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Abstract: L-Arginine is involved in many different biological processes and recent reports indicate
that it could also play a crucial role in the coronavirus disease 2019 (COVID-19), caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, we present an updated system-
atic overview of the current evidence on the functional contribution of L-Arginine in COVID-19,
describing its actions on endothelial cells and the immune system and discussing its potential as a
therapeutic tool, emerged from recent clinical experimentations.
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1. Introduction

L-Arginine is a semi-essential amino acid involved in numerous biological processes. It
is a substrate for different enzymatic reactions and is metabolized using three major known
pathways in the body: (1) Arginase metabolizes L-Arginine to L-ornithine, (2) L-Arginine
decarboxylase metabolizes L-Arginine to agmatine, and (3) nitric oxide (NO) synthase
(NOS) uses L-Arginine to form NO and citrulline [1–4].

2. Functional Role of L-Arginine in NO Formation

L-Arginine is the substrate used for NO production by NOS [5]; due to its ability to
cause NO generation, which has been shown to be a major endothelial relaxation factor
(able to increase vasodilation and reduce arterial blood pressure [4,6–8]), L-Arginine has
considerable potential in becoming a tool to tackle cardiovascular issues [9]. For instance, in
patients with known endothelial dysfunction, L-Arginine supplementation (6–8 g per day)
has been shown to improve endothelial function and ultimately lower blood pressure [9].

Three isoforms of NOS have been identified; two of them (endothelial NOS [10,11]
and neuronal NOS [12,13]) are expressed constitutively, while the last one is inducible and
is mainly involved in the inflammatory/immune response [14–17].

In the reaction carried out by NOS, electrons are transferred to heme in the N-terminal
domain [18,19]. Electrons are taken from nicotinamide adenine dinucleotide phosphate
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(NADP) using flavin adenine dinucleotide in the C-terminal reductase domain [20]. Once
electrons are transferred to the N terminal oxygenase domain, NO and citrulline are formed
via L-Arginine oxidation [5,21,22]. For NOS to function properly, there needs to be an
ample amount of L-Arginine available for this reaction [23]. In addition, NADP, glutathione,
tetrahydrobiopterin, and oxygen are needed for proper functioning [4,24].

A substrate competition occurs between NOS and arginase [25,26]. Although the
affinity for L-Arginine in NOS is much higher than arginase, the speed of the reaction
allows for substrate concentration. The speed of arginase rection is a thousand times faster
than NOS [27]. Since these two enzymes compete for a common substrate, arginase will
reduce the amount of L-Arginine available for NOS to use [28,29], ultimately decreasing
the amount of NO produced.

3. NO: Friend or Foe?

NO is considered a signaling molecule involved in a number of processes, including
inflammatory responses [30]. It is also essential in mediating vasodilation and bronchodi-
lation, in addition to regulating neuronal function, signal transmission, and intraocular
pressure [31].

NO acts as an antithrombotic and cytoprotective agent that impedes platelet adhesion,
smooth muscle cell growth, and expression of adhesion molecules [32]. A reduction in
NO levels triggers a dysregulated control of vascular tone as well as increased thickness
and adhesiveness of the vascular wall [33]. NO can also prevent endothelial cells from
undergoing programmed death [34].

On the other hand, NO has also been shown to have detrimental effects in many
diseases. In some of these cases, there is a shift from the endothelial form (eNOS) of NO
synthase to the inducible form (iNOS) [35,36]. Cells that are being damaged due to NO
production will express nitrotyrosine, confirming damage from active free radicals [35].
Inflammatory cells are also known to produce free radicals that can cause a reaction with
NO made from iNOS, forming peroxynitrate [37]. Peroxynitrate can have a pathogenic
effect due to its ability to react with many different molecules, including lipids, amino
acids, and nucleic bases. Therefore, peroxynitrate can lead to the dysfunction of tissues by
causing a modification of the function of target molecules and their structures, including
carbohydrates and lipids [33]. In addition, when peryoxynitrate reacts with nucleic bases,
there is a break in single-stranded DNA, contributing to cell damage and apoptosis [38].
The production of free radicals is increased as the underlying diseases progress [39].
These findings suggest that NO and oxygen radicals can overpower the cellular defense
mechanisms causing oxidative damage and cell death. Whether or not NO has a toxic or
protective effect could depend on many factors [40].

