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Abstract

While various approaches exist to study protein localization, it is still a challenge to predict where proteins localize. Here, we
consider a mechanistic viewpoint for membrane localization. Taking into account the steps for the folding pathway of a-
helical membrane proteins and relating biophysical parameters to each of these steps, we create a score capable of
predicting the propensity for membrane localization and call it FP3mem. This score is driven from the principal component
analysis (PCA) of the biophysical parameters related to membrane localization. FP3mem allows us to rationalize the
colocalization of a number of channel proteins with the Cav1.2 channel by their fewer propensities for membrane
localization.
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Introduction

Calcium influx plays a significant role in controlling a variety of

cellular functions, and is mainly carried out by voltage-gated Ca2+

channels [1,2]. Voltage-gated L-type Ca2+ channels (LTCCs) are

involved in the regulation of muscle contraction, hormone secretion,

neural excitability, gene expression and neurotransmitter release.

LTCC channels consist of four isoforms: Cav1.1, Cav1.2, Cav1.3

and Cav1.4, of which Cav1.2 and Cav1.3 are more distributed and

localize in diverse tissues [3–11]. Cav1.2 makes up at least 75–80%

of the LTCCs of the brain [12–15]. Many types of channels and

receptors correlate functionally and spatially with Cav channels.

Small conductance Ca2+- activated K+ channels (SK channels)

are a group of channels affected by Ca2+ influx and involved in

afterhyperpolarizations (AHPs) following the membrane action

potentials.[16–22]. Kohler et al. cloned these channels in 1996

and found three subtypes: KCa2.1 (SK1), KCa2.2 (SK2) and

KCa2.3 (SK3) [22]. These channels are voltage-independent but

highly sensitive to [Ca2+]i due to the C- terminal bound

calmodulin protein [16,23–28]. The channels are mainly located

in the central and peripheral nervous systems [29–33].

Interestingly, the SK channels are specifically coupled to and

activated by the Ca2+ channels, including LTCCs [16,34]. During

the depolarization periods, the LTCC channels mediate the Ca2+

influx. The subsequent binding of calcium to calmodulin leads to

the conformational change and opening of the SK channels that

causes the efflux of potassium ions. Thus, a close physical and

functional relationship exists between these two types of channels.

Lu et al. were the first who indicated the coupling of LTCC and

SK channels via cytoskeleton proteins [35]. They demonstrated

that the SK2 and Cav1.2 or Cav1.3 channels are linked via an

important component of the actin cytoskeleton, a-actinin2.

Another group of ion channels co-localized with LTCCs are the

glutamate receptors, located in postsynaptic sites of excitatory

synapses. N-methyl-D aspartate receptors (NMDARs) and a-

amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AM-

PARs) are members of the glutamate receptor channel superfamily,

located in close proximity to the Cav1.2 channels [36–38]. Reports

indicate the involvement of both LTCCs and glutamate receptors in

the constitutive increase in synaptic transition [39–42].

Existing methods for the scaling of membrane localization

propensity use algorithms such as hidden Markov models (HMMs)

and supported vector machines (SVMs) to recognize protein

sequences that have the potential to sub-localize within the

membrane [43]. However, these methods do not consider the

causal folding pathway involved in recognition. We introduce the

Folding Pathway-based Protein Propensity for membrane

(FP3mem) score that is tightly associated with the tendency of

proteins for being a-helical plasma membrane proteins. We use

this score for interpreting the colocalization of the Cav1.2 channel

with the rat SK (rSK) channels, and with the AMPAR and

NMDAR receptors in Eubacteria and Archea taxa and in

vertebrate classes including Fishes, Amphibia, Aves and Mamma-

lia. Our data characterized the Cav1.2 as having a high propensity

for localization within the plasma membrane together with other

willing channels, which supports the hypothesis that the Cav1.2 is

an anchor for the membrane proteins in its close proximity.

Methods

The sequences of rSK1 (gi 9506831), rSK2 (gi 9506833), rSK3

(gi 31543039), Cav1.2 (gi 158186633), a-actinin (gi 1142640),

AMDAR (gi 167001419) and NMDAR (gi 11038637) were taken

from the NCBI protein database in FASTA format. Subsequently,
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using the NCBI protein BLAST service and the Blosum62 matrix

[44], we found sequences homologous to the abovementioned

proteins from the protein non-redundant database in the Archea

(taxid 2157) and Eubacteria taxa (taxid 2), as well as vertebrate

classes including Fishes (taxid 7898), Amphibia (taxid 8292), Aves

(taxid 8782) and Mammalia (taxid 40674) (Table S1).

