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02-106 Warszawa, Poland; jasio.ibb@gmail.com
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Abstract: (1) Background: The aim of this dynamic-LC/MS-human-serum-proteomic-study was to
identify potential proteins-candidates for biomarkers of acute ischemic stroke, their changes during
acute phase of stroke and to define potential novel drug-targets. (2) Methods: A total of 32 patients
(29–80 years) with acute ischemic stroke were enrolled to the study. The control group constituted
29 demographically-matched volunteers. Subjects with stroke presented clinical symptoms lasting no
longer than 24 h, confirmed by neurological-examination and/or new cerebral ischemia visualized in
the CT scans (computed tomography). The analysis of plasma proteome was performed using LC-MS
(liquid chromatography–mass spectrometry). (3) Results: Ten proteins with significantly different
serum concentrations between groups volunteers were: complement-factor-B, apolipoprotein-A-I,
fibronectin, alpha-2-HS-glycoprotein, alpha-1B-glycoprotein, heat-shock-cognate-71kDa protein/heat-
shock-related-70kDa-protein-2, thymidine phosphorylase-2, cytoplasmic-tryptophan-tRNA-ligase,
ficolin-2, beta-Ala-His-dipeptidase. (4) Conclusions: This is the first dynamic LC-MS study performed
on a clinical model which differentiates serum proteome of patients in acute phase of ischemic stroke
in time series and compares to control group. Listed proteins should be considered as risk factors,
markers of ischemic stroke or potential therapeutic targets. Further clinical validation might define
their exact role in differential diagnostics, monitoring the course of the ischemic stroke or specifying
them as novel drug targets.

Keywords: ischemic stroke; biomarker; therapeutic target; proteomics; liquid chromatography–mass
spectrometry (LC-MS)

1. Introduction

Stroke is among the most common causes of death and permanent disability in
adults [1]. Eighty percent of strokes are caused by occlusion of the vessel lumen by
thrombotic or embolic material [2]. Animal studies have shown that at the time of stroke
the blood-brain barrier (BBB) is damaged and becomes permeable for greater amounts of
proteins [3]. This mechanism may also occur in humans [4]. Some reports suggest that the
measurement of brain-derived proteins in plasma could be useful in diagnosis and moni-
toring acute phase of ischemic stroke [5]. Furthermore, serum stroke biomarkers might be
useful in risk stratification to determine the optimal way of treatment for specific patients.

To date, there are several defined potential biomarkers linked to the stroke. They
demonstrate some prognostic value regarding long-term disability [6,7]. Recent studies
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point at the possible involvement of osteoprotegerin, serum free hemoglobin, S-100 protein,
brain natriuretic peptide (BNP) as stroke biomarkers, but none of them are characterized by
a sufficient sensitivity and specificity to be recommended in clinical practice [8–11]. Others,
such as D-dimer, lipoprotein-associated phospholipase A2 (Lp-PLA2), fibrinogen, myelin
basic protein, neurospecific enolase (NSE) glial fibrillary acidic protein, heart-type fatty acid
binding protein (H-FABP), apolipoprotein C I and III (ApoC I and III), von Willebrand factor
(vWF), matrix metalloproteinase-9 (MMP-9), monocyte chemotactic protein-1 (MCP-1) and
highly sensitive C-reactive protein (hsCRP), are mostly related to risk factors of ischemic
stroke and are useless in the early diagnosis [12–14].

Stroke is increasingly understood as “acute cerebral syndrome,” which emphasizes
the analogy to acute coronary syndrome and the classic risk factors for stroke include
similarly the hypertension, diabetes and atrial fibrillation. Its primary and secondary
prevention is currently based on the atherosclerotic plaque stabilizing management with
statins (and ezetimibe when the therapeutic goal is not achieved) [15], as well as appro-
priate antiplatelet/antithrombotic treatment and antihypertensive treatment including
angiotensin converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs) in
combination with thiazide-like diuretics or/and with dihydropyridine-like calcium channel
blockers (CCBs).

