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Abstract
Pig survival is an economically important trait with relevant social welfare implications, thus standing out as an important 
selection criterion for the current pig farming system. We aimed to estimate (co)variance components for survival in 
different production phases in a crossbred pig population as well as to investigate the benefit of including genomic 
information through single-step genomic best linear unbiased prediction (ssGBLUP) on the prediction accuracy of survival 
traits compared with results from traditional BLUP. Individual survival records on, at most, 64,894 crossbred piglets 
were evaluated under two multi-trait threshold models. The first model included farrowing, lactation, and combined 
postweaning survival, whereas the second model included nursery and finishing survival. Direct and maternal breeding 
values were estimated using BLUP and ssGBLUP methods. Furthermore, prediction accuracy, bias, and dispersion were 
accessed using the linear regression validation method. Direct heritability estimates for survival in all studied phases 
were low (from 0.02 to 0.08). Survival in preweaning phases (farrowing and lactation) was controlled by the dam and piglet 
additive genetic effects, although the maternal side was more important. Postweaning phases (nursery, finishing, and 
the combination of both) showed the same or higher direct heritabilities compared with preweaning phases. The genetic 
correlations between survival traits within preweaning and postweaning phases were favorable and strong, but correlations 
between preweaning and postweaning phases were moderate. The prediction accuracy of survival traits was low, although 
it increased by including genomic information through ssGBLUP compared with the prediction accuracy from BLUP. Direct 
and maternal breeding values were similarly accurate with BLUP, but direct breeding values benefited more from genomic 
information. Overall, a slight increase in bias was observed when genomic information was included, whereas dispersion 
of breeding values was greatly reduced. Combined postweaning survival presented higher direct heritability than in the 
preweaning phases and the highest prediction accuracy among all evaluated production phases, therefore standing out as 
a candidate trait for improving survival.  Survival is a complex trait with low heritability; however, important genetic gains 
can still be obtained, especially under a genomic prediction framework.
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Introduction
Pig survival can be understood as the success of animal 
adaptation to different challenges throughout the production 
system. About one-third of pigs do not survive or are culled by 
the end of the finishing phase (Arango et  al., 2006; Dufrasne 
et al., 2014); thus, highlighting the economic and social welfare 
relevance of piglet survivability for the current pig industry. 
The most challenging periods for pig survival are the first few 
days after birth and after weaning. Newborn piglets experience 
a drop of 15 to 20  °C in body temperature and an abrupt 
change from a continuous glucose supply from the placenta 
to an intermittent supply from colostrum (Herpin et al., 2002) 
After weaning, the rearrangement of litters and the new feed, 
management, and environment are big stressors that piglets 
may have to face (Campbell et al., 2013). The beginning of both 
phases requires fast physiological, environmental, and social 
adaptation which undoubtedly challenges pig survivability. 
Numerically, most deaths occur during the parturition 
expulsion period and right after birth, and, as a result, the 
risk factors and the potential genetic variation surrounding 
survival before weaning are more frequently studied (Knol 
et  al., 2002a; Grandinson et  al., 2005; Arango et  al., 2006). 
Although the number of animals dying after weaning is not 
big as before weaning, the economic loss is much significant 
in this phase due to the larger rearing costs per animal lost, 
therefore encouraging further research for improving both 
preweaning survival and postweaning survival.

Survival is typically measured as a binary response (i.e., dead 
or alive), although it is commonly evaluated with linear models 
with the assumption of a continuous distribution (van Arendonk 
et al., 1996; Knol et al., 2002a; Grandinson et al., 2005), or evaluated 
at the litter level, excluding piglet individual information (i.e., 
piglets birth weight, sex, and genetic contribution; Lund et al., 
2002; Guo et  al., 2015; Aldridge et  al., 2020). When survival is 
evaluated at the piglet level, the use of nonlinear models, such 
as threshold models, is statistically more suitable. Those models 
accommodate the natural distribution of such binary responses 
and allow for better capturing of the genetic variance (Gianola, 
1982). Regardless of models and trait definitions, studies 
investigating the genetic basis of survival have indicated that 
there might be an opportunity to improve pig survivability 
through selection (Leenhouwers et al., 2001; Knol et al., 2002a; 
Dufrasne et  al., 2014). Despite the low heritability, genetic 
improvement may be achieved in the long-term selection.

One way to further the genetic improvement, with primary 
benefits for lowly heritable traits, is including genomic 
information (García-Ruiz et  al., 2016). Genomics can improve 
selection response by increasing the breeding values accuracy 
of young animals, which speeds up selection decisions, 

consequently reducing the generation interval (Meuwissen 
et  al., 2001). Genomic information from single nucleotide 
polymorphism (SNP) marker panels has been incorporated 
and successfully used for whole-genome prediction in pig 
breeding programs (Knol et al., 2016). Such information can be 
incorporated into genetic evaluations through the single-step 
genomic best linear unbiased prediction (ssGBLUP) method 
(Legarra et al., 2009; Aguilar et al., 2010; Christensen and Lund, 
2010), which simultaneously uses information from phenotypes, 
pedigree, and genotypes in a single run, simplifying routine 
evaluations and allowing the implementation of complex 
models, such as threshold models.

In the present study, we used threshold models to estimate 
(co)variance components for crossbred pig survival in different 
production phases. We also investigated the benefits of including 
genomic information through ssGBLUP on the prediction 
accuracy, bias, and dispersion of direct and maternal survival 
breeding values compared with their counterpart obtained 
through traditional BLUP.

Materials and Methods
Animal Care and Use Committee approval was not needed 
because the information was obtained from preexisting 
databases.