Focusing on its action on viral infections, NO is known to have either indirect or
direct antiviral activity. A direct effect of NO can lead to inhibition of viruses, and in
fact, NO is considered one of the earliest antiviral responses of the host [41], whereas
indirect effects include the regulation of inflammation and immune response [42]. NO
also plays a key role in the generation of oxidized phospholipids [43], which can operate
as potent immunomodulatory signals [44]. NO is necessary for the formation of several
reactive oxygen and nitrogen species, including peryoxynitrite, dinitrogen trioxide, and
nitrogen dioxide, which all can have an antiviral effect. However, these free radicals can
also cause oxidative stress that can lead to severe cytotoxic effects. NO is known to act
as a pro-apoptotic inducer in some cells or as an anti-apoptotic modulator in other cell
types [45]. For instance, NO has been proposed to contribute to the persistence of hepatitis
C virus due to its anti-apoptotic effect in hepatocytes [46–48]. Because of these aspects, NO
can have both positive and negative roles in viral infections [36,49,50]. In summary, NO
has antiviral effects that can be very useful from an immunologic standpoint; however, an
excess of NO can also lead to cytotoxic effects [49] (Figure 1).
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ment for severely sick patients with SARS resulted in improvement of arterial oxygena-
tion and allowed noninvasive pressure support to be discontinued [51]. SARS-CoV is a 
positive-sense RNA virus that has a genome of approximately thirty kilobases.  

There are some structural proteins that are common among all forms of corona-
viruses; these proteins include a nucleocapsid, membrane, envelope protein, and spike (S 
protein) [52–54]. The S protein of SARS-CoV interacts with angiotensin-converting en-
zyme 2 (ACE2) on the host cells; it has two domains: S1, which is used in receptor binding, 
and S2, involved in membrane fusion [55]. 
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tion). Such disruption affects the ability of the S protein to interact with ACE2. The second 
mechanism involved NO reducing the amount of viral RNA replication early on in the 
replication cycle due to an effect of the cysteine proteases encoded by SARS-CoV [57]; 
indeed, when Vero E6 cells were treated with S-nitroso-N-acetylpenicillamine, a signifi-
cant decrease in viral RNA production was detected three hours post-infection [57]. 

4. Effects of L-Arginine on the Immune System 
A large part of a normal immune system depends on the amount of L-Arginine avail-

able in the body. Arginase is known to represent an integral part of certain granulocyte 
subsets, which can be released locally or systematically once there is an immune response. 
In addition, there is an accumulation of immature myeloid cells that express arginase, 
which is released when fighting off specific illnesses. These myeloid cells that express ar-
ginase can decrease the amount of L-Arginine [58–60]. 

T cell function has been shown to depend on L-Arginine levels [61,62]. A decreased 
ability of lymphocytes to proliferate has been reported in critically ill septic patients and 
correlated to reduced availability of L-Arginine [63]. Moreover, L-Arginine administra-
tion has been found to be beneficial to maintain immune homeostasis (Figure 2), especially 
in terms of T cell and macrophage function [64]. In fact, L-Arginine is essential in the mac-
rophage M1-to-M2 switch [3]. 
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A clinical study conducted on 14 patients during the first outbreak of the severe
acute respiratory syndrome coronavirus (SARS-CoV) in 2003 concluded that inhaled NO
treatment for severely sick patients with SARS resulted in improvement of arterial oxy-
genation and allowed noninvasive pressure support to be discontinued [51]. SARS-CoV is
a positive-sense RNA virus that has a genome of approximately thirty kilobases.

