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In recent years, diagnostic studies of brain disorders based on auditory

event-related potentials (AERP) have become a hot topic. Research showed

that AERP might help to detect patient consciousness, especially using the

subjects’ own name (SON). In this study, we conducted a preliminary analysis

of the brain response to Chinese name stimuli. Twelve subjects participated

in this study. SONs were used as target stimuli for each trial. The names

used for non-target stimuli were divided into three Chinese character names

condition (3CC) and two Chinese characters names condition (2CC). Thus,

each subject was required to be in active (silent counting) and passive mode

(without counting) with four conditions [(passive, active) × (3CC, 2CC)]. We

analyzed the spatio-temporal features for each condition, andwe used SVM for

target vs. non-target classification. The results showed that the passive mode

under 3CC conditions showed a similar brain response to the active mode, and

when 3CC was used as a non-target stimulus, the brain response induced by

the target stimulus would have a better interaction than 2CC. We believe that

the passive mode 3CC may be a good paradigm to replace the active mode

which might need more attention from subjects. The results of this study can

provide certain guidelines for the selection and optimization of the paradigm

of auditory event-related potentials based on name stimulation.

KEYWORDS

auditory event-related potentials, name stimulation, classification and recognition,

P300, P200

Introduction

Disorder of consciousness (DOC) caused by severe brain injuries includes minimally

conscious state (MCS) and vegetative state/unresponsive wakefulness syndrome

(VS/UWS) (Giacino et al., 2014). MCS presents a small number of perceptual behaviors,

while VS presents a basic loss of understanding about itself and the environment

(Kotchoubey et al., 2005; Laureys et al., 2010). The research on MCS and VS has

important significance in both the clinical level and scientific field. Accurate diagnosis

and effective wake-up treatments of these two brain states are one of the most urgent

problems that need to be solved (Gosseries et al., 2011). At present, various rating

scales are commonly used in the clinical evaluation of DOC patients, while the rate
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of misdiagnosis is up to 40% since the rating method depends

much on patients’ behavior ability and is subjectively affected

by doctors. To reduce misdiagnosis and improve the quality

of prognosis, many other methods have been used to assess

consciousness (Holeckova et al., 2006; Di et al., 2007; Blankertz

et al., 2011; DeMartino et al., 2011; Phillips et al., 2011; Jox et al.,

2012; Kurz et al., 2018).

Auditory event-related potential (AERP) is a non-

invasive electrophysiological test with millisecond resolution

that can distinguish the relationship between cognitive

electrophysiological components and different cognitive stages

(Polich et al., 1990). It has been increasingly used in the

diagnosis and evaluation of clinical cognitive impairment

(Golob et al., 2002; Howe et al., 2014; Morrison et al., 2018).

AERP reflects the entire process from cochlear activation

to higher cognitive processing, providing objective and

neurophysiological information about the brain’s response to

auditory stimuli (Cowan et al., 1993). In recent years, auditory

stimuli with emotional characteristics have been increasingly

used by researchers, such as preferred music, animal sounds,

natural sounds, names, and so on (Heine et al., 2015; Perrin

et al., 2015; Wu et al., 2018; Carriere et al., 2020). Names are the

words that people are most familiar with, and many researchers

have revealed the self-priority of names (Nakane et al., 2015;

Kotchoubey and Pavlov, 2017; Blume et al., 2018). As far as

clinical arousal therapy is concerned, the use of name-auditory

evoked potentials (NAEP) is one of the commonly used clinical

methods (Thul et al., 2016; Onishi et al., 2017; Crivelli et al.,

2020). Due to the particularity of names, many researchers

have begun to use SON to assess the state of consciousness in

patients with brain injury (Holeckova et al., 2008; Real et al.,

2016). Kempny et al. (2018) recruited 12 healthy subjects and

16 DOC patients for EEG experiments, and they randomly

inserted SON into a sequence composed of others’ names

(ONs), extracted ERP signals, and used statistics parameter

mapping (SPM) for analysis. The results showed that there

were no significant differences in SON and ON between 12

patients at the group level, and only 4 patients had similar ERP

responses to the healthy group, with significant differences

in ERP under different name stimuli, which demonstrated

the feasibility of using name stimuli to assess DOC patients.