Data

The dataset used for this study was obtained as part of the 
routine data collection in a research farm in the Netherlands. 
The studied population resulted from a three-way crossbreeding 
scheme based on a synthetic sire line (Large White-based) 
and two crossbred F1 dam populations (Dutch Landrace or 
Norwegian Landrace × Large White). Survival records were 
available for, at most, 64,894 piglets born from a total of 4,236 
litters, between August 2012 and September 2019, out of 
1,249 dams and 589 sires. Pedigree information was available 
for 70,507 animals, out of which 10,022 were genotyped for 
50,689 SNP (Geneseek custom 50K SNP chip, Lincoln, NE, USA). 
Information on litter size, birth weight, sex, and dam parity 
order was available for each animal. For cross-fostered piglets, 
which represented 21.1% of the studied population, nurse litter 
and parity order of nurse dam were also recorded. A summary of 
the data is presented in Table 1.

Pig survival was defined as a binary trait (1 = dead and 2 = alive) 
and was recorded in four different production phases. Farrowing 
survival (FAS) was recorded within 12  h of farrowing and was 
defined as the complement of stillborn (i.e., non-mummified 
dead piglets, found close to the dam’s vagina and covered by 

Abbreviations

BLUP	 best linear unbiased prediction
EBV	 estimated breeding value
FAS	 farrowing survival
FIS	 finishing survival
GEBV	 genomic estimated breeding value
LAS	 lactation survival
LR	 linear regression
MCMC	 Markov chain Monte Carlo
NUS	 nursery survival
POS	 postweaning survival
ssGBLUP	 single-Step genomic best linear 

unbiased prediction

Table 1.  Population means and standard deviations 

Information Number Mean(SD)

Birth weight, kg 64,894 1.31(0.35)

Weaning weight, kg 48,823 7.25(1.62)

Litter size 4,236 15.33(3.75)

Parity order of biological dam 4,236 3.66(2.28)

Parity order of nurse dam 5,114 3.70(2.28)

Sex, % males 64,894 50.84(49.99)

Farrowing survival, % 64,894 93.57(24.53)

Lactation survival, % 60,068 88.63(31.75)

Nursery survival, % 48,823 97.72(14.93)

Finishing survival, % 35,862 98.42(12.46)

Postweaning survival, % 36,975 95.46(20.82)
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placental membranes). Lactation survival (LAS) was defined as 
the survivability of liveborn piglets from 12 h of life to weaning; 
nursery survival (NUS) was defined as the survival of piglets 
from weaning to the transferring day to the finishing barns, and 
finally, finishing survival (FIS) was defined as the survivability of 
pigs from the end of the nursery phase to the transferring day to 
the slaughterhouse. Further, we defined combined postweaning 
survival (POS), which merged NUS and FIS, representing the 
total pig survival from weaning to the end of the finishing phase. 
Animals with score 1 (dead) for NUS or FIS were coded as 1 for POS, 
the ones scored as 2 (alive) for both NUS and FIS were scored as 2 
for POS, and animals following a different rule (i.e., with missing 
information for NUS or FIS) had their phenotype for POS set to 
missing.

Data editing and quality control

Animals that died or were removed from the farm before 
slaughter had their survival information on subsequent phases 
set to missing since such animals did not have the chance to 
further express their phenotype. Contemporary groups were 
formed by year and month of birth. Observations from parity 
greater than seven or litter size less than 6 or more than 22 
were grouped to avoid classes with a low incidence of records. 
The phenotypes of animals with birth or weaning weight out 
of a range of 4 standard deviations greater or smaller than the 
population mean were classified as outliers and removed from 
the dataset.

Quality control of the genomic data was performed using 
PREGSF90 (Misztal et  al., 2014). The chromosomal positions 
were determined based on the Sscrofa11.1 genome reference 
assembly (Warr et al., 2020) and only SNPs located on autosomal 
chromosomes were kept. Markers with call rate <0.95 or 
minor allele frequency <0.05 were excluded. No genotyped 
animals were excluded due to the low call rate. Imputation of 
missing genotypes after quality control was performed using 
FImpute (Sargolzaei et al., 2014), which considers pedigree and 
genomic data to increase imputation accuracy. Imputation of 
missing genotypes of the purebred population was performed 
within the population, whereas crossbred genotypes were 
imputed using both crossbred and purebred data to increase 
the reference population. After imputation, the consistency 
of genotypes between parents and offspring was checked 
with SEEKPARENTF90 (Misztal et  al., 2014), and the pedigree 
and genotypes of parent–progeny pairs with more than 1% 
mismatching SNP were removed. After quality control and 
imputation steps, 9,916 animals genotyped for 45,116 SNPs were 
available for analysis.

Statistical models

Two Bayesian threshold models were used for the estimation 
of variance components without the inclusion of genomic 
information. Systematic effects were previously evaluated by a 
generalized linear model using a probit regression implemented 
in the R software (R Development Core Team, 2020), and the 
significant effects (P  <  0.05) were kept in the models. Model 
1 was a three-trait model, including FAS (equation 1), LAS 
(equation 2), and POS (equation 3), with respective liability 
vectors given by lt1, lt2, and lt3, whereas model 2 was a two-trait 
model combining NUS (equation 4)  and FIS (equation 5), with 
liabilities represented by lt4 and lt5, respectively. A first attempt 
to construct a model combining both preweaning (FAS and LAS) 
and postweaning phases (NUS and FIS) into a four-trait model 
did not reach convergence, likely because of the instability of 

traits with low incidence (i.e., NUS and FIS). Therefore, NUS and 
FIS were combined into POS in model 1, and NUS and FIS were 
evaluated separately in model 2. The description of both models 
follows below: 

Model 1:

lt1 = Xβ + Z1ua + Z2um + Z3uys + Z4uli + e,� (1)

lt2 = Xβ + Z1ua + Z2um + Z3uys + Z4uli + e,� (2)

lt3 = Xβ + Z1ua + Z3uys + Z4uli + e.� (3)