The detection of biochemical markers of vascular brain injury should have similar
implications as diagnostic and prognostic value of troponins or creatine kinase myocar-
dial band isoenzyme (CK-MB) in myocardial infarction [16]. However, there are still no
defined markers of acute ischemic events in the central nervous system that would closely
correspond to the extent of ischemic foci and show the dynamics of changes over time.
They would also make it possible to recognize a recurrent stroke more quickly than the
appearance of neuroimaging changes [17].

The aim of the study was an attempt to falsify the hypothesis regarding no significant
differences in the serum proteome between patients with ischemic stroke when compared
to control without acute cerebral ischemia using a Liquid Chromatography—Mass Spec-
trometry (LC-MS) technique. The dynamic relationships between the course of the disease
and the level of identified potential candidate proteins were also analyzed.

2. Materials and Methods
2.1. Bioethics Statement, Protocol Approvals and Patient Consents

All experiments were conducted and approved in accordance with the guidelines of
the local Bioethics Committee and adhered to the principles of the Declaration of Helsinki
and Title 45, U.S. Code of Federal Regulations, Part 46, Protection of Human Subjects
(revised 13 November 2001, effective 13 December 2001). All participants provided their
written consent to participate in the study. The written consent form had been approved by
the ethics committee.

2.2. Recruitment of Patients, Study Design and Groups Description

A total of 31 patients at age of 29–80 years with diagnosed acute ischemic stroke
at the Neurology Department of the 4th Military Clinical Hospital (Wroclaw, Poland)
were included into the study. The control group constituted 28 volunteers hospitalized at
the Internal Medicine Department, which had similar comorbidities, cardiovascular risk
factors and were demographically matched to the study group. Control patients were
matched for age, gender, cardiovascular risk factors, and demographic characteristics.
Exclusion criteria for both groups were: lack of medical history, anemia, thrombocytopenia,
past nervous system diseases (including previous ischemic or hemorrhagic stroke), past
head injuries, atrial fibrillation (including paroxysmal and requiring oral anticoagulant
treatment), malignancies, chronic inflammatory diseases, current infections, chronic kidney
disease (eGFR < 45 mL/min/1.73 m2), medications including drugs potentially affecting
the obtained results (anticoagulants, anticonvulsants, contraceptives, hormone replacement
therapy) and inability to provide informed consent.
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Patients positively recruited presented clinical symptoms of stroke lasting no longer
than 24 h, confirmed by neurological examination and/or new cerebral ischemia visible
in computed tomography scan (CT) (Figure 1). Following the diagnosis of stroke, they
were additionally examined twice: on the 3rd day (to distinguish the stroke from TIA)
and on the 7th day after ischemic stroke. The control subjects formed group C. Physi-
cal examination was followed by blood collection and neurological examination. In all
groups, cardiovascular risk stratification was performed. Differential paired-analyses of
the plasma proteome and peptidome were performed between control group and study
groups—A vs. C, B vs. C and A + B vs. C.
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Figure 1. Ischemic lesion evolution between 1st day (a) and 7th day (b) in the no-contrast CT scans.

2.3. Blood Collection

Blood samples for laboratory tests were taken on an empty stomach and in atraumatic
conditions after single puncturing the ulnar vein once with the S-Monovette set (Sarstedt
AG & Co, Sarstedt, Germany).

Serum was obtained for creatinine, estimated glomerular filtration rate (eGFR), glucose,
lipid profile, urea, uric acid, sodium, potassium and hsCRP. Whole blood collected in a
tube with an activator of coagulation was centrifuged for 15 min. at 1000× g in 45 min
from its collection. Preserved in Eppendorf, serum was transferred to accredited university
hospital laboratory. Test were performed using routine methods.