We calculate the thermodynamic, biophysical, and structural

parameters DCp (change in specific heat), DCp(hyd) (change in

hydration specific heat), DG(hyd) (change in Gibbs energy of

hydration), DG(oct) (change in free energy of transfer from water

to octanol), DG(wif) (change in free energy of transfer from water

to POPC interface), DDG(a-helix), GG4Br, DH(hyd) (change in

enthalpy of hydration) and kProt for the sequences obtained from

the BLAST. We consider DCp, DG(hyd) and DH(hyd) as

parameters characterizing protein properties in the water phase.

DG(oct), DG(wif) and DDG(a-helix) have a role in the transition of

proteins from the aqueous phase to the lipid phase. Finally,

DCp(hyd), GG4Br, and kProt explain the behavior of proteins in

the lipid phase.

We perform this calculation using the Hamid, Ali akbar,

Maryam Data Analyser Machine (HAMDAM) software (freely

available upon request). We calculate the hydration (hyd)

parameters DCp(hyd), DG(hyd) and DH(hyd) of each sequence

using the following equations [45–47]:

DF (hyd)~
X

j
DASAj|DFj(hyd)

F (hyd)~DF (hyd)=n

Where DX refers to the change in X from the native state to the

unfolded state, DF(hyd) represents each of the three parameters, j

is the residue position, ASA stands for the accessible surface area,

and n represents the total number of residues in each sequence.

We obtain DCp from the following equation [48]:

DCp~0:45(DNonpolar ASA){0:26(DPolar ASA)

In order to calculate the DG(oct) [49], DG(wif) [50,51], DDG(a-

helix) [52], GG4Br [53], and kProt [54] (all indicated with a ‘‘W’’

after the parameter name in figures), we employ the Sliding

Window Recognizer (SWR) procedure [55]. This procedure reads

the protein sequence within a window of a given number of

residues and computes the parameters for the amino acids within

that window, then slides forward one residue and repeats the

process. We choose a window of 10 residues and calculate the

parameter average for each window. Then we report the average

of averages over all windows. In the case of the DDG(a-helix)

parameter, although proline residues are considered helix

breakers, their behavior differs in membrane proteins [56], which

led us to consider this amino acid as a helix maker within this

subset of proteins. For calculation of the GG4Br parameter, the

number of GXXXG[I/V] motifs are counted in each window. We

perform Anova and PCA analysis using the free software PSPP

(http://www.gnu.org/software/pspp).

To produce alkaline phosphatase (APHO)18A3L, APHO16A5L

and APHO14A7L sequences, three peptide constructs generate

with the 18A3L, 16A5L and 14A7L amino acids compositions. In

order to consider different sequences for each of the three amino

acid compositions, we generate 2000 random sequences for each

peptide and insert them to the corresponding site in alkaline

phosphatase.

Results and Discussion

Other studies have previously pointed out the association of Cav

with SK channels in membranes [16,34,35]. Lu et al. demon-

strated the connection of these two channels via the a-actinin

protein [35]. On the other hand, the ion conductance through the

membrane and the localization within the membrane of the SK

channel was disrupted in Cav null mutant mouse. The authors

suggested that the Cav channel could act as an anchor for the SK

channel at the membrane. For integral membrane proteins

containing transmembrane region(s), an essential requirement for

functionality is localization within the membrane. Our goal is to

quantify the tendency of Cav and SK channels for localizing within

the membrane.

White and Wimley mentioned that the folding process of

membrane proteins could be divided into four steps, including

partitioning, insertion, folding, and association [49]. We consider

several biophysical parameters for each of these steps. Two

parameters (DG(oct) and DG(wif)) were previously provided for two

of these steps [49,51]. We consider other parameters related to each

step in our computation (Figure 1). As a control, we compute these

parameters for the non-membrane protein alkaline phosphatase

(APHO). We also calculate parameters for three varieties of alkaline

phosphatase: APHO18A3L, APHO16A5L and APHO14A7L.

