
the field could benefit from more research. The benefits of early
diagnosis could offer the opportunity for intervention prior to full
development of a psychotic disorder. Further studies could focus
on at-risk groups or identifying ‘at-risk’ for other disorders such as
anxiety and MDD and possibly broaden data source types to those
that are more accessible and practical than neuroimaging data.
Neuroimaging data for AI models seemed to dominate in the

systematic reviews included in this review. In spite of the promising
performance of these AI models, we question the practicality of
incorporating neuroimaging data into routine diagnostic practice
due to it being a resource-intensive procedure. By contrast, AI
models of neuropsychological, genetic, and EEG tests could offer
exciting opportunities to complement and improve existing
diagnostic processes in mental healthcare.
According to the performance reported in the included studies,

AI shows a great potential to lead to accelerated, accurate, and
more objective diagnoses. The findings in this review strongly
suggest that AI is on the jump into clinical use. We believe it is
therefore important to educate practitioners exploring the
potential for new diagnostic and therapeutic methods as they
shift their focus as in so many other jobs that now begin utilizing
AI8; this exploratory use should be ethical and cautious. The
availability of high-quality AI solutions may even pave the way for
an entirely new medical specialization. More important for reliable
AI-based classifiers than sample sizes, however, are reproducibility
and generality. For a method to be reproducible, data and code
must be made available, such that other research teams can verify
the code and ensure that the method is free from oversights. For a
method to be general, it must deliver results similar to the
reported ones on new, previously unseen data. Currently, single
site cross-validation is the most common approach; however,
validation of new models would benefit greatly from replication
using data from external samples.
Many original studies focus on the technical/algorithmic aspects

rather than the choice of data modality. This is a consequence of
the fact that (supervised) AI is extremely data-hungry, yet high-
quality, labeled data is a scarce and expensive resource. It
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represents a significant amount of effort and manpower. This
dependence of contemporary AI on humans dedicating time to
first gather and clean, then feed it with data has been likened to a
parasitic relationship41,42. As the AI grows, it promises higher
utility to humans, which are thus motivated to sift through more
data. The temptation to achieve results with the data at hand
instead of a thorough investigation into which modality offers the
best results is understandably high.
The main limitation of this review is that the data was not

synthesized statistically. We could not synthesize the data
statistically for three reasons. Firstly, the included reviews were
inconsistent in reporting the results of classifier performance.
Secondly, most reviews did not extract or present data that is
necessary for assessing classifier performance and aggregating
the data statistically (i.e., true positive, false positive, true negative,
and false negative). Lastly and most importantly, there was high
heterogeneity in the AI classifiers (e.g., SVM, DT, RF, CNN, K-NN),
data types (e.g., neuroimaging data, genetic data, demographic
data), data features (e.g., axial diffusivity, radial diffusivity, mean
diffusivity, fractional anisotropy), target mental disorder, model
validation approach, and measures of classifier performance
reported in the included reviews.
We also do not present the range of performance metrics for

classification tasks that were reported by less than three studies.
For example, we do not report the classifier performance of AI
approaches in distinguishing anorexia nervosa from healthy
controls as it was assessed by only one study in one of the
included reviews26. Another limitation of this review is that we did
not exclude the mutual primary studies between reviews. There-
fore, there may be some duplicates in the ranges of classifier
performance reported in our review. However, we declared the
number of mutual studies between reviews when we aggregated
ranges from more than two reviews. We did not exclude reviews
based on their quality because most included reviews were
judged as low quality in at least four appraisal items. Quality-
based exclusion would therefore have resulted in including too
few reviews in this work.
To conclude, AI shows a great potential to lead to accelerated,

accurate, and more objective diagnoses of mental health
disorders. The findings in this review strongly suggest that AI is
on the jump into clinical use. Up-to-perfect performance is
reported in many of the included studies, but much of that
performance depends on the correct choice of data modality
paired with correct technical choices (e.g., AI algorithms and
methods). While AI promises a valid path for impartial and
objective classification of mental disorders, practitioners in any
field need to understand the basic aspect and behavior of their
tools. We therefore believe that ethical considerations will gain
importance in the future as well. With these considerations in
mind, we recommend that healthcare professionals in the field
(e.g., psychiatrists, psychologists) cautiously and consciously begin
to explore the opportunities of AI-based tools for their daily
routine. This recommendation is based on the potential we see in
the technology reviewed in this study and the hope for rigorous
evaluation in a clinical environment.