2.4. Preparation of Plasma for Proteomic Analysis

Blood collected in S-Monovettes (EDTA) was centrifuged for 15 min at 4 ◦C to obtain
samples of the plasma. Then samples were stored at −80 ◦C until further determinations
were made. After thawing, the plasma was diluted with ammonium bicarbonate containing
25% acetonitrile and the peptides were gradually separated. In order to remove proteins
with high molecular weight, the diluted plasma samples were centrifuged using special
filters at a temperature of +4 ◦C. The filtrate was centrifuged to yield a peptide fraction
which was in turn dried using a vacuum concentrator. The dried peptides were dissolved in
0.1% formic acid solution and purified and then loaded onto the chromatography column
using a step gradient of acetonitrile (ACN): 0–5 min-0% ACN, 5–9 min-60% ACN, 9–12 min-
98% ACN, 12–17 min-0% ACN. Fractions containing low molecular weight compounds
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(up to 8 min elution) indicated by the UV detector for the wavelength λ = 214 nm were
discarded, while the fractions containing peptides (8–15 min elution) were collected, pooled,
and dried under vacuum. The dried peptides were then dissolved in 0.1% formic acid
solution, and their concentration was determined using the Direct-Detect system from
Millipore®. The peptides in each sample were standardized to 5 µg and measured by
LC-MS. which was then stored at −80 ◦C.

2.5. Quantitative and Qualitative Determination of Proteins-Proteomic Analysis by LC-MS

The ProteoMiner technology (Bio-Rad, Hercules, CA, USA) was used in order to decrease
the amount of high-abundance proteins without immune-depletion, preventing the loss of
proteins bound to high-abundance proteins, according to the manufacturer’s instructions.

Samples containing 5 µg of the plasma peptide was subjected to proteomic processing
during which the peptides were separated on a C-18 nano-HPLC column using an acetoni-
trile gradient (5–35% for 180 min) in the presence of 0.1% formic acid. The chromatography
column was coupled to a mass spectrometer operating in MS (peptide mass measurement)
and MS/MS (peptide fragmentation) modes. Then the raw data was analyzed with an
appropriate program using the Swiss-Prot database (taxonomy restricted to Homo sapiens).
The cut-off point was <1% FDR. The list of peptides identified in all LC-MS runs was su-
perimposed on the two-dimensional maps generated from the LC-MS profile data for the
individual samples, based on the mass-to-charge (m/z) ratio, deviation from the predicted
elution time, and the fit between the theoretical and observed mass ranges. Finally, a list of
peptide ions was generated with their intensity for each sample. It was statistically analyzed
using the Diffprot software and lists of statistically significant state-specific proteins were
generated. Proteomic analysis was conducted in the Mass Spectrometry Laboratory at the
Institute of Biochemistry and Biophysics of the Polish Academy of Sciences in Warsaw. All
software used is accessible at http://proteom.ibb.waw.pl (accessed on 1 September 2018).

2.6. Statistical Analyses

The statistical analysis of demographic and biochemical parameters was performed
with the use of the Statistica 10.0 StatSoft® program. Data is expressed as mean ± SEM.
The results at the level of p < 0.05 were considered statistically significant.

The differences between the means were assessed using the Student’s T-test or the
Mann–Whitney U test depending on the distribution of the variables and the variety of
variances. Post-hoc analysis was performed with Newman–Keuls tests. The Diffprot
software [18] was used for the analysis of proteomic/peptidomic data, which allowed the
generation of a list of significant levels of proteins in the plasma.

3. Results
3.1. Baseline Characteristics of Patients

Characteristics of the groups is presented in Table 1. Study and control groups were
homogenous in terms of age, sex, and ethnicity (100% Caucasian). In subjects with ischemic
stroke the increased white blood cells count (WBC) and the decreased mean platelet volume
(MPV) has been reported when compared to the control group. Basic biochemical test also
revealed the decreased level of potassium and high density lipoproteinin (HDL) in the
stroke group when compared to controls.