According to EEG studies, SON can induce ERP and beta power

inhibitory components (Tamura et al., 2016) and can be used to

improve the prognostic value of ERPs in coma patients and to

evaluate the cognitive process of unresponsive patients (Fischer

et al., 2008; Giacino et al., 2018). The study of Tacikowski and

Nowicka (2010) also showed that the response time of one’s

own name to stimuli was shorter than others’ names, and the

induced P300 amplitude was stronger. The “calling a person’s

name” method has been included in the latest guidelines for

consciousness disorders in the United States, which shows that

compared with meaningless sounds, individual-related name

stimulation is more effective and provides a better cognitive

state (Bekinschtein et al., 2004), and it is a stimulus that is

conducive to promoting cognition because name stimuli are

more activated in the temporal lobe (Wu et al., 2018).

At present, many studies (Naci and Owen, 2013; Zhu

et al., 2019) have not only verified the cognitive neural

mechanism of name stimulation but also applied it to the clinical

field, providing good help for the consciousness detection

and diagnosis of brain injury patients. As a kind of sensory

stimulation, the auditory mode can effectively provide a good

cognitive environment by calling the patient’s name, which can

effectively activate the relevant brain regions, and the difference

between different levels of consciousness can be seen by fMRI or

EEG technology (Qin et al., 2008; Cheng et al., 2013). Calling

patients’ names has become an important topic in the field

of consciousness diagnosis internationally and has been widely

used in clinical practice with significant advantages.

However, there are still some remaining problems in

current research: First, existing research on the mechanism of

interaction is mainly developed from the perspective of active

attention, but there are few reports on whether there is a

cognitive integration process under non-attentional conditions.

Second, previous studies on ERP have reported enhancement

of own name response relative to “non-target” names such

as strangers, celebrities, newly familiarized names, and so on.

Those studies focus on the difference of different familiarity

of the names, while few studies reported the brain response

to the characteristic of the “non-target” names. Does this

particular reaction interact when the subject responds to the

target stimulus? In China, most people have a name with Three

Chinese Characters which could be noted as three syllables

(3CC, such as /li/ /xiao/ /long/ and /liu/ /da/ /si/) or Two

Chinese Characters which could be noted as two syllables (2CC,

such as /san/ /zhang/ and /wang/ /si/). What are the differences

between two-character and three-character names? Why would

it differentially impact own name recognition in a meaningful

way? There is no relevant research to prove the above view so far.

In this study, subjects were required to be in both active

mode (counting silently) and passive mode (only listening) with

P300 induced by SON as the target stimulus and other names

(ONs) as the non-target stimulus. We verify the brain response

by studying the temporal and spatial information of EEG signals.

In addition, to compare the target name detection ability from

non-target stimuli, we compared the classification accuracies of

different conditions based on the SVMmethod, which is usually

used in pattern classification.

Materials and methods

Participants

Twelve healthy volunteers (6 males and 6 females; mean:

22.7 ± 0.75 years old) were tested in the experiment, all
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of them were college students. The subjects were all right-

handed, reported no psychiatric disorders, had normal vision

and hearing, none suffered from brain damage or had taken

psychotropic drugs, did not drink coffee, tea, alcohol, or

other beverages for 24 h before the experiment, and ensured

adequate rest the night before the experiment according to

subjects’ oral report. All participants’ first and immersed

language was Chinese, and informed consent was obtained after

understanding the process and purpose of this experiment by

every subject. Of the 12 subjects, 6 people’s names had Two

Chinese Characters which could be noted as two syllables and

the remaining 6 people had Three Chinese Characters which

have three syllables.

Stimuli and experimental procedure

In this study, the sound stimulus was recorded by a native

Chinese male using a MOTU828ES sound card and an MXL-

67i microphone. The recorder read more than 30 names on the

list, including the subject’s name, and each name was read aloud

twice. The test audio was adjusted to the subject’s comfortable

sound intensity of 22 ±3 dB, with a sampling rate of 48 kHz,

sampling accuracy of 24bit, and dual-channel acquisition. All

sound files were edited by Adobe Audition software with the

same stimulation duration and inter stimuli interval.

