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Abstract: Recently, an increasing number of studies have indicated that long-non-coding RNAs
(lncRNAs) can participate in various crucial biological processes and can also be used as the most
promising biomarkers for the treatment of certain diseases such as coronary artery disease and various
cancers. Due to costs and time complexity, the number of possible disease-related lncRNAs that can
be verified by traditional biological experiments is very limited. Therefore, in recent years, it has been
very popular to use computational models to predict potential disease-lncRNA associations. In this
study, we constructed three kinds of association networks, namely the lncRNA-miRNA association
network, the miRNA-disease association network, and the lncRNA-disease correlation network
firstly. Then, through integrating these three newly constructed association networks, we constructed
an lncRNA-disease weighted association network, which would be further updated by adopting
the KNN algorithm based on the semantic similarity of diseases and the similarity of lncRNA
functions. Thereafter, according to the updated lncRNA-disease weighted association network,
a novel computational model called PMFILDA was proposed to infer potential lncRNA-disease
associations based on the probability matrix decomposition. Finally, to evaluate the superiority
of the new prediction model PMFILDA, we performed Leave One Out Cross-Validation (LOOCV)
based on strongly validated data filtered from MNDR and the simulation results indicated that the
performance of PMFILDA was better than some state-of-the-art methods. Moreover, case studies
of breast cancer, lung cancer, and colorectal cancer were implemented to further estimate the
performance of PMFILDA, and simulation results illustrated that PMFILDA could achieve satisfying
prediction performance as well.
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1. Introduction

Long non-coding RNAs (lncRNAs) are a class of important heterologous ncRNAs that differ in
length from miRNAs by more than 200 nucleotides [1]. For a long time, lncRNAs have been considered
to be transcriptional noise, and only recently have these views been changed by increasing evidence [2].
Related studies have shown that lncRNA plays an indispensable role in many biological processes,
such as chromatin remodeling, gene transcription, protein transport and trafficking, and epigenetic
regulation [3–9]. In addition, the dysregulation of lncRNA in coronary artery disease, autoimmune
disease, neurological disorder, and various cancers suggests that lncRNA plays an important role in
many complex diseases [10]. Recently, lncRNAs are increasingly attracting the attention of researchers
in the field of bioinformatics [10–13].
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With the rapid development of high-throughput sequencing technology, thousands of lncRNAs
have been discovered in mammalian transcriptions. Numerous studies have also revealed the
important role of lncRNA in biological processes and the significant effects in complex human
diseases [1]. There is no doubt that lncRNAs are closely related to complex human diseases, and more
importantly, some lncRNA-disease associations have been experimentally confirmed. For example,
the expression of XIST is up-regulated in glioma tissues and GSCs. Functionally, XIST knockdown
exerts tumor suppressor function by reducing cell proliferation, migration and invasion, and inducing
apoptosis [14]. LncRNA HOTAIR is highly expressed in prostate cancer and is associated with
the growth and aggressiveness of prostate cancer cells [15]. Hence, it is meaningful to identify as
many potential lncRNA-disease associations as possible. However, up to now, due to the high
costs of traditional biological experiments, the lncRNA-disease associations supported by biological
experiments are still very limited. Therefore, it is highly desirable to develop effective computational
models to predict potential lncRNA-disease associations. In recent years, some computational models
have been developed already, and all these models can be approximately divided into three different
categories such as the machine learning-based models, biological network-based models and the
models without relying on known lncRNA-disease associations [16].

As for the machine learning-based models, Chen Xing et al. proposed a computational model called
LRSLDA to predict potential lncRNA-diseases associations [17] through acquiring two different scores
from lncRNA space and disease space simultaneously for the same lncRNA-disease pair. Huang et al.
proposed a prediction model called ILNCSIM by combining the LRSLDA, lncRNA functional similarity
and disease semantic similarity to calculate the probabilities of lncRNA-disease associations [18].
Zhao et al. developed a Bayesian classifier-based model to identify new cancer-associated lncRNAs by
using known cancer-associated lncRNAs such as multivariate data, genome, regulatory protein and
transcription data integration [19].