Model 2:

lt4 = Xβ + Z1ua + Z3uys + Z4uli + e,� (4)

lt5 = Xβ + Z1ua + Z3uys + Z4uli + e,� (5)

where: lt1, lt2, lt3, lt4, and lt5 are the vector of survival records in 
the liability scale for FAS, LAS, POS, NUS, and FIS, respectively; β 
is the vector of systematic effects of overall mean (equations 1–5), 
birth (equations 1 and 2) and weaning weight (equations 3–5) as 
linear covariables, parity order of the biological (equations 1 and 
2) and nurse dam (equation 2), litter size (equations 1 and 2), and 
sex (equations 1–5); ua, um, uys, and uli are the vectors of random 
effects of additive direct, additive maternal, contemporary 
group, and biological/nurse common litter environment, 
respectively; e is the vector of random residuals; X, Z1, Z2, Z3, 
and Z4, and are incidence matrices for the effects contained in 
β, ua, um, uys, and uli, respectively. Due to confounding between 
line and contemporary groups, only the contemporary group 
effect, which takes into account the crossbred lines, was kept 
in the models.

Cross-fostering is a common practice to increase homogeneity 
and to improve the survival of litters. In this process, piglets 
might be transferred from the biological dam to a nurse dam 
within the first days of age. This is important for the modeling 
of the common litter environmental effect, as cross-fostered 
piglets experience a different common environment than their 
non-cross-fostered siblings. In our study, except for the modeling 
of FAS, the effect of the common litter environment took into 
account the nurse litter rather than the biological litter of piglets.

A general description of the models (assuming only two 
random effects common to equations 1 and 2) is given by:

ñ
lt1
lt2

ô
=

ñ
Xt1 0
0 Xt2

ô ñ
βt1

βt2

ô
+

ñ
Z1t1 0
0 Z1t2

ô ñ
uat1

uat2

ô

+

ñ
Z2t1 0
0 Z2t2

ô ñ
umt1

umt2

ô
+

ñ
et1
et2

ô
,

where: lt1 and lt2 are the liability vectors for the two traits (t1 and 
t2), being the other terms of the model a simple generalization of 
the effects presented in equations 1–5. Additionally, we defined:

l =

ñ
lt1
lt2

ô
,β =

ñ
βt1

βt2

ô
, ua =

ñ
uat1

uat2

ô
, um =

ñ
umt1

umt2

ô
, u =

ñ
ua

um

ô
, and e=

ñ
et1
et2

ô
.
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The general data distribution based on the liability scale 
was assumed as l|y, τ , else ∼ N(Xβ + Zu, I⊗Σe), where Σe is 
the residual covariance matrix. The prior distribution for β was 
assumed to follow a uniform distribution (i.e., non-informative 
prior) and u|Σu ∼ N(0, A⊗Σu) in BLUP, and u|Σu ∼ N(0, H⊗Σu) 
in ssGBLUP, where Σu is the additive genetic covariance matrix 
(assuming direct and maternal effects), A is the pedigree 
relationship matrix, and H is a matrix combining pedigree 
and genomic relationships to simultaneously accommodate 
genotyped and non-genotyped animals. The Wishart distribution 
was adopted as prior for the covariance matrices Σu and Σe. For 
simplicity, additive and maternal covariances across traits and 
additive-maternal covariances within traits were estimated, 
but all the other effects were assumed to be uncorrelated. The 
inverse of the H matrix (H−1) was defined as in (Aguilar et al., 
2010):

H−1 = A−1 +

ñ
0 0
0 G−1 −A−1

22

ô

where A−1 is the inverse of the pedigree relationship matrix, 
A−1

22  is the inverse of the pedigree relationship matrix for 
genotyped animals, accounting for pedigree-based inbreeding, 
and G−1 is the inverse of the type 1 genomic relationship matrix 
(G) as in VanRaden (2008):

G =
MM′

2
∑

pj (1− pj)
,

where M is a matrix of SNP and pj is twice the across-breed allele 
frequency of the jth locus computed from the current genotyped 
population. To avoid singularity problems, G was blended with 
5% of A22.

Statistical analyses

Variance components based on pedigree and phenotypes were 
estimated using THRGIBBS1F90b, a program from the BLUPF90 
suite programs that allow the use of threshold models for 
binary responses (Misztal et  al., 2014). According to Aldridge 
et al. (2020), the inclusion of genomic information for variance 
components estimation should increase the computational 
time; however, it might not result in substantial changes 
compared with estimates from non-genomic models. Moreover, 
Cesarani et al. (2019) showed that in the presence of selective 
genotyping (i.e., when only survivors are genotyped), genomic 
variance components are expected to be biased.

For both models, 250,000 Markov chain Monte Carlo (MCMC) 
samples were generated, with a burn-in of 50,000 and thinning 
interval of 10. Convergence was checked by several criteria 
such as graphical inspection of both samples and posterior 
distribution of the parameters, the effective number of samples 
available after burn-in, and the Geweke criterion (Geweke, 1992). 

All of these are implemented on the software POSTGIBBSF90 
from the BLUPF90 family of programs (Misztal et  al., 2014). 
Further, posterior means of the variance components were 
obtained based on the final 20,000 and were employed to 
generate breeding values through BLUP and ssGBLUP using 
THRGIBBS1F90b (Misztal et  al., 2014) based on 10,000 MCMC 
samples.