Due to the different types of Chinese names, the name

stimuli were divided into Three Chinese Character names (3CC,

such as /li/ /xiao/ /long/ and /liu/ /da/ /si/) and Two Chinese

Character names (2CC, such as /san/ /zhang/ and /wang/ /si/).

The sequence included five names with the SON as the target

stimulus and four ONs as the non-target stimulus. The non-

target stimulation was chosen for names that the subjects did not

know, and the subjects were asked if they were familiar with the

name before conducting the pre-experiment. All names before

the experiment have been adjusted to replace and remove names

that may produce acoustic similarities.

Stimuli were arranged repeatedly in a pseudo-random order,

which means that the two adjacent stimuli could not be the

same. Before the experiment, the duration of each name was

set to 600ms using professional audio clip software (Adobe

Audition CS6), and the inter stimuli interval (ISI) between every

two adjacent auditory stimuli was randomly distributed between

500 and 800ms transmitting by headphones. The sound signal

waveforms of 2CC and 3CC are shown in Figure 1.

The paradigm was designed by E-prime 3.0 system. Each

experiment included five names, and these five names must

appear in each repetition with a random presentation. In

addition, it was necessary to ensure that the same stimulus

occurred discontinuously to avoid overlapping in the evoked

response. There were five blocks in one session. For each block,

there would be 20 repetitions, each repetition containing five

name stimuli, and the length of the name stimuli was 600ms.

Figure 2 showed the flow of the entire experiment, with red

squares as target stimuli (SON), green as non-target stimuli

(ON), and black as ISI.

During the active task, subjects were asked to pay attention

to the sound stimuli they heard and to mentally count the

appearance of subjects’ own names (SONs); and during the

passive task, subjects were asked to simply listen quietly, with

no other requirements.

Subjects sat in a comfortable chair ∼0.7m from a 24-

in LED monitor and were repeatedly instructed to avoid

blinking and body movement. Before the formal experiment,

a group of sound exercises was conducted to familiarize the

participants with the task requirements and the experimental

process. Subjects were explained the difference between target

stimulus, non-target stimuli, active task, and passive task

before each session. The whole experiment was conducted in a

soundproof room.

In this experiment, subjects were asked to be in passive

(only listening) or active (counting in silence) states. Each

subject performed four experimental sessions corresponding

to non-target 3CC stimuli of passive condition (3CC-passive),

non-target 2CC stimuli of passive condition (2CC-passive),

non-target 3CC stimuli of active condition (3CC-active), and

non-target 2CC stimuli of active condition (2CC-active) in

a sequential order. The experimental process was shown in

Figure 1. At the beginning of each block, there was a visual cue

“If you are ready, please press the SPACE key” lasting for 2 s, with

clicking the space bar as a starting condition. All participants

underwent the same experimental procedure, for 100 trials in

one session, with 500 samples in total.

EEG pre-processing

The EEG data were pre-processed including filtering, down-

sampled, and independent component analysis (ICA). The pre-

processing was completed by the EEGlab toolbox of MATLAB.

Unwanted components and features in the signal are first

removed by filtering, and then the data size is reduced by

downsampling to facilitate subsequent processing. Next, artifact

removal is performed by ICA, which is an inverse process

that decodes from the input signal layer by layer outward to

restore each of the mixed signals and thus obtain the original

signal. An FIR band-pass filter with 0.5–40Hz was used for

offline filtering and downsampled to 200Hz. Eye movement

artifacts and motion artifacts were removed according to ICA

results. The EEG data from 200ms before stimuli to 800ms

after was regarded as the data segment of this stimulation, called

an epoch, and all epochs were divided into target and non-

target groups according to the type of stimulation. Epochs were

subtracted from the average amplitude of the baselines, which

were calculated at intervals of −200 to 0ms before the stimuli
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FIGURE 1

Sound signal waveforms of 2CC and 3CC.

FIGURE 2

Experimental process chart.

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2022.808897
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhao et al. 10.3389/fnins.2022.808897

onset. Some epochs were excluded if the amplitude was detected

to exceed±100 µV.