As for the biological network-based models, based on the assumption that lncRNAs with
similar functions are often associated with phenotype-like diseases, Sun et al. proposed a model
called RWRlncD based on the lncRNA-lncRNA function similarity network [20]. Through integrating
known lncRNA expression profiles, lncRNA-disease associations, lncRNA functional similarity, disease
semantic similarity, and Gaussian interaction profile kernel similarity, Chen et al. developed a prediction
model called KATZLDA to discover potential lncRNA-disease associations [21].

Among these machine-learning-based models and biological network-based models mentioned
above, one of their common features is that known lncRNA-diseases relationships are required during
the implement of prediction. However, so far, due to the time complexity and high costs of traditional
biological experiments, the experimentally identified known lncRNA-disease associations are still very
limited. Hence, some computational models that do not rely on known lncRNA-disease associations
have been proposed in recent years. For instance, Liu et al. proposed a model based on the intermediate
node genes to predict the potential disease-related lncRNAs [22]. Chen et al. proposed a model
called HGLDA based on integrating miRNA-disease associations and lncRNA-miRNA interactions to
discover novel lncRNA-disease associations [23].

In this paper, unlike the most advanced prediction models described above, a new model based on
probability matrix decomposition called PMFILDA is proposed to discover potential lncRNA-disease
associations. At present, matrix decomposition has been widely used in the field of bioinformatics.
For example, in the prediction of miRAN-disease correlation, Chen et al. proposed to predict
miRNA-disease correlation based on induction matrix complementation, matrix decomposition and
heterogeneous graphs [24,25]. Zhao et al. proposed a method based on symmetric non-negative matrix
factorization and Kronecker regularized least squares to predict the correlation of miRNA-disease [26].
The difference between our PMFILDA method and above-mentioned models is that we first constructed
three kinds of binary association networks based on experimentally validated lncRNA-miRNA
associations, miRNA-disease associations, and lncRNA-disease associations separately. Then, based on
these three newly constructed association networks, we constructed a weighted lncRNA-disease
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association network. Moreover, based on the semantic similarity of disease and the functional similarity
of lncRNA, we further adopted the KNN algorithm [27] to update the weighted lncRNA-disease
association network. Then, according to the updated weighted lncRNA-disease association network,
we decomposed the weight matrix of lncRNA-disease into low-order characteristic matrices U and V
of the lncRNAs and diseases based on the probability matrix factorization. Finally, the product of U
and V would be used to predict the scores of lncRNA-disease pairs. The flowchart of our prediction
model PMFIDLA is shown in the following Figure 1.

Figure 1. The flowchart of our prediction model of PMFILDA.

In Subgraph A of above Figure 1, the lncRNA-miRNA association network is constructed based
on known lncRNA-miRNA associations downloaded from starbase [28]. Nodes that are linked by
solid lines indicate that they are associated. In Subgraph B, the miRNA-disease association network
is constructed based on known miRNA-disease associations downloaded from HMDD [29]. Nodes
that are linked by solid lines indicate that they are associated. In Subgraph C, the lncRNA-disease
association network is constructed based on known lncRNA-disease associations downloaded from
MNDR v2.0 [30]. Nodes that are linked by solid lines indicate that they are associated. In Subgraph D,
the lncRNA-disease weight network is constructed based on Subgraph A, Subgraph B, and Subgraph
C. Nodes that are linked by solid lines indicate that they are related. The blue dashed lines indicate
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the weight of the initial assignment between nodes. Subgraph E is a network of disease semantic
similarity and the numbers in E are similarity scores. Subgraph F is a network of lncRAN functional
similarity and the numerics in F are similarity scores. Subgraph G is a lncRNA-disease weighting
network that has been updated and the red dashed line indicates weights having been redistributed
between nodes. Subgraph H is the lncRNA-disease associations that are ultimately predicted by our
method, and the solid red lines indicate the predicted lncRNA-disease associations with relatively high
rankings. The KNN is a K-nearest neighbor algorithm used to find the most similar nodes. The PMF is
a probability matrix factorization algorithm.

2. Materials

Since known lncRNA-disease associations were considered in our prediction model PMFIDLA,
in this section, we download three kinds of gold standard datasets consisting of known
lncRNA-miRNA associations, miRNA-disease associations, and lncRNA-disease associations from
relevant authoritative databases, respectively.