These alkaline phosphatases localize in the E-coli inner membrane

with the aid of three inserted peptides. Each peptide is composed of

only two types of amino acids, Alanine (A) and Leucine (L). The

experimentally determined tendency of alkaline phosphatase for

localizing in the membrane is in direct correlation with the number of

leucine residues in the inserted peptides [57,58].

The partitioning step
The ‘‘partitioning’’ step, the partitioning of proteins between lipid

and water phases in the lipid-water interface, can be described by the

DCp, DH(hyd), DG(hyd), and DG(wif) parameters. A membrane

protein should not have a stable fold before insertion into the

membrane. This property is specified by the protein heat capacity

DCp. A more positive DCp indicates lower stability, and thus a lower

propensity to be in the folded state in the water phase [55]. The DCp

of the alkaline phosphatases (the reference proteins, ‘‘Ref’’) that

contain inserted peptide is more positive than the DCp of the alkaline

phosphatase (Figure 2A), representing a difference between the

primitive forms of life (Archea and Eubacteria) and vertebrates. In

vertebrates, the DCp is lower and thus the propensity for folding in

the water phase is higher than in bacteria. Therefore, for prokaryotes,

the partitioning parameter is more favorable for membrane

localization when compared to vertebrates. Predictably, the a-actinin

homologous proteins have fewer propensities for unfolding in water

with respect to channels.

Another parameter involved in the partitioning step is the

hydration enthalpy change DH(hyd). This parameter is a scale of

the hydrophilic interaction of the unfolded state. A more negative

DH(hyd) indicates a higher tendency of the protein to be in the

unfolded state in water [45,46]. In the case of the reference

proteins, because the three types of peptides are composed solely

of leucine and alanine residues, the amount of hydrophilic

interactions is reduced (Figure 2B). The a-actinin homologous

proteins have a dramatically higher tendency for unfolding in

Mammalia than other organisms. For the rSK channel homolo-

gous proteins, the tendency of unfolding in water is higher in

vertebrates than in bacteria. This tendency indicates that

according to this partitioning parameter, in comparison to the

prokaryotic protein, the vertebrate protein is far from folded state

in water. This favors folding of the vertebrate protein in non-

A New Membrane Protein Prediction Method
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Figure 1. Alpha helical membrane protein folding pathway. The four step-folding pathway of membrane proteins declares the critical factors
that play a role in the folding of a-helical membrane proteins. Partitioning includes parameters involved in protein partitioning in the lipid-water
interface. The insertion stage contains parameters required for a peptide to insert into plasma membrane. The final folding and association stages
indicate critical parameters for the membrane protein folding and packing.
doi:10.1371/journal.pone.0016778.g001

Figure 2. The partitioning step parameters. The changes in parameters that describe the partitioning stage are indicated for bacteria and
vertebrate proteins, A) the specific heat capacity, a measure of protein stability, B, C) the specific enthalpy and Gibbs energy of hydration,
respectively. D) Free energy change of transfer from water to the POPC interface. Ref. stands for reference proteins. Error bars indicate the SEM for the
parameters of each protein. The bar patterns represent Archea: wide upward diagonal, Eubacteria: dashed horizontal, Fishes: horizontal brick,
Amphibia: white, Aves: wave, Mammalia: black, APHO 14A7L: black dotted white, APHO 16A5L: white grained black, APHO 18A3L: white dotted black,
and APHO: gray dotted white.
doi:10.1371/journal.pone.0016778.g002
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aqueous environment. It may be presumed that there is a

discrepancy between the DCp- and DH(hyd)-derived partitioning

parameters in each group of proteins(Panels 2-A and 2-B).

However, as the DCp is generally determined by nonpolar

residues and the DH(hyd) parameter by polar residues, the

difference between the ratio of polar to nonpolar residues is the

root of this apparent dissimilarity. Each of these parameters is

weighted later.