Feature extraction

High domain features might bring bad classification

performance when the training samples are limited. Thus,

we conducted a feature extraction (selection) method

before classification.

For feature extraction, r2 is used as the basis for

differentiability judgments (Chum et al., 2012). The formula is

as follows:

r2 (t) = ±{
(
√
MTMN (mean (XT (t)) −mean(XN (t)))

(MT+MN) std
(

XT(t) ∪ XN (t)
) }

2

(1)

where t, t = 1, 2, . . . ,N, is the time point of features.

XT and XN represent the target feature vector and non-target

feature vector, respectively. MT and MN represent the number

of target samples and non-target samples as well. mean is to

calculate the average value and std is to calculate the value of

standard deviation. The average value of target minus non-target

determines the sign of r2.

Feature selection method

Based on the r2 results, we conducted the feature selection

based on the following steps:

1) According to the ERP components, two constraint time

windows were set (T1: 100–300ms; T2: 300–600ms), since

most of the significant r2 were limited in these two

time windows.

2) Calculated the r2 score in the first window:

score (t) = mean
(

r2 (t)
)

+max
(

r2 (t)
)

3) Calculated the correlation of adjacent time points in turn:

c(t,1t) =
< x(t), x(1t) >

|x(t)|∗|x(1t)|

c represents the correlation between two vectors,

ranging from 0 to 1. Correlation increases as c increases.

The time range (t_r(Ti,i=1,2)) was chosen to satisfy more

than half of the score value and the c value>0.7. The amplitudes

in the time range were averaged as a feature. Thus, we get the

feature in this t_r(Ti). f(Ti) =mean(Xt_r(Ti)(t)).

Calculated the next constraint window, and repeated steps 2

to 4.

Finally, two features f(T1) and f(T2) in the two constraint

time windows of T1 and T2 were obtained. For each subject, we

have 500 samples (100 targets and 400 non-targets) and for each

sample, we have 2 features ∗ 60 channels. Thus, for each subject

and each condition, a 500 ∗ 120matrix was obtained. The feature

vectors corresponding to the target and non-target trials were

labeled+1 and−1, respectively.

Classification

The classification rate between targets and non-targets in

each condition was calculated by a support vector machine

(SVM) classifier. SVM is a generalized linear classifier, which

transforms the actual problem into a high-dimensional feature

space through a non-linear transformation, and constructs a

linear discriminant function in the high-dimensional space to

realize the non-linear discriminant function in the original

space. Take binary classification as an example, the algorithm

separates these two classes by dividing the hyperplane in the

feature space of samples, and the two heterogeneous samples

closest to the hyperplane are used as support vectors, and

the distance between the two samples is called “interval.” The

basic idea is to construct the optimal hyperplane in the feature

space so that the distance between the hyperplane and the

set of samples of different classes is maximized to achieve the

maximum generalization ability (Bishop and Nasrabadi, 2006;

Jordan and Mitchell, 2015).

SVM with a 10-fold cross-validation (Fushiki, 2011) method

was used to perform the single trial classification accuracy,

which means that it will classify each sample as target or

non-target. We also performed the classification performance

using 1 to 10 repetitions. For example, five repetitions mean

that we will compare the classification decision values for each

name in the first five trials for each block, and calculate the

average decision value of each name. The name with the highest

decision value will be classified as the target, otherwise the name

will be classified as non-target. After that, receiver operating

characteristic (ROC) and area under the roc curve (AUC) were

used to obtainmore evidence. Statistical analysis was to compare

the different results among the conditions by t-test.

Results

Spatio-temporal characteristics of
di�erent conditions

Figure 3 illustrates the AERP response and amplitude

topographic map by an average of 12 people in 4 conditions.

The four pictures represent passive-3CC, active-3CC, passive-

2CC, and active-2CC, respectively. The pink line represents the

results of target stimuli and the gray line represents the results of

non-target stimuli. As shown in Figures 3A–D, the target stimuli

in the active state could induce a marked P300 response at about
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FIGURE 3

Average ERP waveforms at C3 and C4 electrodes of 12 people under 4 conditions in sequence. In each subfigure, (A–D) the pink and gray colors

denote target and non-target stimuli, and the thick and thin lines denote C3 and C4 channels, respectively. The gray rectangle represents the

time intervals that have a significant di�erence, and the colored long rectangle under the lines represents the sign r2 results for the entire time

period. The circle below the waveform graph is the average amplitude topographic map in the first and second time intervals.