2.1. Human LncRNA-MiRNA Associations and MiRNA-Disease Associations

Firstly, we downloaded the datasets of experimentally validated known miRNA-disease
associations and lncRNA-miRNA associations from the two authoritative databases such as HMDD [29]
and starbase [28] separately. Then, after having further unified the names of miRNAs in these two
datasets, we could obtain 246 common miRNAs from both of these two datasets. For convenience,
we denoted the set of these shared miRNAs as con_M. Thereafter, based on these 246 shared miRNAs
in con_M, we finally downloaded 4704 different miRNA-disease associations and 9086 different
lncRNA-miRNAs associations from above two authoritative databases. In addition, for convenience,
we denoted the set of these 4704 different miRNA-disease associations as MD and the set of these
9086 different lncRNA-miRNAs associations as LM separately. Moreover, through statistics, there are
373 different diseases in MD and 1089 different lncRNAs in LM respectively (see Supplementary
Materials Tables S1 and S2).

2.2. Human LncRNA-Disease Associations

Secondly, we downloaded the dataset of experimentally validated known lncRNA-disease
associations from the MNDR v2.0 database [30], and for convenience, we denoted the dataset of
these downloaded known lncRNA-disease associations as LD. Furthermore, to adapt the downloaded
data to our prediction model, we would further process the original data as follows:

Step 1: Obtaining the set of different lncRNAs shared in both LD and LM. In addition, for convenience,
we denoted the set of these shared lncRNAs as con_L.

Step 2: Obtaining the set of different diseases existed in MD and LD. In addition, for convenience,
we denoted the set of these shared diseases as con_D.

Step 3: Obtaining the set of lncRNA-disease associations with both lncRNAs in con_L and diseases in
con_D based on the set of LD.

And as a result, we finally obtained 407 different lncRNA-disease associations including 77
different lncRNAs and 95 different diseases(see Supplementary Materials Tables S3).

3. Methods

3.1. Construction of the lncRNA-miRNA Association Network and miRNA-Disease Association Network

Based on the set of LM and MD, we can construct the lncRNA-miRNA association network and
miRNA-disease association network according to the following steps respectively:

Step 1: Supposing that there are nl different lncRNAs in LM, and for convenience, we denote the set
of these lncRNAs as L = {l1, l2, . . . , lnl}.
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Step 2: Supposing that there are nd different diseases in MD, and for convenience, we denote the set of
these diseases as D = {d1, d2, . . . , dnd}.

Step 3: Supposing that there are nm different common miRNAs existed in both MD and LM, and for
convenience, we denote the set of these miRNAs as con_M = {m1, m2, . . . , mnm}.

Step 4: Hence, we can firstly obtain an lncRNA-miRNA association network GLMN = (L, con_M, Elm),
where Elm denotes the set of experimentally verified known associations in LM. For ∀li ∈
L, mj ∈ M, we define that there is an edge eli−mj

between li and mj in Elm if and only if there is
an experimentally verified known associations between li and mj in LM.

Step 5: Simultaneously, we can also obtain an miRNA-disease association network GMDN =

(con_M, D, Emd), where Emd denotes the set of experimentally verified known associations in
MD. For ∀mi ∈ con_M, dj ∈ D, we define that there is an edge emi−dj

between mi and dj in Emd
if and only if there is an experimentally verified known associations between mi and dj in MD.

3.2. Construction of the Weighted lncRNA-Disease Association Network

Based on the newly constructed association networks such as GLMN and GMDN , we can further
obtain a weighted lncRNA-disease association network GLDWN = (L, D, Eld, Wld), where Eld denotes
the set of edges between different lncRNAs in L and diseases in D. For ∀li ∈ L, dj ∈ D, we define that
there is an edge eli−dj

between li and dj in Eld if and only if there is at least one miRNA mk in con_M
with experimentally verified known associations with both li in LM and dj in MD simultaneously.
In addition, Wld = {wli−dj

|li ∈ L, dj ∈ D, eli−dj
∈ Eld} denotes the set of weight of the edge eli−dj

in
Eld, and for ∀li ∈ L, dj ∈ D, if there is eli−dj

∈ Eld, then the weight wli−dj
corresponding to eli−dj

can be
calculated according to the following steps:

Step 1: Supposing that there are T different miRNAs in con_M with experimentally verified known
associations with both li in LM and dj in MD simultaneously, and for convenience, we denote
the set of these T different miRNAs as CM = {m1, m2, . . . , mT}.