3.2. LC-MS Results

Differential quantification of the plasma proteome revealed ten proteins with the
significantly different concentrations between examined and control group. Alpha-1B-
glycoprotein (A1B-GP) and the heat shock protein of the Hsp70 (Hsp70s) family differed
significantly between the study group on the first day after stroke (group A) and the control
group (group C).

http://proteom.ibb.waw.pl
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Table 1. Demographic and biochemical characteristics selected groups, with particular emphasis on
cardiovascular risk factors.

Stroke (Mean ± SEM)
n = 31

Control (Mean± SEM)
n = 28 p

Women 13 (42%) 14 (50%) 0.38

Age [y] 62.68 ± 9.35 62.00 ± 11.40 0.80

Hemoglobin [g/dL] 14.39 ± 1.63 13.78 ± 1.63 0.16

Hematocrit [%] 42.65 ± 4.45 40.93 ± 4.81 0.16

RBC [m/µL] 4.79 ± 0.59 4.68 ± 0.58 0.50

WBC [k/µL] 9.16 ± 3.48 7.05 ± 2.55 0.01 *

PLT [k/µL] 254 ± 195 244 ± 46 0.14

MPV [fl] 9.38 ± 1.26 10.90 ± 0.83 0.00 *

hsCRP [mg/L] 5.55 ± 6.03 5.52 ± 5.96 0.99

Potassium [mmol/L] 3.85 ± 0.34 4.15 ± 0.42 0.00 *

Sodium [mmol/L] 139 ± 2.50 139.38 ± 5.23 0.06

Glucose [mg/dL] 130 ± 50 108 ± 51 0.12

Urea [mg/dL] 33.7 ± 12.7 29.5 ± 13.1 0.22

Creatinine [mg/dL] 0.93 ± 0.27 0.89 ± 0.27 0.57

AST [IU/L] 19.00 ± 7.06 23.50 ± 12.00 0.22

ALT [IU/L] 21.63 ± 9.79 26.65 ± 15.75 0.31

Total bilirubin [mg/dL] 0.54 ± 0.07 0.72 ± 0.29 0.30

TCh [mg/dL] 184.27 ± 48.20 210.95 ± 52.34 0.06

HDL [mg/dL] 49.20 ± 13.60 58.36 ± 15.87 0.03 *

LDL [mg/dL] 108.83 ± 41.47 126.22 ± 47.50 0.16

TG [mg/dL] 137.23 ± 92.44 144.48 ± 84.09 0.77

TSH [µIU/L] 3.03 ± 3.56 1.47 ± 0.85 0.06

APTT [s] 27.66 ± 3.58 28.61 ± 5.22 0.45

PT/INR 0.98 ± 0.10 0.99 ± 0.05 0.18

*—p statistically significant factor (p < 0.05); p, test probability; SEM, standard error of the arithmetic mean.

On the 7th day after the stroke, differences were found between the study group and
the control group (group B vs. C) regarding complement factor B (Bf), apolipoprotein A-I
(ApoA1), fetuin A, fibronectin (Fn), cytoplasmic tryptophanyl-tRNA synthetase (TrpRS)
and ficolin-2.

The next two proteins (thymidine phosphorylase (TYMP) and beta-alanylhistidine
dipeptidase (β-Ala His dipeptidase) differed significantly only when the combined group
(group A + B), which characterizes all stroke patients regardless of the day of the test, was
compared with the control group (group C) (Table 2).

Table 2. Quantitative differences of found proteins.

Protein Name Comparison q Value Ratio Fold Change Peptides

Complement factor B

A vs. C
p1 0.13460 0.51 1.97 69

p2 0.37151 0.49 2.04 69

B vs. C
p1 0.00032 * 0.52 1.92 70

p2 0.00015 * 0.53 1.87 70

A + B vs. C
p1 0.03326 * 0.56 1.80 70

p2 0.15461 0.59 1.69 69

Apolipoprotein A-I

A vs. C
p1 1.00000 0.69 1.45 405

p2 1.00000 0.75 1.34 405

B vs. C
p1 0.00021 * 0.63 1.59 405

p2 0.00034 * 0.65 1.53 405

A + B vs. C
p1 1.00000 0.64 1.57 407

p2 1.00000 0.62 1.61 405
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Table 2. Cont.