400 to 500ms, while an obscure P300 can be observed only when

the non-target was 3CC for the passive state.

The rectangular bar of r2 shows the area of two time

windows that have a significant difference (or higher r2) marked

with a gray rectangular window, respectively. By observing the

brain map in figures A and B for results of 3CC conditions,

it can be seen that those target stimuli induce a negative

activation (might be noted as an N2 component) in 200 to

300ms. Conversely, it evokes a high-energy activation (which

might be noted as a P300 component) in the occipital region

at 400 to 600ms. However, non-target stimuli show the exact

opposite of the target stimuli. The former showed activation

of the central anterior gyrus and frontal regions in both

areas, a positive reaction in the first gray time interval, and

a negative reaction in the second gray time interval. This

result can also be seen in figure C and figure D for results of

2CC conditions.

Figure 4 shows the ERP amplitudes in the second time

intervals (see Figure 3, which indicated the P300 component)

evoked by target stimuli. The means and standard error (Mean

± SE) of P300 amplitudes of 12 participants: passive-3CC (3.02

± 0.76) µV, active-3CC (5.40 ± 0.72) µV, passive-2CC (1.87

± 0.81) µV, and active-2CC (4.43 ± 0.73) µV. The amplitudes

of P300 components in the active mode were significantly

higher than that in passive mode, and the P300 amplitude

induced by target stimuli in the active-3CC condition is the

highest, while that in passive-2CC is the lowest. A significant

difference in the ERP amplitude in the second gray time

interval between passive-3CC and passive-2CC (p = 0.015) is

found, which means the brain responds differently to different

non-target stimuli. The significantly larger amplitude between

passive-3CC and active-3CC (p = 0.006) and passive-2CC

and active-2CC (p = 0.001) were found, and these indicate

that when the non-target stimuli were the same, the ERP

amplitude of the active task was greater than that of the passive

task.

From the analysis of the signed r2, we could find that the

most important components are in the two time intervals. Thus,

we set two time intervals T1 (200–300ms) and T2 (300–600ms),

and used the introduced feature selection method in section

Method to extract useful features. The extracted features will be

used to make the classification of targets and non-targets.
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FIGURE 4

ERP amplitudes in the second time intervals (which indicated the P300 component) evoked by target stimuli in both passive and active

conditions with di�erent types of non-target stimuli. The a-black solid asterisk indicates a significant di�erence (p < 0.05) between two

conditions, and the two-black solid asterisks indicate a very significant di�erence (p < 0.01) between two conditions. Values are the means and

standard error (Mean ± SE) of P300 amplitude among an average of 12 people.

Comparison of 2CC and 3CC names

The averaged ERP waveforms of subjects with 3CC names

and 2CC names were also calculated, respectively, and the

AERPs of the Pz channel induced by target stimuli and

the AERPs of the Fz channel induced by non-target stimuli

were presented.

Figure 5 reflects the comparison of ERP waveforms under

different types of subjects’ names and different types of stimuli.

Noticing that the AERPs of target stimuli were presented with

the Pz channel and AERPs of non-target stimuli were presented

with the Fz channels, we could find from Figure 3 that the target

stimuli have strong response in parietal regions and the non-

target stimuli have strong response at the frontal regions. The

four sub-figures, respectively, represent passive 3CC condition,

active 3CC condition, passive 2CC condition, and active 2CC

condition. The red solid line and blue solid line, respectively,

represent the ERPs of target and non-target stimuli when the

subjects’ own names are 3CC. The red dashed line and blue

dashed line represent the ERPs when the subjects’ names are

2CC. The horizontal axis is time and the range is 200 to 800ms,

and the vertical axis is the amplitude and the range is 5 to 8 µV.