Validation of traditional and genomic predictions

Validation of the direct effect was performed on purebred sires, 
whereas the validation of the maternal effect was performed on 
F1 dams (two-way crossbred). The validation set was composed 
of genotyped animals with progeny born in 2019 that had their 
progeny phenotypes removed from the data. The distribution 
of genotypes and progeny records is presented in Table 2. The 
linear regression (LR) method (Legarra and Reverter, 2018) was 
used to validate breeding values from BLUP and ssGBLUP. In 
this method, once a set of validation or focal animals is defined, 
several statistics can be computed to compare evaluations with 
the partial data (progeny phenotypes of the validation animals 
not included) and with the whole data (progeny phenotypes of 
the validation animals included). The LR prediction accuracy is 
given by:

ρcovw,p =

 
cov((G)EBVp, (G)EBVw)

(1− F̄)σ2
u

,

where (G)EBVw and (G)EBVp are the vectors of estimated 
breeding value (G)EBV calculated with the whole and partial 
data, respectively, F̄ is the average inbreeding coefficient of 
validation animals, and σ2

u the additive genetic variance of the 
trait. The LR bias is calculated as:

∆̂p = ¯̂up − ¯̂uw,

where ¯̂up is the average of the predicted (G)EBV with the 
partial data and ¯̂uw with the whole data, and finally, the LR 
dispersion is estimated from the regression of ûw on ûp as 
follows:

b̂p =
cov(ûw, ûp)

var(ûp)
,

with parameters defined as above.

Results and Discussion

Descriptive statistics

The total mortality from farrowing to finishing summed up 
to 26.4% in the evaluated population. The preweaning phase, 
which included FAS and LAS, had a mortality rate (% mortality) 

Table 2.  Number of validation sires/dams and number of progeny phenotypes removed from the partial data

Information/effect1 Direct Maternal

Item/trait2 FAS LAS NUS FIS POS FAS LAS

N 75 75 62 45 60 33 33
Mean(SD) 101.3(59.6) 86.3(62.5) 37.4(42.2) 35.1(35.6) 28.0(34.0) 20.8(7.2) 18.1(7.4)

1Direct effect (validated on purebred sires); maternal effect (validated on F1 dams).
2N, number of validation animals; Mean, mean progeny phenotypes; FAS, farrowing survival; LAS, lactation survival; NUS, nursery survival; 
FIS, finishing survival; POS, postweaning survival.
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3.8 times higher than after weaning. Among the preweaning 
phases, lactation was the most challenging, accounting for 62.1% 
of the total mortality. The distribution of piglet mortality by age 
for preweaning and postweaning is shown in Figure 1. Around 
85.2% of the preweaning mortality occurred in the first 3 d of the 
piglet’s life and was later identified as stillborn (37.9%), crushed/
bitten by the dam (28.6%), weak/light piglet (13.0%), and others 
(20.5%). Postweaning mortality was more distributed across age, 
although almost half (49.7%) of the animals died within the first 
30 d after weaning.

Birth weight was the most important explanatory variable 
for the survivability of piglets in the preweaning phases 
(P < 0.001; Figure 2A). Survivor piglets were, on average, 20.4% 
and 27.1% heavier than those that died during farrowing and 
lactation, respectively. From the farrowing moment up to the 
first few hours of life, birth weight plays an important role in 
the newborn’s thermoregulation, and lighter piglets might be 
more prone to hypothermia (Herpin et al., 2002). After farrowing, 
besides thermoregulation, birth weight may also be relevant 
for litter hierarchy establishment and colostrum uptake 
(Leenhouwers et al., 2001; Rootwelt et al., 2013).

There was a negative and linear effect of parity of biological 
dams over survivability from the second to the seventh or later 
parities, while a slightly deviant behavior was observed for 
primiparous dams (Figure 2B). The negative effect of first parity 
might be associated with a reduced piglet birth weight due to 
the ongoing body development of dams (Solanes and Stern, 
2001; Bunter et al., 2010). As shown in Figure 2C, first parity dams 
produced the lightest piglets (P < 0.01) in the studied population.

Litter size had a negative effect on FAS and LAS, with a 
regression coefficient of −0.4% and −0.7% on survivability per 
piglet born, respectively. This may be because larger litters 
prolong the farrowing process and have a negative effect on 
piglet birth weight (Rutherford et  al., 2013). For instance, in 
the studied population, for each piglet born, there was a 31-g 
reduction in the average birth weight of the litter.

Weaning weight was the most important factor for POS 
(P < 0.001). Piglets weaned with at least 4 kg were, on average, 
9.6% more likely to survive up to the end of the finishing 
stage. As pointed out by Melotti et al. (2011), during hierarchy 
establishment, heavier piglets have an advantage over lighter 
ones, giving them more access to feed and less chance of getting 
injured by others.

Variance components and genetic parameters

Posterior means of variance components and heritabilities 
are presented in Table 3. Direct and maternal heritabilities for 

survival in all phases and both models ranged from 0.02 to 0.09, 
indicating that genetic variability for pig survival exists in all 
phases of the production system.

Farrowing survival
The direct heritability of FAS was 0.02, whereas its maternal 
counterpart was higher, at 0.09 (Table 3). This indicates that both 
piglet and dam have an additive genetic contribution to piglet 
survival during farrowing, although the maternal contribution 
is more relevant. For piglets, the direct effect of FAS might be 
associated with the piglet’s vitality and ability to maintain 
the homeothermic balance right after birth (Leenhouwers 
et al., 2001; Herpin et al., 2002), whereas the dams may have a 
bigger contribution through the quality of uterus and farrowing 
process.

Arango et al. (2006) and Ibáñez-Escriche et al. (2009), using a 
similar approach to our current study, found similar results with 
statistically significant direct (from 0.02 to 0.05) and maternal 
heritabilities (from 0.10 to 0.13) for stillborn (complement of 
FAS). Roehe et  al. (2009) also looked at FAS using a threshold 
animal model excluding the dam genetic contribution and found 
direct heritabilities ranging from 0.08 to 0.10. The heritability 
estimates in the literature for FAS might vary depending on 
the model assumptions and trait definition. For instance, using 
linear models, Knol et  al. (2002a)—in their model 4 (including 
direct and maternal effects)—and Grandinson et al. (2005) found 
a nonstatistical significant genetic contribution of piglets and 
smaller maternal heritability (0.02 to 0.05), whereas Lund et al. 
(2002) found a statistical significant contribution of piglets with 
a heritability ranging from 0.01 to 0.05 and a constant maternal 
heritability at 0.06.