Protein Name Comparison q Value Ratio Fold Change Peptides

Fibronectin

A vs. C
p1 0.78238 1.57 1.57 12

p2 0.68263 1.43 1.43 12

B vs. C
p1 0.08008 1.95 1.95 12

p2 0.03980 * 2.15 2.15 12

A + B vs. C
p1 0.24051 1.43 1.43 12

p2 0.77102 1.40 1.40 12

Alpha-2-HS-glycoprotein

A vs. C
p1 0.69703 1.84 1.84 126

p2 0.72959 1.66 1.66 126

B vs. C
p1 0.01408 * 1.62 1.62 126

p2 0.00015 * 1.63 1.63 126

A + B vs. C
p1 0.29914 1.39 1.39 126

p2 0.87082 1.53 1.53 126

Alpha-1B-glycoprotein

A vs. C
p1 0.00290 * 0.54 1.87 55

p2 0.04753 * 0.52 1.91 54

B vs. C
p1 1.00000 0.56 1.78 55

p2 0.90000 0.57 1.74 53

A + B vs. C
p1 0.05477 0.46 2.19 55

p2 0.00146 * 0.40 2.53 54

Heat shock protein Hsp70 family †

A vs. C p1 0.00663 * 2.19 2.19 1

B vs. C p1 1.00000 2.11 2.11 1

A + B vs. C p1 1.00000 1.51 1.51 1

Thymidine phosphorylase

A vs. C p1 0.77044 0.23 4.35 1

B vs. C p1 0.57787 0.13 7.55 1

A + B vs. C p1 0.00425 * 0.12 8.05 1

Tryptophan–tRNAligase, cytoplasmic

A vs. C p1 0.85112 0.44 2.29 1

B vs. C p1 0.00163 * 0.18 5.55 1

A + B vs. C p1 0.00230 * 0.25 3.96 1

Ficolin-2

A vs. C
p1 0.67919 2.77 2.77 5

p2 0.68670 2.11 2.11 5

B vs. C
p1 0.01077 * 6.53 6.53 5

p2 0.04484 * 5.18 5.18 5

A + B vs. C
p1 0.29495 1.67 1.67 5

p2 0.34767 2.55 2.55 5

Beta-Ala-His dipeptidase

A vs. C
p1 0.14225 6.47 6.47 7

p2 0.35263 6.10 6.10 7

B vs. C
p1 0.08966 2.58 2.58 7

p1 0.06369 3.13 3.13 7

A + B vs. C
p1 0.04009 * 1.49 1.49 7

p2 0.13244 1.16 1.16 7

p (n)-The minimum number of peptides at which the protein is included in the analysis. A, B,-examined groups,
C- control group. *—statistically significant q factor (q < 0.05); q, test probability; A-blood sampling on day 1 of
hospitalization; B-blood sampling on the 7th day of hospitalization; C-blood sampling from the control group; A vs. C-
difference at the beginning of the observation; B vs. C-difference after seven days of observation; A + B vs. C-difference
present between the combined samples of the study group compared to the control group; p (n)-the minimum number
of peptides in which the protein is included in the analysis; †—The set of peptides assessed corresponds to the sequence
of protein 2 and protein 8 from the Hsp70 family.