Step 2: Supposing that RMli = {mli1 , mli2 , . . . , mlip} is a set consisting of all miRNAs that have
experimentally verified known associations with li in LM, and RMdj

= {mdj1
, mdj2

, . . . , mdjq
} is

a set consisting of all miRNAs that have experimentally verified known associations with dj
in MD.

Step 3: Let RM = RMli
⋃

RMdj
= {m1, m2, . . . , mS}, then we can calculate the weight of eli−dj

in GLDWN

according to the following Formula (1):

wli−dj
=

{
1 if li associated with dj in LD
T/(S + 1) Otherwise

(1)

3.3. Similarity Calculation

3.3.1. Disease Semantic Similarity Measure

Considering that the similarity between disease pairs can calculated by their directed acyclic
graphs (DAGs) [31], while estimating the semantic similarity of diseases, for any given disease, we will
firstly express it as its directed acyclic graph (DAG), and as illustrated in the following Figure 2, in its
corresponding DAG, all annotated terms associated with this disease will be contained. For instance,
in Figure 2 the DAGs of two different diseases such as Breast Neoplasms (d1) and Liver Neoplasms
(d2) are shown, and it is obvious that the DAG of d1 can be denoted as DAGd1 = (d1, Td1 , Ed1),
where Td1 denotes all the ancestor nodes of “d1” and itself, and Ed1 represents the set of edges in
DAGd1 . Moreover, for any disease d′ in DAGd1 , its semantic contribution to d1 can be calculated
according to the following Formula (2):
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Dd1(d
′) =

{
1 if there is d′ = d1 in DAGd1

max{∆× Dd1(d
′′) Otherwise. Here d′′ ∈ childreno f d′inDAGd1

(2)

where ∆ will be set to 0.5 based on the suggestion proposed by the state-of-the-art literature [31].
Moreover, in the same way, it is easy to see that the DAG of d2 can be denoted as DAGd2 = (d3, Td3 , Ed3),
and then, for any given diseases d1 and d2, the semantic similarity between them can be measured
according to the following Formula (3) obviously:

SD(d1, d2) =
∑t∈Td1

∩Td2
(Dd1(t) + Dd2(t))

∑t∈Td1
Dd1(t) + ∑t∈Td2

Dd2(t)
(3)

Figure 2. The DAGs of the disease Breast Neoplasms and Liver Neoplasms. In addition, the disease
term and its identification numbers are included in corresponding node. The common terms of the two
diseases are illustrated by green nodes.

3.3.2. LncRNA Similarity Measure

The functional similarity between lncRNAs measures how similar their functions will be.
In this section, based on the method proposed by the state-of-the-art literature [31], for any given
lncRNAs li and lj, Supposing that li and lj have known associations with a group of diseases
GD(li) = di1, di2, . . . , dip and GD(lj) = dj1, dj2, . . . , djq in LD respectively, then the functional similarity
between them can be measured according to the following Formula (4):

FS(li, lj) =
∑

p
t=1 S(dit, GD(lj)) + ∑

q
t=1 S(djt, GD(li))

p + q
(4)

S(dk, GD(li)) = max
t∈[1,|GD(li)|]

SD(dk, dt) (5)

3.3.3. Weight Redistribution in GLDWN Based on the KNN Algorithm

Based on the above descriptions, it is easy to see that we can represent the network GLDWN with
its weight matrix Wld, where Wld[i][j] = wli−dj

. Moreover, considering that known lncRNA-disease
associations are very sparse, which may cause that there exist some lncRNAs with no associations
with any diseases, or some diseases with no associations with any lncRNAs. Hence, some potential
associations between predicted lncRNAs and diseases will be invalid. Therefore, in this paper, we will
rebuild the weight matrix Wld to solve this kind of problem as follows:
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Step 1: Firstly, representing the ith row of the weight matrix Wld as Wld(li, :) = {wli−d1 , wli−d2 , . . . , wli−dnd
},

and the jth column of the weight matrix Wld as Wld(:, dj) = {wl1−dj
, wl2−dj

, . . . , wlnl−dj
}.