There are some structural proteins that are common among all forms of coronaviruses;
these proteins include a nucleocapsid, membrane, envelope protein, and spike (S pro-
tein) [52–54]. The S protein of SARS-CoV interacts with angiotensin-converting enzyme 2
(ACE2) on the host cells; it has two domains: S1, which is used in receptor binding, and S2,
involved in membrane fusion [55].

Akerstrom and colleagues demonstrated that NO inhibits certain steps of the SARS-CoV
replication cycle in a concentration-dependent manner, although the exact underlying mech-
anism was not clarified [56]. In a follow-up study, the same authors proposed two specific
mechanisms that NO uses to inhibit the replication of SARS-CoV [57]. The first mechanism
involved the disruption of palmitoylating the S protein (depalmytoilation). Such disruption
affects the ability of the S protein to interact with ACE2. The second mechanism involved
NO reducing the amount of viral RNA replication early on in the replication cycle due to an
effect of the cysteine proteases encoded by SARS-CoV [57]; indeed, when Vero E6 cells were
treated with S-nitroso-N-acetylpenicillamine, a significant decrease in viral RNA production
was detected three hours post-infection [57].

4. Effects of L-Arginine on the Immune System

A large part of a normal immune system depends on the amount of L-Arginine
available in the body. Arginase is known to represent an integral part of certain granulocyte
subsets, which can be released locally or systematically once there is an immune response.
In addition, there is an accumulation of immature myeloid cells that express arginase,
which is released when fighting off specific illnesses. These myeloid cells that express
arginase can decrease the amount of L-Arginine [58–60].

T cell function has been shown to depend on L-Arginine levels [61,62]. A decreased
ability of lymphocytes to proliferate has been reported in critically ill septic patients and
correlated to reduced availability of L-Arginine [63]. Moreover, L-Arginine administration
has been found to be beneficial to maintain immune homeostasis (Figure 2), especially
in terms of T cell and macrophage function [64]. In fact, L-Arginine is essential in the
macrophage M1-to-M2 switch [3].
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A deficiency in L-Arginine has been shown to lead to a reduction in T cell proliferation
and to cause a diminished response in T cell-mediated memory [65]. In vitro assays
have validated that L-Arginine can restore the function of T cells [66]. Mechanistically,
the immunosuppressive effects of myeloid-derived suppressor cells (MDSCs) due to L-
Arginine depletion and lymphocyte mitochondrial dysfunction have been demonstrated in
models of cancer [61].

The expansion of MDSCs observed in COVID-19 has been directly correlated to
enhanced arginase activity and lymphopenia [67]. Monocytic MDSCs were significantly
expanded in the blood of COVID-19 patients and were strongly associated with disease
severity; MDSCs were shown to suppress T cell proliferation and IFNγ production, at least
in part through an arginase-dependent mechanism, strongly indicating a role for these cells
in the dysregulated COVID-19 immune response [68]. Indeed, MDSCs express high levels
of arginase, which metabolizes L-Arginine to ornithine and urea, effectively depleting this
amino acid from the microenvironment [69]. L-Arginine depletion is known to inhibit T
cell receptor signaling, eventually resulting in T cell dysfunction [70] and to increase the
generation of reactive oxygen species (ROS), thereby exacerbating inflammation [69,71].

In a recent study focused on COVID-19, Dr. Claudia Morris and colleagues were able to
determine the bioavailability of L-Arginine in three cohorts: asymptomatic healthy adults,
adults hospitalized with COVID-19, and children hospitalized with COVID-19; they found
that both adults and children affected by COVID-19 display significantly lower levels
of plasma L-Arginine (as well as L-Arginine bioavailability) compared to controls [72].
Additionally, a low L-Arginine-to-ornithine ratio observed in COVID-19 patients [72]
indicates an elevation of arginase activity in these patients. In another study, plasmatic
L-Arginine levels were shown to inversely correlate with the severity of COVID-19 [73].
This study also revealed that the expression of the activated GPIIb/IIIa complex (PAC-1),
known to be involved in platelet activation and thromboembolic events [74], is higher on
platelets of patients with severe COVID-19 compared to healthy controls and inversely
correlated with the plasmatic concentration of L-Arginine [73].