An additional parameter affecting the partitioning step can be

the hydration free energy change DG(hyd). A membrane protein

must dehydrate before entering the plasma membrane. Since the

DG(hyd) is a scale of the propensity for hydration, the more

positive this parameter, the easier is the dehydration process

[45,59]. The propensity of rSK channel homologous proteins for

dehydration is less in vertebrates than in bacteria (Figure 2C),

indicating that the partitioning affected by this parameter happens

Figure 3. The insertion step parameters. The changes in parameters describing the insertion stage are shown for bacterial and vertebrate
proteins. The vertical axes are the mean value of the corresponding parameter average for the window that slides along the protein sequence. A) The
variation of DG(oct) is illustrated, which is a whole residue hydrophobicity scale and a sign of the protein membrane propensity. B) The alpha helix
propensity is a measure of the tendency to form alpha helix, which is characterized by DDG(a-helix). Ref. stands for the reference proteins. The error
bars indicate the SEM for the parameters of each protein. The bar patterns represent Archea: wide upward diagonal, Eubacteria: dashed horizontal,
Fishes: horizontal brick, Amphibia: white, Aves: wave, Mammalia: black, APHO 14A7L: black dotted white, APHO 16A5L: white grained black, APHO
18A3L: white dotted black, and APHO: gray dotted white.
doi:10.1371/journal.pone.0016778.g003
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more difficult in vertebrate classes than in Archea and Eubacteria.

Among all studied proteins, mammalian a-actinin homologous

proteins have the least propensity for dehydration (Figure 2C).

The last parameter that we incorporate, influencing the

partitioning of proteins between the water and lipid phases is the

DG(wif), was introduced by White et al. [51]. This parameter

represents the free energy change for the transfer of the protein in

the unfolded state from the bulk water to the lipid-water interface.

Nonpolar interactions with water and electrostatic interactions

with the lipid head groups are the important interactions taking

part in this process [49,60]. The more negative the DG(wif), the

higher is the affinity of the unfolded state to enter the interface

[61]. This parameter is small for the rSK homologous proteins in

the taxa and classes other than Mammalia (Figure 2D). Thus, the

propensity for entering the lipid-water interface is low in

mammalian rSK channels but not in the mammalian Cav

channels. However, when we consider all four parameters

involved in the partitioning step, we cannot simply conclude

which of the two types of channels is more efficient in this process.

The insertion step
The second step in the folding of membrane proteins is the

‘‘insertion’’ of the protein into the membrane. In this step, a

protein enters the lipid phase from the lipid-water interface. Two

parameters are associated with this step: the DG(oct) and the

DDG(a-helix) [49,52,62]. In their study, the White group utilized

octanol-saturated water as the lipid-like phase and introduced the

DG(oct) parameter. More negative values of the DG(oct) correlate

with a higher tendency of the protein for transferring to the lipid

phase. For channels, this insertion parameter is more favorable in

prokaryotes than in vertebrates (Figure 3A). We infer that the

transition from the interface to the lipid phase acts as an obstacle

for vertebrate channels in the process of membrane localization.

In the interface, where the important step of insertion into the

membrane takes place, formation of disordered structures is more

probable than formation of helical structures [60,63]. Therefore,

protein structures are more likely to become a-helical after insertion

into the membrane because of the low membrane dielectric constant

[49,64,65]. Because the hydrophobic core of the membrane has a

high affinity for exposed hydrophobic groups of proteins [66], if an a-

helix is stable in the water phase it would not form hydrophobic

interactions with the membrane core. The DDG(a-helix) specifies the

propensity for the formation of a stable a-helix structure in the water

phase. More positive values of this parameter correlate with a lower

propensity for a-helix formation in water, and thus are more

favorable for the insertion of the protein into the membrane. For rSK

channel homologous proteins, this parameter decreases in Mammalia

(Figure 3B) and disturbs the insertion step.

These parameters do not have the same effects in the localization

of each evolutionary class of protein within the plasma membrane

(Figures 2 and 3). While some parameters support the membrane

localization of the homologous sequences of one protein, others

impede this process. Therefore, all parameters should be weighted

accordingly when calculating the membrane localization score.