Step 2: Then, for any given lncRNA lq and any li in L other than lq, based on above Formula (4), it is
obvious that we can obtain the functional similarity FS(li, lq) easily, and moreover, after sorting
these values of functional similarities between lq and all remaining lncRNAs other than lq in
descending order, then we can obtain the corresponding lncRNAs from the first K elements in
the sorted results. For convenience, let l1, l2, . . . , lK denote these K lncRNAs, then the qth row
of Wld can be updated according to the following Formula (6):

Wld(lq, :) =
1

NL ∑
i∈[1,K]

αi−1 ∗ FS(li, lq) ∗Wld(li, :) (6)

where α ∈ (0, 1] is a decay factor, which means that a higher decay will be assigned to li if it is
more dissimilar to lq, and NL = ∑i∈[1,K] FS(li, lq) is the normalization factor, which is used for
normalization of the value of Wld(lq, :). Additionally, in similar way, it is obvious that the pth
column of Wld can also be updated according to the following Formula (7):

Wld(:, dp) =
1

ND ∑
i∈[1,K]

βi−1 ∗ SD(di, dp) ∗Wld(:, dp) (7)

where d1 to dK denote the top K diseases most similar to dp, β ∈ (0, 1] is the decay factor, and
ND = ∑i∈[1,K] SD(li, lq) is the normalization factor.

3.4. Construction of Our Prediction Model PMFILDA Based on GLDWN

3.4.1. Standard Matrix Factorization

Up to now, the matrix decomposition technology is widely used in the field of recommended
systems, since not only the computational complexity can be reduced by matrix decomposition, but
also good performance can be achieved in solving the matrix scarcity problem. The standard matrix
decomposition aims to find two low-ranking, latent feature matrices whose products are used to fit the
original matrix. Hence, for the weight matrix Wld ∈ Rnl×nd constructed above, it is obvious that we
can decompose Wld into two different matrices U ∈ Rnl×k and V ∈ Rnd×k (k� min(nl , nd)), and there
is Wld ≈ UVT . Thereafter, the problem of disease-related lncRNA prediction can be further expressed
by the following Formulas (8) and (9):

arg min
U,V

nl

∑
i=1

nd

∑
j=1

(Wld(i, j)− Ŵld(i, j))2 (8)

Ŵld(i, j) = ∑
k

Uik ∗Vjk = ∑
k

Ui,k ∗VT
kj = UiVT

j (9)

where the row vectors Ui and is Vj represent the ith lncRNA-specific and jth disease-specific latent
feature vectors respectively. In addition, obviously, the above Formulas (8) and (9) form a convex
optimization problem, which can be solved by some existing optimization algorithms such as the
iterative update algorithm [32] easily.

3.4.2. Probabilistic Matrix Factorization

Since the probability matrix decomposition is based on the decomposition of the standard matrix,
supposing that Wld is a positive distribution with Gaussian noise, then we can define the conditional
distribution over the Wld as:
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p(Wld|U, V, σ2) =
nl

∏
i=1

nd

∏
j=1

[N(Wld(i, j)|UiVT
j , σ2)]Iij (10)

where N(Wld(i, j)|UiVT
j , σ2) is the probability distribution function of the normal distribution and

Iij =

{
1 Wld(i, j) 6= 0
0 Otherwise.

Obviously, p(Wld|U, V, σ2) is the likelihood function (i.e., the product of all

the weights).
In addition, supposing that the matrices U and V satisfy the Gaussian prior to a mean of 0, then the

priors of U and V can be denoted as follows:

p(U|σ2
U = Πnl

i=1N(Ui|0, σ2
UI)) (11)

p(V|σ2
V = Πnd

i=1N(Vj|0, σ2
VI)) (12)

Here, the matrix I is a T × T dimensional unit diagonal matrix. Assuming that U and V are
independent of each other, then the posterior distribution of U and V can be obtained by following
Formula (13):

p(U, V|Wld, σ2, σ2
U , σ2

V) =
p(Wld|U, V, σ2, σ2

U , σ2
V)× p(U, V)

p(Wld|U, V, σ2, σ2
U , σ2

V)