METHODS
An umbrella review was conducted and reported in keeping with
the Joanna Briggs Institute’s (JBI) guidelines for umbrella
reviews43. The protocol for this review is registered at PROSPERO
(ID: CRD42021231558).

Search strategy
We utilized the following bibliographic databases in our search:
MEDLINE (via Ovid), PsycInfo (via EBSCO), CINAHL (EBSCO), IEEE
Xplore, ACM Digital Library, Scopus, Cochrane Database of

Systematic Reviews, DARE, and the PROSPERO register, JBI
Evidence Synthesis, and Epistemonikos. These databases were
searched on August 12, 2021 by the lead author. When applicable,
we set auto alerts to conduct an automatic search weekly for
12 weeks (ending on December 12, 2021). We also searched the
search engine “Google Scholar” to identify gray literature. We
checked only the first 50 hits given that Google Scholar retrieved a
massive number of hits and order them based on their relevancy.
To identify further studies of relevance to the review, we screened
the reference lists of included reviews (i.e., backward reference list
checking) and identified and screened systematic reviews that
cited the included reviews (i.e., forward reference list checking).
We developed the search query by consulting two experts in

digital mental health and by checking systematic reviews of
relevance to the review. These terms were chosen based on the
target population (i.e., mental disorders), target intervention (i.e.,
AI-based approaches), and target study design (i.e., systematic
review). Supplementary Table 2 presents the detailed search query
used for searching each database.

Study eligibility criteria
This review included systematic reviews that focused on the
performance of AI-based approaches in diagnosing mental
disorders regardless of data type (e.g., neuroimaging data,
neuropsychological data, demographical data, and clinical data),
year of publication, and country of publication. We excluded
systematic reviews that focused on AI-based approaches for
predicting outcomes of intervention or prognosis of mental
disorders. We also excluded reviews that did not show at least one
of the following measures of classifier performance: accuracy,
sensitivity, specificity, or area under the curve (AUC). Further, we
excluded primary studies, scoping reviews, literature reviews,
rapid reviews, criterial reviews, and other types of reviews. While
systematic reviews published as journal articles, conference
proceedings, and dissertations were included, we excluded
conference abstracts and posters, commentaries, preprints,
proposals, and editorials. We considered systematic reviews
published only in the English language.

Study selection
We followed two steps to identify the relevant reviews. In the first
step, two reviewers (AA and MH) independently checked the titles
and abstracts of all identified studies. In the second step, the full
texts of studies included from the first step were read by the two
reviewers independently. In both steps, the two reviewers
resolved any disagreements through discussion and consensus.

Data extraction
We developed a form to precisely and systematically extract the
data from the included reviews (Supplementary Table 3). The form
was pilot-tested using two included reviews. Two reviewers (AA &
MH) independently extracted data from the included reviews
using Microsoft Excel. Any disagreements between the reviewers
were resolved through discussion and consensus.

Study quality appraisal
Two reviewers (AA and MH) independently assessed the quality of
the included reviews using Joanna Briggs Institute Critical
Appraisal Checklist for Systematic Reviews and Research Synth-
eses43. Any disagreements between the reviewers were resolved
through discussion and consensus. Inter-rater agreement between
the reviewers was very good (0.85)44.
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Data synthesis
We synthesized the extracted data using the narrative approach.
Specifically, results of the included reviews were grouped based
on the target mental disorders that the AI classifiers distinguish.
The results in each group were further aggregated based on the
data types used to diagnose the target mental disorder. Given the
high heterogeneity in the AI classifiers, data types, target mental
disorder, and measures of classifier performance reported in the
included reviews, we could not synthesize the results statistically.
Therefore, we reported the range of results of measures of
classifier performance. In addition, results that were reported by
fewer than three primary studies in the included reviews are not
reported in our review.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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