Folding and association steps
Based on the four-step model, a protein obtains its final folded state

in the membrane and, if necessary, gains its final function by

Figure 4. The folding and association stages parameters. The changes in parameters describing the folding and association stages are shown
for bacteria and vertebrates proteins. In the A and C panels, the vertical axes are the mean value of the corresponding parameter average for the
window that slides along the protein sequence. A) The kProt changes are shown in this panel. kProt is a factor to elucidate a-helix membrane protein
topology. B) The specific heat capacity of hydration for the channels, references and actinin is shown in this board. DCp(hyd) points out the
hydrophobic patches. C) The occurrence number of the GG4Br motif in windows is defined as a scale for helix packing. Ref. stands for the reference
proteins. The error bars indicate the SEM for the parameters of each protein. The bar patterns represent Archea: wide upward diagonal, Eubacteria:
dashed horizontal, Fishes: horizontal brick, Amphibia: white, Aves: wave, Mammalia: black, APHO 14A7L: black dotted white, APHO 16A5L: white
grained black, APHO 18A3L: white dotted black, and APHO: gray dotted white.
doi:10.1371/journal.pone.0016778.g004

Figure 5. The dependence of statistical descriptors to the FP3mem cut-offs. Variations of common statistical descriptors (which are used to
evaluate a new predictor) in response to the FP3mem cut-off changes are depicted. Continues dark line, discontinues line, continues gray line, plus
and circle symbol stand for sensitivity, specificity, PPV, accuracy and MCC parameters respectively.
doi:10.1371/journal.pone.0016778.g005
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association with other subunits. An important feature of alpha helical

membrane protein folding is protein topology, which can be either

single-span or multi-span, represented by the parameter kProt [54].

More negative kProt values correlate with higher protein tendency for

becoming multi-span. Prokaryotes show lower tendency than

vertebrates for multi-span topology (Figure 4A). In the case of rSK

channel homologous proteins, the tendency for becoming multi-span

is less in mammals than in other vertebrates. The definition of kProt

parameter is founded on the properties of membrane proteins.

Therefore, this parameter does not provide information about the

topology of non-membrane proteins including alkaline phosphatase

and a-actinin homologous proteins (Figure 4A).

Due to the low dielectric constant of the membrane, hydrogen

bond rich structures such as a-helices are more probable in

membrane proteins. In order to attain more stability and generate

a specific function, the a-helices pack together in a manner such that

a stable helix can stabilize an adjacent unstable helix [65,67,68]. The

packing of a-helices is caused by two factors: superficial hydrophobic

patches working as glue, and spatial fitting of the a-helices similar to

lock and key model. The DCp(hyd) parameter represents superficial

hydrophobic patches. A more positive DCp(hyd) indicates a more

exposed hydrophobic patch [45]. The combined surface area of

superficial hydrophobic patches, which is a scale for the association of

membrane a-helices, is high for the rSK channel homologous

proteins in comparison to the a-actinin homologous proteins

(Figure 4B). Furthermore, the surface area of superficial hydrophobic

patches, and therefore the tendency for association indicated by this

factor, decreases from prokaryote to vertebrate organisms, especially

in the rSK channel homologous proteins (Figure 4B). The second

packing factor, the spatial fitting of membrane a-helices, can be

quantified by measuring the frequency of the GXXXG[I/V] motif in

the proteins using the GG4Br parameter [53,69]. For rSK channel

homologous proteins, the frequency of the GXXXG[I/V] motif is

much higher in Mammalia as compared to other classes (Figure 4C).

We conclude that in the mammalian rSK channels, the spatial fitting

of a-helices plays a more significant role in packing than the

superficial hydrophobic patches.

The FP3mem score
Not all parameters involved in protein localization within the

plasma membrane change in the same functional direction over

evolution (Figures 2, 3 and 4). Hence, we create a parameter that in

addition to including all significant parameters previously discussed,

is able to determine the tendency of localization of proteins within

the membrane. This parameter can also be used as a scale for the

comparison of membrane localization between proteins of interest.

In order to fulfill this purpose, all parameters that participate in

membrane localization should be weighted according to their

contributions. We use principal component analysis (PCA) to obtain

proper weights for each parameter [70]. We consider four principal

components (PC) and utilize the proposed correlation coefficients

for each parameter in each PC for constructing a factor representing

the tendency of proteins for membrane localization. We name this

factor the Folding Pathway-based Protein Propensity for mem-

Table 1. FP3mem-based statistical values for different databases.