4. Discussion

This is the first study to analyze the time-dependent changes in human plasma pro-
teome during the acute phase of ischemic stroke using LC-MS. We identified ten proteins
that could be biomarkers useful in the diagnosis of acute phase of ischemic stroke. Fur-
thermore, observed proteome differences in blood during stroke may reflect a cascade of
pathophysiological events related to the evolution of the disease and therefore help us to
better understand the pathophysiology of cerebral ischemia.
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4.1. Basic Biochemical Tests

The level of total cholesterol and its fractions was determined after the first 24 h.
The decreased levels of LDL and CT correspond to the earlier findings that the levels of
these parameters decreased on the first day after ischemic stroke. Significantly lowered
HDL cholesterol level may be associated with an increased risk of cerebrovascular events.
Previous data supports an inverse relationship between serum HDL levels and incidence of
stroke [19]. Some prospective studies have demonstrated that higher HDL levels are associ-
ated with lower stroke risk in long-term observation [20,21], and an increase in of oxidative
stress in HDL particles from patients after ischemic stroke is linked to decreased anti-
oxidant enzyme paraoxonase 1 (PON-1) activity. Understanding the relationships between
the pathophysiology and HDL-particle size distribution may better aid in risk assessment.
Moreover, the question if subclasses of HDL differ in their anti-atherogenic functionality,
the amount of apolipoprotein A-1, and ultimate efficiency in reverse cholesterol transport
as well as the role of these phenomena in the risk for stroke, remain unanswered.

Increase in potassium concentration observed in many studies during acute ischemia
of central nervous system (CNS) contributes to the damage of nervous tissue [22]. In our
study, lower potassium level may be related to lower baseline values in patients more
susceptible to stroke [23]. According to several reports, a diet with a high potassium
intake reduces the risk of ischemic stroke and improves the prognosis after an ischemic
event [24]. A recent meta-analysis confirms the inverse association between potassium
intake and stroke risk, with potassium intake of 90 mmol (≈3500 mg)/day associated with
the lowest risk of stroke [25] and several studies indicate protective effects of potassium
against thrombus formation, atherosclerotic lesion progression, endothelial dysfunction,
and free radical generation [26–28].

To date, elevated MPV has been a suggested risk factor for ischemic stroke, predicting
the severity of the neurological deficit [29]. On the other hand, reduced MPV values
were found in patients after intensive motor neurorehabilitation [30]. Interpretation of
the reduced MPV values in the stroke population analyzed in this study is difficult since
people with a severe course of the disease were not eligible for the study, and in this
population, one would expect increased MPV values. According to some authors, elevated
WBC plasma levels, most often associated with inflammatory processes, may be a predictor
of ischemic stroke [31]. The increase in WBC in our study may be caused by an acute
(infection) or chronic (atherosclerosis) inflammatory response, which in many cases is
difficult to distinguish [32].

4.2. Proteomics Analysis

Differences were observed in the serum proteome of people with ischemic stroke
compared to the control group, identifying two proteins: TYMP and β-Ala His dipeptidase.
Levels of those parameters differed significantly only when the combined group all stroke
patients, regardless of the day of the study, was compared with the control group.

TYMP, also known as platelet-derived endothelial growth factor [33], catalyzes the phos-
pholysis reaction of 2′-deoxytimidine to 2-deoxy-D-ribose-1-phosphate and thymine [34].
So far, its activity has been associated primarily with tumor growth. It promotes angio-
genesis [35] and inhibits apoptosis of neoplastic cells [36]. Additionally, TYMP stimulates
the growth and chemotaxis of endothelial cells [37] and regulates platelet activation and
thrombosis [38]. The TYMP function in the brain is not fully understood. Under physio-
logical conditions, astrocyte-derived TYMP along with vascular endothelial growth factor
(VEGF) is responsible for the continuity of the blood-brain barrier, but during the inflam-
matory response, both proteins weaken this barrier function [39]. TYMP is also known as
gliostatin [40]. It has a strong inhibitory effect on glial cells, maintaining homeostasis and
protecting neurons in the central nervous system [41]. It has also been shown that TYMP
expression increases in neurons after ischemia-reperfusion (IR) injury [42], but the role of
this enzyme in the pathogenesis of ischemic brain damage is not well known.
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The activity of TYMP facilitating the formation of blood clots, disrupting homeostasis,
and breaking the blood-brain barrier suggests that inhibition of this enzyme activity may
lead to prevention of ischemic stroke. The use of a TYMP inhibitor has been shown to
inhibit collagen and ADP-induced platelet aggregation, thereby inhibiting thrombosis
without causing significant bleeding [43,44].