These pieces of evidence seem to go against the recently proposed strategy of L-Arginine
depletion in COVID-19, based on the assumption that some steps in the viral lifecycle of
SARS-CoV-2 could depend on L-Arginine residues (for instance, the nucleocapsid protein has
a 6.9% L-Arginine content) [75].

In fact, a decrease in the bioavailability of L-Arginine has been shown to cause a
diminished T cell response and function, eventually leading to an increased susceptibility
to infections [76,77]. Twelve weeks of continuous L-Arginine supplementation significantly
decreased the level of IL-21 [78], while NO has been shown to suppress the proliferation
and function of human Th17 cells [79], which have been implied in the pathogenesis
of the cytokine storm and of hyperinflammatory phenomena observed in COVID-19
patients [80–83]. Higher L-Arginine levels are associated with lower levels of CCL-20, a
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ligand for CCR6, a part of the chemotaxis system that is induced in response to coronavirus
infections [81].

In vitro assays have demonstrated that the proliferative capacity of T cells is signif-
icantly reduced in COVID-19 patients and can be restored through L-Arginine supple-
mentation [67]. Corroborating these findings, recent metabolomics data indicates that
L-Arginine pathways are altered in COVID-19 patients [84] and an increased mRNA ex-
pression of arginase has also been found in the peripheral blood mononuclear cells (PBMCs)
of COVID-19 patients [85].

Of note, circulating levels of metabolites of the L-Arginine pathway can be affected by
arginase activity in red blood cells [86], which is known to be affected by oxidative stress
and can contribute to endothelial dysfunction observed in COVID-19 [87]; furthermore,
L-Arginine metabolism is known to be altered in hemolysis [88]. The exquisite balance
between arginase and NOS activity has also been shown to influence the inflammatory
responses of gut resident macrophages [3].

To actually test L-Arginine in COVID-19 patients, based on the rationale described
above, we designed a randomized clinical trial to study the effects of adding L-Arginine
orally (Bioarginina®, 1.66 g twice per day) to standard therapy in patients hospitalized
for COVID-19. The interim results, recently published [89], revealed that patients who
received L-Arginine had a significantly reduced duration of the in-hospital stay, and a
diminished respiratory support, compared to patients in the placebo arm.

We speculate that L-Arginine supplementation could be also beneficial in controlling
long-COVID-19, since the persistence of chronic inflammation and endothelial dysfunction
has been shown to be fundamental in COVID-19 sequelae [90–93].

5. L-Arginine Deficiency in African Americans: Implications in COVID-19

The deficiency in L-Arginine could be one of the reasons why African Americans
suffer more from cardiovascular disease than other races [94–97]. For instance, a study
completed by Glyn and collaborators compared the L-Arginine profile of African and
Caucasian men of similar ages and cardiovascular risk factors. What they found was
that levels of L-Arginine were significantly lower in African men while blood pressure
and pulse wave velocity were higher [98]. In this study, African American men typically
presented with extremely detrimental cardiovascular factors. A total of 292 men (130 of
them being African and 162 of them being Caucasian) were studied; in African men, the
average level of L-Arginine measured was 107 ± 25.6 µmol/L, whereas Caucasian men
were found to have an average L-Arginine level of 126 ± 32.8 µmol/L (p < 0.001). However,
the authors were not able to determine whether or not the differences in L-Arginine levels
were environmentally induced or imposed genetically [98].

The deficiency in L-Arginine and L-Arginine derived NO [99,100] could also explain
the differences reported in terms of COVID-19 and race [101,102]. In support of this
view, the intracoronary infusion of L-Arginine was recently found to have a greater effect
on endothelium-dependent vascular relaxation in African Americans than in Caucasian
subjects [103].

6. Conclusions and Perspectives

The functional contribution of L-Arginine in many biological processes is extremely
significant, especially in the control of endothelial and immune activities. There is a strong
rationale indicating a beneficial effect of L-Arginine in COVID-19, and preliminary results
from a randomized clinical trial seem to support this view.
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