∼ p(Wld|U, V, σ2, σ2
U , σ2

V)× p(U, V) = p(Wld|U, V, σ2, σ2
U , σ2

V)× p(U)× P(V)

= Πnl
i=1Πnd

j=1[N(Wld(i, j)|UiVT
j , σ2)]Iij ∗Πnl

i=1N(Ui|0, σ2
UI) ∗Πnd

j=1N(Vj|0, σ2
VI)

(13)

Then the log of the posterior distribution over the features of lncRNAs and diseases can be
calculated as follows:

ln p(U, V|Wld, σ2, σ2
U , σ2

V) =
nl

∑
i=1

nd

∑
j=1

Iij ln N(Wld(i, j)|UiVT
j , σ2) +

nl

∑
i=1

ln N(Ui|0, σ2
U I)

+
nd

∑
i=1

N(Vj|0, σ2
VI) = − 1

2σ2

nl

∑
i=1

nd

∑
j=1

Iij(Wld(i, j)−UiVT
j )

2 − 1
2σ2

U

nl

∑
i=1

UiU2
i −

1
2σ2

V

nd

∑
j=1

VjV2
j

−1
2
((

nl

∑
i=1

nd

∑
j=1

Iij) ln σ2 + Tnl ln σ2
U + Tnd ln σ2

V) + C

(14)

Here, C is a constant factor. In addition, as for N(Ui|0, σ2
UI), since there is:

N(Ui|0, σ2
U I) = − 1

(2π)
T
2 |σ2

U I| 12
exp(−1

2
Ui(σ

2
UI)−1UT

i ) (15)

Hence, considering that the matrix I is an unit diagonal matrix, which means that there is
(σ2

UI)−1 = 1
σ2

U
I, then we have:

lnN(Ui|0, σ2
UI) = ln(− 1

(2π)
T
2 |σ2

UI| 12
)−

UiUT
i

2σ2
U

= −T
2

ln(σ2
U)−

UiUT
i

2σ2
U

+ CU (16)

Here, CU is a constant factor. Similar to the above analyses, we can also have:

lnN(Vj|0, σ2
VI) = −T

2
ln(σ2

V)−
ViVT

j

2σ2
V

+ CV (17)
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lnN(Wld(i, j)|UiVT
j , σ2) = −1

2
ln(σ2)−

(Wld(i, j)−UiVT
j )

2

2σ2 + CW (18)

Therefore, it is obvious that maximizing the log-posterior on U and V with hyper-parameters
being kept fixed in Formula (13) will be equivalent to minimizing the following objective function:

arg min
U,V

1
2

∣∣∣∣I⊙(Wld −UVT)
∣∣∣∣2

F +
λU
2

nl

∑
i=1

∣∣∣∣Ui
∣∣∣∣2

F +
λV
2

nd

∑
i=1

∣∣∣∣Vj
∣∣∣∣2

F (19)

where
⊙

is the Hadamard product, λU = σ2

σ2
U

, λV = σ2

σ2
V

and || · ||F represents the Frobenius norm.

3.4.3. Optimization

Based on the properties of Frobenius norm, the Formula (19) can be rewritten as the form of the
LaGrangian function as follows:

L f (U, V) =
1
2

Tr(I
⊙

(WldWT
ld − 2WldVUT + UVTVUT))

+
λU
2

Tr(UUT) +
λV
2

Tr(VVT)

(20)

Based on above Formula (20), we can further obtain its partial derivatives with respect to U and
V as follows:

∂L f

∂U
= I

⊙
(−WldV + UVTV) + λUU (21)

∂L f

∂V
= I

⊙
(−WT

ldU + VUTU) + λVV (22)

Therefore, we can construct the update rules based on the gradient descent algorithm as follows:

U ← λmU − λ(I
⊙

(−WldV + UVTV)) (23)

V ← λmV − λ(I
⊙

(−WT
ldU + VUTU)) (24)

where λm is the momentum parameter, which can accelerate the convergence speed of U and V,
the parameter λ denotes the learning rate, and based on the suggestion proposed by the state-of-the-art
literature [31] (Wang et al., 2010), λm and λ will be set to 0.8 and 0.005 respectively [33].