The common litter environment explained the highest 
proportion of the total phenotypic variance for FAS (14%) 
(Table 3), suggesting that important early life experiences 
related to the dam (i.e., dam immunization) may influence the 
survival of the piglets, but those are independent of the genetic 
component. Differently, the variance due to the contemporary 
groups was very low (1%) (Table 3), indicating a small difference 
between the two crossbred lines or between the environment 
experienced by late gestating dams and their newborn litters. 
This difference, however, might increase when more than one 
farm is evaluated or when dams and piglets are subjected to 
commercial conditions.

Lactation survival
The direct heritability of LAS was higher (0.05) than for FAS, 
whereas the maternal contribution had the same magnitude 
for both traits (0.08 and 0.09; Table 3). Arango et  al. (2006) 

Figure 1.  Mortality by piglet age during preweaning (A) and postweaning (B) phases. Dots in (A) and (B) represent the percentage of the total mortality (y-axis) in 

preweaning and postweaning phases given the age of the pig (x-axis), respectively. 
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found the same direct (0.05) and maternal (0.08) heritabilities 
for lactation mortality using a multiple-trait threshold model 
with stillborn and birth weight. Studies using linear models 
have also found low direct and maternal heritabilities ranging 
from nearly zero to 0.04 and from 0.02 to 0.08, respectively 
(Knol et al., 2002a; Lund et al., 2002; Grandinson et al., 2005). 
The increase in the additive genetic variance of LAS compared 
with FAS indicates that the importance of piglets’ genes 
increases as they age, whereas maternal contribution is kept 
constant. During lactation, piglet survival depends on a larger 
number of factors, such as disease resistance, hierarchical 
establishment, milk intake, thermoregulation, and growth rate 
(Nowak et al., 2000; Herpin et al., 2002). Such a variety of factors 
require piglets to express their genetic merit for survival over a 
larger variety of environmental stressors in comparison to the 
moment of birth.

The phenotypic variation of LAS explained by the common 
litter environment was 10% (Table 3), which might be related 
to infectious diseases, nurse litter size, and maternal ability 
of nurse dams. The genetic effect of nurse dams can also be 
considered for LAS (Knol et al., 2002a); however, in our study, the 
effect of nurse dams for cross-fostered piglets was assumed to 
be fully environmental.

Differences in contemporary groups explained 7% of the 
total phenotypic variance for LAS (Table 3). Compared with the 
moment of birth, when contemporary group differences were 
shown to be less influential (1% of phenotypic variation), the 

sucking period is when piglets are more exposed to differences 
in temperature, management, and herd pathogens, which might 
explain the increase in contemporary group variation. When 
exposed to such factors, a possible higher genetic differentiation 
between the two crossbred lines could also be observed.

Nursery, finishing, and postweaning survival
The postweaning phase can be divided into two separate 
phases: nursery and finishing. In our study, we evaluated 
survival in these phases combined (POS) in model 1 and 
separately in model 2. The heritability of NUS and FIS was 0.08 
and 0.04, respectively. When both traits were combined into POS, 
the heritability assumed an intermediate value of 0.06 (Table 
3). While many studies investigated the genetic variability for 
survival in preweaning phases, to our knowledge, only one study 
exploited the genetics of survival for the nursery and finishing 
phases (Dufrasne et al., 2014), and no studies have evaluated the 
overall survivability from weaning to the end of the finishing 
phase. Dufrasne et al. (2014) evaluated a crossbred population 
using sire threshold models and found a direct heritability of 
0.14 for culling during the nursery phase and 0.10 for culling 
during the finishing phase. When going from the nursery to the 
finishing phase, the authors observed a similar slight decrease 
in heritability as observed herein; however, our heritability 
estimates had a lower magnitude.

The common litter environment represented 16% and 9% 
of the total phenotypic variance of NUS and FIS, respectively. 

Table 3.  Estimates of heritabilities and proportions of the phenotypic variance explained by common environmental effects for survival traits 
in models 1 and 2

Model Parameter¹ 

h²a h²m prop(li) prop(ys)

Mean SD Mean SD Mean SD Mean SD

1 FAS 0.02 0.01 0.09 0.01 0.14 0.01 0.01 0.00
LAS 0.05 0.01 0.08 0.01 0.10 0.01 0.07 0.02
POS 0.06 0.01 — — 0.12 0.01 0.30 0.04

2 NUS 0.08 0.02 — — 0.16 0.02 0.19 0.03
FIS 0.04 0.02 — — 0.09 0.02 0.05 0.02

¹h²a, direct heritability; h²m, maternal heritability; prop(li), proportion of the total phenotypic variance explained by common litter 
environment; prop(ys), proportion of the total phenotypic variance explained by the contemporary group; FAS, farrowing survival; LAS, 
lactation survival; NUS, nursery survival; FIS, finishing survival; POS, postweaning survival.