Moller MPtopo

TMA A B C Am MPT MPT1D MPT3D MPT3Dm Alpha

F1 0.9 0.8 0.9 0.7 0.9 0.9 0.9 0.9 0.9 0.9

Specificity 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

PPV 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Accuracy 0.9 0.8 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9

MCC 0.8 0.7 0.8 0.6 0.8 0.8 0.8 0.8 0.8 0.8

To evaluate the FP3mem efficiency, we calculated the statistical parameters in various databases. These datasets contain information about transmembrane proteins
obtained from x-ray crystallography or other experimental methods used to verify the 3D structure. MPT is the whole MPtopo database. MPT1D and 3D are sub
populations of MPT. The m superscripts indicate that the mitochondrial proteins are omitted from the dataset.
doi:10.1371/journal.pone.0016778.t001

Table 2. FP3mem-based statistical values for a prokaryotic
dataset.

PSORTb 3.0

Archea Bacteria (Gram)

+ 2

F1 0.9 0.7 0.8

Specificity 0.9 0.9 0.9

PPV 0.9 0.9 0.9

Accuracy 0.9 0.8 0.9

MCC 0.8 0.6 0.7

To evaluate the FP3mem efficiency, we calculated the statistical parameters for
the PSORTb3.0 [78] trained sets. PSORTb3.0 is trained on the plasma membrane
proteins of prokaryotes selected by searching the SWISSPROT sequence
annotations.
doi:10.1371/journal.pone.0016778.t002

Table 3. FP3mem-based statistical values for a eukaryotic
dataset.

eSLDB-TM

Human Nematode Yeast

F1 0.6 0.6 0.7

Specificity 0.9 0.9 0.9

PPV 0.8 0.9 0.9

Accuracy 0.7 0.7 0.8

MCC 0.4 0.5 0.6

To evaluate the FP3mem efficiency, we calculated the statistical parameters for
the eSLDB [79]. This database contains the whole proteome of many
eukaryotes. FP3mem identifies the transmembrane proteins of human, yeast
and nematode from the database with the indicated efficiencies.
doi:10.1371/journal.pone.0016778.t003

A New Membrane Protein Prediction Method

PLoS ONE | www.plosone.org 7 March 2011 | Volume 6 | Issue 3 | e16778



brane (FP3mem). The HAMDAM software calculates the FP3mem

based on the following formula:

FP3mem~

4(
X9

i~1
aixi)z3(

X9

i~1
bixi)z2(

X9

i~1
cixi)z(

X9

i~1
dixi)

In this equation, the set of xi represents the nine parameters (i = 1 to

9) for the rSK and Cav1.2 channel homologous proteins. Here, a, b,

c, and d correspond to the correlation coefficients of each parameter

in PC1, PC2, PC3 and PC4 respectively. More details are supplied

in Table S2.

We calculate the FP3mem for all sequences in the TMA dataset

[71], which contains 273 transmembrane a-helix-containing

sequences from PDB structures, as well as for the sequences of a

set of human soluble proteins, documented as cell fraction, obtained

from Uniprot. These sets serve as references for membrane proteins

and non-membrane proteins, respectively. In order to define a cut-

off for FP3mem values that discriminates membrane proteins from

non-membrane proteins, we evaluate the following parameters

[72,73] over a wide range of FP3mem cut-offs (Figure 5):

TP = the fraction of membrane proteins recognized as

membrane proteins.

FN = the fraction of membrane proteins falsely recog-

nized as non-membrane proteins.

TN = the fraction of non-membrane proteins recognized

as non-membrane proteins.

FP = the fraction of non-membrane proteins falsely

recognized as membrane proteins.

Sensitivity~
TP

TPzFN

Specifity~
TN

TNzFP

positive prediction value (PPV)~
TP

TPzFP

Accuracy~
TPzTN

TPzFPzTNzFN

Matthews correlation coefficient (MCC)~

½(TP|TN){(FP|FN)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFN)(TPzFP)(TNzFN)(TNzFP)

p

F1 score~2
Sensitivity|Accuracy

SensitivityzAccuracy

Table 4. Comparison of the FP3mem efficiency with other methods.