We postulate that TYMP-4 might become a therapeutic target [38,45] in human stroke,
reducing the extent of ischemic penumbra in the acute phase of ischemic stroke. Since the
TYMP-4 inhibitor molecule-tipiracil is already used in clinical practice (in the chemother-
apy of colorectal cancer-as an adjuvant that inhibits the disintegration and increases the
concentration of the chemotherapeutic-nucleoside analogue, trifluridine). We started the
future direction of our study on the usefulness of TYMP-4 by tipiracil and other TYMP-4
inhibitors in reducing the extent of brain ischemia reperfusion injury in an animal model. In
the present study, the increase in TYMP levels was observed in the acute phase of ischemic
stroke. Therefore, it is important to consider the effect of TYMP inhibiting on outcome in
humans after stroke.

There are no reports of the role of β-Ala His dipeptidase in ischemic stroke. There
is a single report about the role of this protein in patients with mucopolysaccharidosis
(Anderson-Fabry disease) [46]. The accumulation of globotriaozylceramide in blood vessels
and tissues leads to the development of cardiovascular complications such as heart attack,
hypertrophic cardiomyopathy, and stroke. In the present study, elevated levels of β-Ala
His dipeptidase were observed in the acute phase of ischemic stroke, which may reflect
both its protective effect on brain tissue and the effects of ischemia during the acute phase
of stroke.

The dynamics of changes in the serum proteome of people with ischemic stroke in the
determined time series was demonstrated, indicating the connection of certain proteins
with the course of the disease. On the first day after stroke a1B-GP and Hsp70s differed
significantly between the study group and the control group.

A1B-GP has been described as a ligand for the cysteine rich secretory protein 3 (CRISP-3) [47],
which is implicated in the tissue response to ischemia [48]. In the present study, decreased
level of a1B-GP was observed in the acute phase of ischemic stroke. Due to the small
amount of research, it can only be suspected that this protein is probably involved in both
protective processes and ischemic damage of brain tissue.

Much more in known about the involvement Hsp70s in the pathogenesis of stroke. In
the present study, an increased level of the protein 8 (Hsp70-8, heat shock cognate 71 kDa
protein) and the protein 2 (Hsp70-2, heat shock-related 70 kDa) was observed. It correlates
with the results of other studies [49]. Hsp70-8 is a factor that can protect brain cells against
ischemia cooperating with anti-apoptotic factors and reducing the area of cell death in the
brain [50]. It has been shown that the expression of the HSPA8-ps1 gene is increased in
the cerebral cortex affected by a stroke [51]. It is also worth noting that the expression of
HSPA8 in the brain increases with age, which in the elderly may limit the negative effects
of oxidative stress on nervous tissue [52]. The 15-deoxy-spergualin is among examined
substances that modulate the function of Hsp70-8. Enhancing the activity of Hsp70-8 it
could have a protective effect on brain tissue during of ischemic stroke [53].

The second protein, Hsp70-2, is mainly found in the testes and the brain. Elimination
of the HSPA2 gene in mice leads to apoptosis of germ cells [54], suggesting that Hsp70-2
may play a similar anti-apoptotic role in the brain as well. Moreover, the synthesis of the
Hsp70-2 protein is probably induced by ischemia [55] and therefore this protein could also
be a therapeutic target in ischemic stroke.

Only on the seventh day after the stroke differences were found regarding Bf, ApoA1,
Fn, fetuin A, TrpRS and ficolin-2.