Figure 2.  Average survival by birth weight (A) and by parity order of biological dam (B) during farrowing and lactation, and average birth weight by parity order 

of biological dam (C). Dots represent, in (A), the total survivability of piglets through farrowing and lactation (y-axis) given their birth weight (x-axis); in (B), the 

survivability of piglets through farrowing and lactation (y-axis) given the parity order of the biological dam (x-axis); and in (C), the birth weight of piglets (y-axis) given 

the parity order of the biological dam (x-axis).
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When both traits were combined into POS, the common litter 
environment explained 12% of the phenotypic variation (Table 3).  
Postweaning mortality is known as a complex trait that 
involves multiple contributing factors as the animal itself, the 
environment, and potential infectious diseases (see Gebhardt 
et al. (2020) for a review). According to the USDA (2012), respiratory 
diseases are responsible for 47.3% and 75.1% of mortality in the 
nursery and finishing phases, respectively. Therefore, the high 
variation that is explained by the common litter environmental 
effect in these phases might be likely associated with differences 
in antibodies and metabolites that are transferred through 
colostrum/milk from the dams to their litters, particularly in 
the earlier phase (i.e., NUS) (Madec et al., 2008; Opriessnig et al., 
2010; Picone et al., 2018). Moreover, different pathogen exposure 
during lactation may also contribute to an increase in common 
litter environmental variance after weaning.

The contemporary group explained the highest proportion 
of the phenotypic variance of NUS (19%) and POS (30%), while 
only 6% of FIS (Table 3). A proper contemporary group definition 
is important because it accounts for factors as penstock density, 
stocking period, pathogen load, and social interaction among 
individuals, which might directly affect pig survivability. 
Moreover, in our models, contemporary groups should also 
account for crossbred line variation, which is expected to get 
bigger as piglets become independent of theirs dams after 
weaning.

Genetic correlations

Covariance components and genetic correlations for both 
models are presented in Table 4. The direct genetic correlation 
for all studied survival combinations was positive and ranged 
from 0.36 to 0.90, suggesting no antagonist behavior of survival 
traits in different production phases.

Farrowing and lactation survival
The direct genetic correlation between the FAS and LAS was 
strong (0.90) (Table 4), indicating that the genes responsible 
for increasing farrowing survivability are also associated with 
survival during lactation. The positive sign of our estimate was 
in agreement with the results from multi-trait threshold models 
reported by Arango et al. (2006) (0.45) and by Roehe et al. (2009) 
(0.24 to 0.53), even though our estimate had a higher magnitude. 
FAS and LAS are commonly evaluated at the litter level, thus 
ignoring the piglet’s contribution. For such models, the genetic 
correlation between farrowing and lactation was shown to be 
around 0.81, as summarized in a literature review by Rothschild 
and Bidanel (1998).

Mortality during lactation is mostly caused by chilling, 
starvation, and crushing, which are underlying factors of piglet’s 
poor vitality and thermoregulation just after birth (Herpin et al., 

2002; Edwards and Baxter, 2015). Therefore, a strong genetic 
correlation between those two phases seems to agree with this 
biological relationship. However, the strong genetic correlation 
found in our study could be also due to a level of confounding 
between FAS and LAS; some piglets might be born alive but be 
scored as stillborn (i.e., liveborn piglets crushed just after vaginal 
expulsion). This confounding was confirmed by Leenhouwers 
et al. (2003) who performed postmortem examination in piglets 
classified as stillborn and observed that 16.4% of them in fact 
died after farrowing. Although clinical differentiation between 
FAS and LAS is possible, it remains a challenge in practical 
applications.

The direct-maternal correlations for FAS (0.02) and LAS 
(−0.04) were weak and not statistically different from zero (i.e., 
highest posterior density interval at 95% included 0), indicating 
that the selection for the direct effect of survival may not 
affect the dam’s maternal ability. Therefore, selection for both 
direct and maternal effects might be performed to increase 
the overall piglet survival. Results from the literature are very 
diverse; whereas some studies found nonsignificant or positive 
correlations (Knol et  al., 2002a; Lund et  al., 2002; Grandinson 
et al., 2005), others have found moderate negative correlations 
between FAS and LAS (Lund et al., 2002; Arango et al., 2006). This 
is likely due to trait definitions, model fitting, and the complexity 
of estimating (co)variance components for survival traits.

The maternal correlation between FAS and LAS was 0.19. 
Although positive, it was not significantly different from zero, 
meaning that a correlated selection response for the maternal 
ability in these two phases is not likely to occur in this 
population. Arango et al. (2006) found a moderate (0.43) maternal 
correlation, and the significance of their estimate suggests that 
a positive correlated response might be achieved in the long-
term selection.

According to our study, the selection for the direct effect 
of survival in one of the preweaning phases could improve 
the other through correlated response to selection. However, 
if the selection is only based on direct effect, the increase in 
the genetic ability of piglets to survive will be likely mitigated 
phenotypically by the difficulty of dams in taking care of the 
litter or be associated with a higher cost of intervention during 
farrowing or lactation (i.e., high level of cross-fostering).

Farrowing, lactation, and postweaning survival
The genetic correlation between FAS and POS was 0.69, whereas 
it was reduced to 0.36 between LAS and POS (Table 4). These 
positive estimates suggest that selection for piglet survival 
could have a positive effect on pig survivability from weaning 
up to the finishing phase. Interestingly, a positive, stronger 
genetic correlation between LAS and POS would be expected 
because they are more related in time compared with FAS and 
POS. However, Dufrasne et  al. (2014) showed that a negative 
correlation between preweaning mortality (i.e., excluding culled 
animals) and culling during the nursery phase might exist. In 
our study, POS was defined as the combination of NUS and FIS; 
therefore, a potential negative correlation between LAS and NUS 
might have reduced the correlation between LAS and POS. Such 
a topic deserves further investigation.