CELLO MultiLoc Proteome Analyst pTarget woLFPSORT FP3mem

Sen Spe Sen Spe Sen Spe Sen Spe Sen Spe. Sen Spe

SP3763 plasma membrane 0.4 0.3 0.4 0.3 0.1 0.4 0.4 0.3 0.5 0.4 0.4 0.8

LOC2145 plasma membrane 0.4 0.6 0.5 0.8 0.2 0.8 0.5 0.7 0.5 0.7 0.4 0.8

The FP3mem efficiency is compared with other methods on the same datasets that are common for predicting protein membrane localization. Sen and Spe are the
abbreviation of sensitivity and specificity respectively.
doi:10.1371/journal.pone.0016778.t004

Figure 6. The correlation between FP3mem and the amount of membrane associations. A non-linear correlation exists between FP3mem
and the amount of membrane associations. The FP3mem of CN, CNA, CNAA, CNLA1 (APHO 18A3L), CNLA2 (APHO 16A5L), CNLA3 (APHO 14A7L), CNL
and CNLL [57] are plotted against the experimentally determined membrane association.
doi:10.1371/journal.pone.0016778.g006
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Based on these results and the corresponding ROC curve (Figure

S1), we set our cut-off at FP3mem = 231, and consider the

proteins with FP3mems values higher than 231 as membrane

proteins.

In order to evaluate the FP3mem capability for discriminating

membrane proteins, we calculate the abovementioned statistical

parameters for several datasets (Table S3). One of these datasets,

the Moller dataset, includes three levels of trust to SWISSPROT

transmembrane annotation: A, B, and C [74] (Table 1). The

accuracy of FP3mem is best for the B dataset, in which membrane

localization of dataset members has been proven by experimental

evidence. If we omit mitochondrial membrane proteins from the A

dataset, in which protein structures have been determined by x-ray

crystallography, the accuracy for the A dataset increases (Table 1).

We conclude that in mitochondria, the process of membrane

localization may not be similar to the four-step membrane protein

folding process (Figure 1).

We take another dataset from the MPtopo database (Table 1).

Based on whether the protein helix bundles are determined from

three dimensional structure or by biochemical experimental methods,

Jayasinghe et al. have divided the MPtopo database into 3D and 1D

datasets respectively [75]. When we omit mitochondrial membrane

proteins from the 3D dataset, the accuracy increases. The lipid

context of mitochondrial membrane proteins is different from that of

proteins in the plasma membrane [76]. This difference may cause a

different pathway of membrane protein folding.

The last dataset that we consider is that of alpha, which is

taken from the July 9, 2010 version of the PDBTM [77]. The

non-redundant alpha dataset consists of all a-helical transmem-

brane proteins in the PDB. The calculated statistical factors are

also near to one for this dataset, which confirms the accuracy of

the FP3mem score in distinguishing a-helical transmembrane

proteins.

We calculate FP3mem for the membrane proteins used in

training the PSORTb 3.0 predictor algorithm [78] (Table 2).

FP3mem has a high efficiency in recognizing prokaryotic

membrane proteins. The eSLDB database annotates the

eukaryotic proteomes of various organisms based on their

cellular localizations [79]. We compute the FP3mem score for

a group of human, nematode (Caenorhabditis elegans), and yeast

(Sacharomyces cerevisiae) transmembrane proteins that have been

experimentally annotated (Table 3). Statistical parameters again

confirm the efficiency of FP3mem in distinguishing membrane

proteins.

There are several methods for determining the localization of

proteins in different regions of the cell, including the plasma

membrane. Some commonly used methods include CELLO,

which utilizes only the primary structure of proteins [80],

pTARGET, which utilizes the amino acid and domain compo-

sitions [81], ProteomeAnalyst, which uses the homology of the

sequences [82], WoLFPSORT, which makes use of the amino

acid composition and the sequence homology [83], and MultiLoc,

which employs signal sequences, motifs, and amino acid

compositions [84]. Teasdale compared the capacity of these

methods for determining the localization of proteins of two

datasets, LOC2145 and SP3763 [85]. We calculate the sensitivities

Figure 7. The FP3mem values of rSKs, a-actinin and Cav1.2 proteins. Columns indicate the FP3mem value for each protein over evolutionary
time. The mammalian columns are colored gray for an easier comparison. The error bars designate the SEM.
doi:10.1371/journal.pone.0016778.g007
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and specificities of FP3mem and other methods in distinguishing

the membrane proteins of these two datasets (Table 4). FP3mem

has the highest specificities as well as reasonable sensitivities.

Binary predictors encounter a common problem of disadvantaged

specificities despite good sensitivities [86]. However, FP3mem

possesses high specificities. Our method, which is based on

biophysical parameters of the membrane protein folding pathway,

in this regard outperforms the existing methods.