The reduced concentration of Bf was observed in our work. Some studies demon-
strated that the Bf is involved in the development of IR brain injury and neurological
deficits [56,57] and the inhibition of this component might significantly reduce the post-
stroke deficits [58]. Other reports suggest its participation in neuroprotection as an effect
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of natural brain remodeling after an ischemic event [59,60]. It also may represent a post-
stroke immunosuppression [61]. A study on mice suggests that administration of an
anti-factor B antibodies may reduce necrotic damage to brain cells, but without improving
the neurological deficit [62].

In line with other reports [63], in our study a decreased concentration of Apo A1
was observed on the 7th day after the stroke. However, some authors suggested that
the usefulness of ApoA1 appears to be of little use in the early diagnosis of stroke as
its concentrations do not change significantly in the first 28 days following an ischemic
event [64]. Indicating the presence of atherosclerosis, ApoA1 is also a prognostic parameter
of an increased risk of neurovascular events [65]. Increased levels of anti-ApoA1 IgG
antibodies have been shown to be associated with higher risk of major cardiovascular
events including stroke [66]. There are still no data available to conclusively explain
whether the decreased ApoA1 level belongs to the pathophysiology of the acute phase of
stroke or is only associated with an increased risk of stroke in this group.

The differences in the Fn level were also found in our work on 7th day after the stroke.
Based on available data Fn is considered a marker of the blood-brain barrier damage
during stroke [67]. It is involved in the formation of a blood clot and inflammation [68].
In some reports the concentration of this protein in plasma appears to be dependent on
the duration of ischemia, peaking between 6th-8th hours [69]. A relationship was found
between the concentration of Fn and the occurrence of hemorrhagic stroke [70] and the risk
of hemorrhagic transformation after thrombolytic management of ischemic stroke [71].

Studies in rats have shown that fetuin A has an anti-inflammatory effect, resulting
in tissue protection from cerebral ischemic injury [72]. In the present study, increased
level of fetuin A was observed which correlates with the results of other studies that have
shown a relationship between fetuin A concentration and the severity of ischemic stroke.
A change in the concentration of this parameter may indicate prognosis and subsequent
recovery [73].

Under hypoxic conditions, the expression of TrpRS is reduced, which was demon-
strated, among others, by on the cells of the pancreatic cells [74]. Our findings showed that
the level of this protein decreases in the acute phase of ischemic stroke. It is commonly
observed that at the same conditions there is an increased expression of another form of
this enzyme, mini-TrpRS, which impairs myocardial perfusion after infarction in rat [75]
and in monkeys [76]. As an antagonist of ocular angiogenesis, it may also have a beneficial
effect in inhibiting pathological neovascularization [77]. The role of TrpRS and mini-TrpRS
in the pathogenesis of ischemic stroke requires further research.

On the 7th day after the onset of ischemic stroke symptoms, our study also showed
an increased concentration of ficolin-2. Similar results were presented in previous reports.
Zangari et al. [78] observed decreased plasma levels of ficolin-2 after 6 h of symptom
duration, which increased slightly between the 3rd and 5th days and one month after
stroke. In another study, Füst et al. [79] reported decreased levels of ficolin-2 on days 1 and
3 after stroke. Such results suggest that changes in ficolin-2 concentration would become a
useful marker of the acute phase of ischemic stroke.

5. Conclusions

This is the first dynamic LC-MS study performed on a clinical model which differ-
entiates serum proteome of patients in acute phase of ischemic stroke in time series and
compares to control group. Our study showed 10 proteins with significantly different
concentrations between the groups. Listed proteins should be considered as risk factors,
markers of ischemic stroke or potential therapeutic targets. Our understanding of their role
in ischemic stroke requires further research. Similarly, there is a need for their validation as
human biomarkers of ischemic stroke. Nevertheless, in the future, they could be used as
biomarkers to better diagnose ischemic stroke and develop new therapeutic strategies.
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