It can be seen from Figure 5 that the target responses are

similar no matter whether the SON names are 2CC and 3CC

(p > 0.5), and the non-target stimuli are also similar (p > 0.5)

even when the SON names are different (2CC or 3CC) in a

specific condition. The t-test results could be found in Table 1.

This proves that in this study, for the induced AERPs, the

length of the subject’s own name has no significant effect on the

experimental results.

Classification and recognition

Figure 6 shows the classification of targets and non-targets

using extracted features. Figure A and figure B indicate the

binary classification and the averaged classification results

of all subjects. Figure 6A shows the performance of binary

classification; since the samples of the targets and non-targets

are significantly unbalanced, we use the average of four times
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FIGURE 5

(A–D) The di�erence between the ERP evoked by the target stimulus and the non-target stimulus by the length of the subject’s name. The four

graphs, respectively, represent four task conditions. Lines of di�erent colors represent di�erent types of stimuli. The abscissa is time (ms) and the

ordinate is amplitude (µV).

binary classification results as the final binary results. For each

participant, we have one SON and four ONs, with each name

having 100 samples. Thus, we classified the SON (100 samples)

with each ON (100 samples) to get the binary classification. At

last, we will average the performance of four binary classification

as the final performance.

The means and standard error (Mean ± SE) of accuracy

(Figure 5A): passive-3CC (81.15 ± 1.71) %, active-3CC (85.00

± 1.74) %, passive-2CC (76.30 ± 1.63) %, and active-2CC

(81.07 ± 1.69) %. The mean single-trial classification accuracy

in active-3CC is 85% while that in passive-3CC is 81.15% with

an insignificant difference (p = 0.086). The mean accuracy

in active-2CC is 81.07% and in passive-2CC is 76.3% with

a significant difference by t-test (p = 0.015). There is no

significant difference between the accuracy rate of 3CC and

2CC under active conditions (p = 0.052), but the difference is

significant under passive conditions (p = 0.027). In addition,

passive-3CC (81.15%) and active-2CC (81.07%) showed similar

classification accuracy.

Figure 6B shows the performance of the name classification

performance with different repetitions of stimuli, each repetition

has five trials (names). We use the classifier to make a binary

classification of each trial providing the decision value for each

class. After a repetition (or repetitions), the decision values for

each name as the target stimuli were calculated and compared,

and the name with the highest decision value would be classified

as the target stimuli.

Figure 6B shows that the accuracy of 10 repetitions could

exceed 90% under three conditions, while that is only 70% in

the passive-2CC condition. According to the statistical analysis,
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TABLE 1 The mean amplitudes and latencies as well as the t-test results.

Targets Pz channel SON = 3CC SON = 2CC T-test (p-value)

Amplitude/µV Latency/ms Amplitude/µV Latency/ms Amplitude Latency

Passive 3CC 3.48 480 1.08 535 0.87 0.83

Active 3CC 7.46 485 6.69 445 0.83 0.27

Passive 2CC 0.36 395 1.20 450 0.33 0.82

Active 2CC 5.34 470 4.90 505 0.78 0.35

Non-targets Fz channel Amplitude/µV Latency/ms Amplitude/µV Latency/ms Amplitude Latency

Passive 3CC 4.48 220 2.18 230 0.99 0.47

Active 3CC 4.46 220 3.55 225 0.93 0.13

Passive 2CC 0.93 245 3.14 240 0.92 0.25

Active 2CC 1.21 255 2.35 275 0.89 0.10

FIGURE 6

(A) represents the binary classification accuracy of four conditions, (B) represents the repetition results with the fold from 1 to 10, (C) represents

the ROC curves of 3CC and 2CC non-targets, and (D) represents the legend. The thick and thin lines represent 3CC non-targets and 2CC

non-targets, and pink and gray colors represent active and passive states, respectively. The black solid asterisks denote the significant

di�erences. They are all average values of 12 people, and error bars and colored areas are the means and standard errors (Mean ± SE).

there is no significant difference in accuracy rate between active

and passive in the case of 3CC non-target (p = 0.1), and the

difference in the case of 2CC non-target is very significant (p =

0.003). There is no significant difference between passive-3CC

and active-3CC, and the accuracies of passive-3CC and active-

2CC were relatively close in each average trial, which reveals the
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possibility of passive mode replacing active mode and provides

evidence for the feasibility of the experimental scheme in this

study.