In order to enter membrane, proteins pass different stages. The

superiority of FP3mem with respect to other methods comes from

the fact that we relate the folding pathway stages of membrane

proteins to the representative physical parameters and do

predictions with a mechanistical viewpoint which was absent in

previous sequence-based methods.

The abovementioned databases and methods provide informa-

tion about whether a protein localizes within the plasma

membrane, but cannot resolve the membrane association (the

propensities for membrane localization) of two transmembrane

proteins. A probable reason for the co-localization of physically

interacting membrane proteins is that a protein with a high

membrane association can compensate the low membrane

association of its partner. Hence, we examine the capacity of

FP3mem in quantifying the membrane association of proteins

using the alkaline phosphatase variants whose membrane

associations were determined empirically [57,58]. The relationship

between the FP3mem and membrane association of these variants

is direct and non-linear (Figure 6). Therefore, FP3mem is not only

capable of recognizing a-helical transmembrane proteins with a

high efficiency, but also can be a scale for membrane association

propensity.

The membrane proteins co-localized with Cav channel
We use the FP3mem score to study the rSKs- a-actinin- Cav1.2

protein system in various organisms (Figure 7). The FP3mems of a-

actinin homologous proteins are similar to non-membrane

proteins in all evolutionary branches. FP3mem values are smaller

than cut-off and equivalent to zero membrane association in all

branches (Figures 5, 6). We consider rSK channel homologous

proteins as membrane proteins only in prokaryotes. However, for

Cav1.2 channel homologous proteins, in addition to prokaryotes,

Fishes and to a less degree Mammalia show higher propensities

toward localization in the membrane. This difference in the

membrane association of mammalian rSK and Cav1.2 channels

may be the reason for the observed fading of SK2 channel

presence in the plasma membrane in the absence of Cav [35]

(Figure S2). Because of their high FP3mem, we hypothesize that

the Cav1.2 channels assist in the membrane localization of SK

channels in Mammalia and Fishes.

Supporting data exist for the presence of Cav1.2 channel in

complexes containing AMPAR or NMDAR glutamate receptors

[38]. Contrary to rSK channels, none of these receptors depends

directly upon the Ca2+ influx for activation. Hence, we

hypothesize that the reason they accompany the Cav channel is

to localize within the membrane, and that this membrane

localization does not occur in the absence of Cav. In order to

test this hypothesis, we calculate FP3mem for the homologous

Figure 8. AMPAR and NMDAR co-localize with the Cav channel. Many membrane proteins co-localize with the Cav channel. The FP3mem
values of those proteins are compared with the Cav FP3mem. The FP3mem cut-off value for the plasma membrane proteins is set at 231. The average
FP3mem for the transmembrane proteins of Archea, Bacteria, and Eukaryotes are retrieved from Uniprot and presented for comparison. The error bars
indicate the SEM.
doi:10.1371/journal.pone.0016778.g008
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proteins of these receptors in prokaryotes and vertebrates

(Figure 8). We observe that the FP3mem of Cav1.2 homologous

proteins is higher than the FP3mem of the AMPAR and NMDAR

homologous proteins, especially in Fishes and Mammalia. This

observation supports the proposed hypothesis that these receptors

couple the Cav1.2 channel with the aim of localizing within the

membrane.

Conclusion
By creating a score (FP3mem) encompassing the biophysical

parameters involved in the folding of a-helical transmembrane

proteins, we provide a scale for measuring the propensity of protein

sequences for localization within the plasma membrane. This

parameter distinguishes membrane proteins from non-membrane

proteins in various datasets, and powerfully competes with other

methods. Furthermore, FP3mem quantifies a protein’s propensity

for becoming an a-helical transmembrane protein. We suggest the

difference in this propensity as an underlying reason for the

colocalization of SK channels, as well as AMDAR and NMDAR

receptors, with the Cav1.2 calcium channel.

Supporting Information

Figure S1 The ROC curve. The sensitivity is plotted against 1-

specificity. The bold black filled circle is the cutoff point.

(TIF)

Figure S2 The histogram of FP3mem value for the SK2
and Cav proteins in Mammalia. The vertical lines show the

FP3mem of mice SK2 and Cav 1.2.

(TIF)

Table S1 The dimension of studied protein set.
(DOC)

Table S2 The PCA extracted coefficients.
(DOC)

Table S3 The dimension of tested datasets.
(DOC)
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