Nursery and finishing survival
The direct genetic correlation between NUS and FIS was strong 
and positive (0.83; Table 4). This result indicates that genes 
affecting survivability during nursery may also be associated 
with FIS. Moreover, such a strong positive correlation suggests 
that a combination of both traits into POS in model 1 is 

Table 4.  Estimates of genetic correlation for survival traits in models 
1 and 2

Model Parameter¹ σa1,a2 ra,a

  Mean SD Mean SD

1 FAS–LAS 0.04 0.01 0.90 0.05
FAS–POS 0.04 0.01 0.69 0.10
LAS–POS 0.03 0.01 0.36 0.16

2 NUS–FIS 0.07 0.02 0.83 0.12

¹σa,a, direct genetic covariance; ra,a, direct genetic correlation; FAS, 
farrowing survival; LAS, lactation survival; NUS, nursery survival; 
FIS, finishing survival; POS, postweaning survival.
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reasonably supported. Dufrasne et al. (2014) found a correlation 
of 0.59 between culling during nursery and finishing phases 
(0.59) using a sire threshold model. The close relationship 
between NUS and FIS is reasonable since the main factors 
affecting the survivability in both phases are similar. According 
to the USDA (2012), 56.7% and 78.7% of the nursery and finishing 
mortality can be similarly attributed to respiratory diseases or 
scours, respectively.

Validation of traditional and genomic predictions

The main objective of pig breeding programs is to predict 
crossbred future performance. With genomic selection, cross-
validation became popular in animal breeding, and prediction 
accuracy has been commonly used to evaluate models for 
genetic evaluations. Prediction accuracy or predictability is 
typically defined as the correlation between (G)EBV from a 
reduced data (i.e., when phenotypes of validation animals are 
not included in the model), and phenotypes adjusted by fixed 
effects estimated from complete data. Although adjusted 
phenotypes serve as a convenient benchmark for most traits, it 
relies on factors, for instance, precise estimation of fixed effects, 
the heritability of the trait, and accuracy of EBV (Legarra and 
Reverter, 2017). Further, obtaining adjusted phenotypes may be 
challenging for categorical traits, because, in such a case, the 
fixed effects and the observed phenotypes are from different 
distributions, sometimes leading to nonsensical predictability 
results (Silva et al., 2019).

To avoid such limiting factors, Legarra and Reverter (2018) 
proposed the LR method as an alternative method of validation. 
Such a method can be applied to many types of models and 
traits, including categorical and low heritability traits, and 
models with maternal effects (Legarra and Reverter, 2018). The 
ability to validate maternal effects is one of the main advantages 
of using the LR validation method. As pointed out by Lourenco 
et al. (2015), calculating predictability for maternal effects based 
on adjusted phenotypes is difficult because the expression of 
such effects has a lag of one generation, being hard to access.

Results for the LR prediction accuracy, bias, and dispersion 
of breeding values based on the LR validation method are 
presented in Table 5. Overall, compared with BLUP, the ssGBLUP 
evaluation increased prediction accuracy, slightly increased bias, 
and reduced the dispersion of breeding values. The prediction 
accuracy of the direct effect in different production phases 
ranged from 0.19 to 0.30 with BLUP, and from 0.28 to 0.36 with 
ssGBLUP, whereas the accuracy of the maternal effect ranged 
from 0.22 to 0.24 with BLUP and from 0.27 to 0.30 with ssGLUP 
(Table 5).

The direct effect of NUS and FIS was overall more accurate 
than for FAS and LAS in BLUP (0.26 and 0.24 vs. 0.19 and 
0.24, respectively); however, with the inclusion of genomic 
information, the preweaning phases benefited more and 

became overall more accurate (0.28 and 0.32 vs. 0.24 and 0.35, 
respectively). Such an increase represented a relative gain that 
ranged from 31.8% to 43.5% for FAS and LAS and from 15.7% 
to 17.7% for NUS and FIS. The higher accuracy for the direct 
effect among all traits was observed when NUS and FIS were 
combined into POS, either with BLUP (0.30) or with ssGBLUP 
(0.36). The accuracy for POS might have been increased because 
of the correlation structure with preweaning phases in model 1 
and the better stability of the model (i.e., overall lower SD) when 
compared with NUS and FIS evaluated separately in model 2.

A similar relative increase as found herein was observed 
by Guo et  al. (2015) for the direct effect of pig mortality rate 
up to day 5 (from 14.9% to 30.3%) in two purebred populations, 
whereas a greater relative gain in accuracy of 100% was observed 
by González-Recio et al. (2008) for the direct effect for mortality 
in broilers. In fact, with the inclusion of genomic information, 
the Mendelian sampling and the relationships among animals 
are better estimated, which leads to an expected increase in 
prediction accuracy and consequently higher genetic gains.

The maternal effect of FAS and LAS was as accurate as of the 
direct effect in BLUP (0.22 and 0.24 vs. 0.24 and 0.19, respectively) 
but benefited less from the inclusion of genomic information 
(0.27 and 0.30 vs. 0.35 and 0.34, respectively). This might be 
explained by the already higher amount of information used for 
calculating maternal breeding values due to the dam’s multiple 
parities and large progeny size. Although the estimates of 
accuracy in our study are encouraging, they are based on a small 
number of validation animals. Validation studies for the same 
traits in larger populations could help to confirm the present 
results.

Not only accuracy but bias and dispersion of breeding values 
may also impact selection decisions and should be taken into 
account in genetic evaluations (Legarra and Reverter, 2017). 
The estimated bias for all traits and effects was close to zero 
with BLUP (Table 5), but it increased in genomic models. Such 
an increase might be due to the difference in allele frequencies 
among lines, which was not taken into account in the 
construction of G in ssGBLUP. The use of metafounders (Legarra 
et  al., 2015) can help to reduce bias (and also dispersion) of 
GEBV by adjusting A22 to match G. This can be useful in multi-
breed or crossbred populations because it does not rely on allele 
frequencies estimated in the admixed population, but uses 0.5 
instead, increasing the compatibility between the pedigree and 
the genomic relationship matrices in ssGBLUP. Unfortunately, the  
metafounders approach has not been implemented yet in the 
THRGIBBSF90 programs.