As can be seen from Figure 6C, the AUC of active-3CC is

larger than that of passive-3CC, the AUC of active-2CC is also

larger than that of passive-2CC, and the curves of active-3CC

and passive-3CC are better than that of active-2CC and passive-

2CC. In addition, when the non-target is 3CC, the ROC curve

effect and the AUC value obtained are both greater than those

of the 2CC non-target. Besides, under the 3CC condition (p =
0.13), there is no significant difference between the active and

passive results, while the difference is very significant under the

2CC condition (p = 0.012). This result reveals that the effect

of the passive-3CC classifier is close to that of active-3CC and

active-2CC classifiers, which verifies the above conclusion.

Discussion

In the brain, each stimulus will go through a series of

complex procedures including language perception, cognitive

integration, and decision processing, involving the cooperation

of different brain regions (Bressler and Menon, 2010), and is

affected by the attention and familiarity of individuals. This

study uses quantitative EEG analysis to investigate whether

different types of stimuli can cause changes in brain responses

when the participants’ attention changes. In this study, the

non-target stimuli of 3CC were able to play a facilitating

role in the brain’s recognition of target stimuli, producing

higher amplitudes and better correct classification rates than

the non-target stimuli of 2CC, providing a theoretical direction

for studying the interaction between target and non-target

stimuli in the auditory paradigm; in addition, the passive

3CC task paradigm used in the present study evoked a brain

response which was similar to that of the active task, and

although it produced a lower P300 amplitude, it showed similar

classification results in classification recognition as the active

2CC task, revealing the feasibility of using a 3CC name design

auditory paradigm to detect the level of consciousness in a

passive auditory task based on Chinese names.

Non-target stimuli play a key role in the
brain’s cognitive processes

In this study, subjects were required to be in a passive

listening state and active counting state to research the P300

potential (the positive component of about 500ms in the T2 time

zone) by oddball paradigm, by classifying the non-target stimuli

into different types to determine whether the P300 responses

were similar in the four tasks. Notably, the non-target stimuli

were the same for all subjects under the same conditions, and the

only change was caused by the target stimulus. This was expected

in this study because the experiment required the subjects to

performmental counting of the target stimulus in the active task.

At this time, the brain could produce special neural activity to

the stimulus, thus inducing a strong P300. Because in the passive

state, an obscure P300 can only be observed when the non-target

is 3CC; therefore, we think that when the non-target stimulus is

3CC, it would affect the brain’s response to the target stimulus,

resulting in a large ERP response. Moreover, from Figure 3, the

brain response differs for different non-target stimuli, and the

magnitude of 3CC is >2CC in both active and passive states,

which reflects the dominance of long names. Therefore, we

believe that the brain response to non-target stimuli will be

influenced by the type of non-target.

Various psychological studies have proved that strong

attention can be led by hearing one’s own name which is related

to personal emotions (Snyder et al., 2012), and the auditory

threshold for perceiving one’s own name is lower than other

names (Howarth and Ellis, 1961). To some extent, MCS and

even VS/UWS patients can distinguish their own names and

other names (Fellinger et al., 2011). Schnakers (Schnakers et al.,

2008) showed that the amplitude of P300 in MCS patients

is different in active and passive modes; Cavinato (Cavinato

et al., 2009) held that P300 is an indicator that can predict

the recovery of consciousness in VS patients by using SON as

deviant stimulation. The results of this paper show that the brain

response is different for different non-target stimuli, and for

subjects, whether the non-target stimulus is 2CC or 3CC, the

subject’s own name does not change (the target stimulus remains

the same), and the brain’s response to the stimulus evoked by

the subject’s name should be theoretically the same, but the

results of this paper show that if the brain’s response to the

non-target stimulus 2CC and 3CC is different, then we believe

that the different non-target stimuli affect the brain’s response

to the subjects’ own names. In addition, because the stimuli in

this study were rapid stimuli, when 2CC and 3CC were used as

non-target stimuli to the brain, the responses were still in the

process of continuation, which could affect the brain’s response

to the target stimuli. Therefore, it is important to study the brain

responses evoked by different types of non-target stimuli.

The passive mode may be an alternative
paradigm to replace the active mode

From the results in Figure 6, it shows that there is no

significant difference between passive-3CC and active-3CC (p =
0.1 in repetition and p = 0.13 in ROC), which proves that

the brain response under the two conditions is similar, that

is, the brain’s ability to recognize target stimuli is similar. To

a certain extent, this provides evidence for using a passive

auditory paradigm instead of an active auditory paradigm for
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DOC patients. Previous studies have shown that stronger self-

related information induces larger ERP responses, such as P200

and P300, both during the conscious period (Fan et al., 2013;

Tacikowski et al., 2014) and coma state (Lancioni et al., 2010).

Therefore, the auditory paradigm, especially the name stimulus,

has been widely used in clinical research, providing an auxiliary

role for the conscious diagnosis of DOC patients (Fischer et al.,

1999; Di et al., 2007).

The “self-name effect” indicates that the self-processing

related to names has a very responsible mechanism, which

may include two different stages of early and late processing

including P200 (positive components around 200ms) and P300

(Perrin et al., 1999). Repeated training of auditory can generate

ERPwaveforms (Baykara et al., 2016), and the amplitude of P300

reaches its maximum value in the parietal lobe (Key et al., 2016).

The P200 component is an early factor reflecting the process

of perception and one of the objective indicators reflecting

cognitive dysfunction. It is specifically related to the evaluation

of attention and memory function. But there is only a P300 can

be observed without a P200 response induced by target stimuli

in our experiment. On the contrary, non-target stimuli induce an

early response of the P200 response. To our surprise, the brain’s

response to the target stimuli is also affected by the types of

non-target stimuli. Both in a passive or active condition, 3CC of

non-targets has a clear advantage over 2CC of non-targets, such

as higher P300 amplitude and better classification accuracy.

In summary, the purpose of this study was to verify the

rationality of using name simulation as self-relevant information

in healthy subjects during a monotonous auditory task based

on the oddball paradigm. The analysis indicated that the P300

amplitude was higher in active conditions than that in passive

conditions, and the P200 could be captured evoked by non-

targets with no difference between the active and passive

conditions. Moreover, when the P200 and P300 features were

used as input to the SVM, the single-trial accuracy rate reached

80%, and the trial-averaged accuracy exceeded 90% in all

conditions except passive-2CC. Our findings, although limited

by the small sample size and confined reliability, suggest the

possibility of a detection model and analysis method based on

the passive paradigm. We expect to replace the active response

paradigm by designing a passive auditory ERP paradigm, which

requires a larger sample to focus on the relationship between

auditory stimuli and consciousness. Future research needs

to further study the ERP paradigm of unresponsive crowds,

establish a standardized database, and use this approach to assess

the residual self-consciousness of patients.

Limitations of the study

This study designed an AERP experiment based on name

stimuli, and although we obtained relatively satisfactory results,

there are still many shortcomings that can be further improved.

First, this paper studied the brain responses produced by 12

subjects with limited names and limited stimuli evoked, and the

results still need further improvement and validation; second,

the time to complete a task in this paper is about 12min, which

is too long for clinical patients and may lead to subjects’ fatigue

and poor experience during the experiment. Optimization of

the auditory paradigm to obtain better results in a shorter

time is the main direction of future research; finally, this

study takes the detection of the clinical level of consciousness

as the background and tries to explore the passive auditory

paradigm applicable to clinical use, but due to the impact of

the COVID-19 epidemic, which makes this study no clinical

patient experiments at present, but only data analysis based on

healthy people and future when the situation improves. After the

situation improves, the direction must be put into the clinic.

Conclusion

The results showed that the brain response in the passive

3CC mode was similar to that in the active mode. When 3CC

was used as a non-target stimulus, the brain response induced

by the target stimulus had better interaction than that induced

by 2CC. We believe that the brain response to non-target

stimulation will be affected by non-target types, and passive

mode 3CC may be a good example of an alternative to active

mode. The results of this study can provide some guidance

for the selection and optimization of the name-based auditory

event-related potential paradigm.
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