With the genomic models, the dispersion of all traits and 
effects was closer to the unit. The direct and maternal breeding 
values for LAS were the most overdispersed/underdispersed in 
BLUP (0.54 and 1.85, respectively), and although they were closer 
to the unit with the inclusion of genomic information (0.80 and 

Table 5.  Prediction accuracy, bias, and dispersion of breeding values for BLUP and ssGBLUP evaluations

Direct Maternal

 FAS1 LAS NUS FIS POS FAS LAS

 BLUP ssGLUP BLUP ssGLUP BLUP ssGLUP BLUP ssGLUP BLUP ssGLUP BLUP ssGLUP BLUP ssGLUP

Accuracy 0.24 0.35 0.19 0.34 0.26 0.32 0.24 0.28 0.30 0.36 0.22 0.27 0.24 0.30
Bias 0.01 0.07 0.03 0.15 0.05 0.11 0.01 0.03 0.07 0.07 −0.01 0.01 0.07 0.06
Dispersion 0.81 0.93 0.54 0.80 1.17 1.11 0.93 0.95 1.18 1.17 0.98 0.78 1.81 0.72

1BLUP, best linear unbiased prediction; FAS, farrowing survival; LAS, lactation survival; NUS, nursery survival; FIS, finishing survival; POS, 
postweaning survival; ssGBLUP, single-step genomic BLUP.
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0.72, respectively), breeding values were still overdispersed. 
Dispersion of LAS direct and maternal breeding values may be 
due to the previously discussed confounding between FAS and 
LAS and the difficulty in modeling cross-fostering. For survival 
traits, bias and dispersion of breeding values may also arise 
from selective genotyping (i.e., only survivors are genotyped) 
and from the lack of parent phenotype variation (i.e., only 
survivors have the chance to become parents), which might 
reduce predictability and increase standard errors of breeding 
values (Grandinson et al., 2005; Garcia et al., 2018). Those topics 
deserve great attention for survival evaluations.

Selection for survival traits

Substantial genetic variability exists for survival in all phases 
of the production system. Although lowly heritable, sustained 
genetic progress can be achieved if survival is selected as a 
long-term breeding goal. Moreover, a known negative genetic 
correlation between survival and other important traits under 
current selection in the pig industry, such as litter size (Högberg 
and Rydhmer, 2000; Sorensen et  al., 2000; Lund et  al., 2002), 
leanness (Knol, 2001; Arango et  al., 2005), and growth rate 
(Högberg and Rydhmer, 2000; Arango et al., 2005), makes efforts 
to improve survivability even more important.

Lowly heritable traits might greatly benefit through indirect 
selection for correlated traits. Increased birth weight (Arango 
et al., 2006), carcass weight (Dufrasne et al., 2014), and reduced 
litter weight variation (Knol, 2001) were shown to positively 
affect pig survivability. However, given the multifactorial and 
complex nature of survival, the magnitude of such genetic 
correlations is rarely high. Moreover, some discussion might 
exist regarding the use of such traits for survival improvement 
(see Knol et al., 2002b, for a review). The inclusion of genomic 
information might also increase possibilities for survival 
selection. As shown herein, relative gains of up to 43.5% might 
be expected. In fact, traits with low heritability and that are 
hard to measure may benefit the most from genomic selection 
(Meuwissen et  al., 2001; García-Ruiz et  al., 2016), especially 
under ssGBLUP in which phenotypes of ungenotyped animals 
are linked to genotyped animals through the H matrix (Guo 
et al., 2015; Garcia et al., 2018).

We showed that survival should become more heritable as 
piglets age. The combination of the postweaning stages into 
POS produced similar or higher direct heritability than in the 
preweaning phases, the highest prediction accuracy among all 
evaluated production phases, and was positively correlated with 
the direct effect of preweaning phases. Moreover, we observed 
that a high contemporary group variation (30% of phenotypic 
variation) exists for POS, which we hypothesize could be 
associated with the social interaction among animals. Important 
factors that affect POS, such as tail/ear-biting and cannibalism, 
are directly influenced by the social behavior of animals. This 
generates further opportunities to explore social genetic effects 
for increasing pig survival (Bijma et al., 2007a, 2007b).

Based on the results of our study, the yearly average response 
to selection, in the observed scale, assuming a generation 
interval of 1 yr and intensity of selection corresponding to the 
selection of the 20% top animals, is expected to be 0.6% and 
1.3% with BLUP and of 0.9% and 1.7% with ssGBLUP, for the 
direct and maternal effects, respectively. Although it might be a 
simplification of the pig selection scheme (i.e., multi-trait and/or 
multi-breed selection), we illustrate that the genetic progress for 
survival traits should be, although small, highly relevant given 
the economic importance of the trait.

Conclusions
Survivability before weaning shows a considerable genetic 
variation, hidden by the environment, resulting in low, but 
statistically significant direct and maternal heritabilities. From 
farrowing to the lactation phase, the direct contribution of the 
piglet to its survivability increases with age, whereas the impact 
of the maternal ability remains constant. A  nonsignificant 
correlation exists between direct and maternal effects within 
traits; thus, both should be considered in the selection index to 
maximize genetic gains for preweaning survival. Postweaning 
phases have similar or higher heritabilities compared with 
preweaning phases. The genetic correlations between survival 
traits within preweaning and postweaning phases are 
favorable and strong, but correlations between preweaning and 
postweaning phases are moderate. The prediction accuracy of 
breeding values for survival traits, as well as the dispersion, 
can be improved with the use of genomic information through 
ssGBLUP. The similar heritability of POS compared with 
preweaning phases, its higher prediction accuracy, and positive 
genetic correlation with preweaning phases highlights this 
trait as a potential candidate trait for improving pig survival. 
Although survival is a complex trait with low heritability, 
important genetic gains can be obtained, especially under a 
genomic prediction framework.
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