Hence, based on above update rules illustrated in Formulas (23) and (24), we can update the
lncRNA-specific and disease-specific latent feature matrix U and V until they become converged.
Then, we can finally obtain the predicted lncRNA-disease association matrix Ŵld = FS×UVT × SD.
In addition, as for any column di in Wld, we can sort the elements (i.e., lncRNAs) in di in descending
order, then the top-ranked lncRNAs in di can be predicted as di-related lncRNAs, while the
bottom-ranked lncRNAs in di can be predicted as di- disrelated lncRNAs at the same time.

4. Results and Discussion

4.1. Performance Evaluation Metrics

To evaluate the robustness and prediction performance of PMFILDA, in this section, the Leave One
Out Cross-Validation (LOOCV) was implemented based on the experimentally verified lncRNA-disease
associations. In LOOCV, each pair of known lncRNA-disease associations is used as a validation
set, while other known lncRNA-disease associations are used as training sets. Moreover, all the
lncRNA-disease pairs without experimentally verify are used as candidate samples. The ranking of
the test sample relative to the candidate sample needs to be evaluated after the implementation of
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PMFILDA. When a threshold is given, if the test sample ranks above the given threshold, then we will
regard that a correctly positive sample has been predicted by PMFILDA, otherwise we will regard that
a correctly negative sample has been predicted by PMFILDA. Moreover, while different thresholds are
set, a series of True Positive Rate (TPR) and False Positive Rate (FPR) can also be obtained according to
the following formulas:

TPR =
TP

TP + FN
(25)

FPR =
FP

TN + FP
(26)

where TP and TN denote the number of positive and negative samples that have been correctly
identified, while FP and FN represent the number of positive and negative samples that have been
incorrectly identified. Hence, the Receiver Operating Characteristic (ROC) curve can be drawn by
plotting TPRs versus FPRs, and the area under ROC curve (AUC) can be further calculated to measure
the global performance of PMFILDA. Obviously, the closer the value of AUC is to 1, the more robust
the prediction model would be.

Moreover, during simulation, to eliminate the random errors caused by the random initialization
of U and V, we repeated our experiments 100 times and took the mean and variance of AUCs as our
final results, which were shown in the following Figure 3. In addition, from Figure 3, it is easy to see
that our newly proposed prediction model PMFILDA can achieve the mean AUC of 0.8794 and the
standard deviation of 0.0011.

Figure 3. ROC curves for PMFILDA.

Next, to further evaluate the performance of PMFILDA, based on the framework of LOOCV,
we compared PMFILDA with some state-of-the-art models such as NBCLDA [34], HGLDA [23],
and the method proposed by Yang et al. [35]. Similarly, during simulation, to eliminate the random
errors caused by the random initialization of U and V, we repeated our experiments 50 times and took
the mean of AUCs as our final results, which were shown in the following Table 1.

Table 1. Comparison of AUCs of PMFILDA with state-of-the-art methods.

Methods AUCs Methods AUCs Methods AUCs

PMFILDA 0.8793 PMFILDA 0.9169 PMFILDA 0.9090
NBCLDA_GN1 0.8519 HGLDA 0.8519 Method of Yang et al. 0.8568
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In addition, while comparing PMFILDA with the NBCLDA, considering that we did not consider
the genes in our method, then we compared PMFILDA with the NBCLDA_GN1 only, and the
simulation results are shown in Table 1 and the following Figure 4. Obviously, from Table 1 and
Figure 4, it is easy to see that our newly proposed prediction model PMFILDA can achieve a reliable
AUC of 0.8793 that is much higher than the AUC of 0.8519 achieved by NBCLDA_GN1.

Figure 4. ROC curves and AUC value for NBCLDAGN1 and PMFILDA.

Moreover, while comparing PMFILDA with the HGLDA, in order to make a fair comparison,
we implemented LOOCV on both PMFILDA and HGLDA based on the same dataset, i.e., we used the
same 183 known lncRNA-disease associations proposed by HGLDA in the comparison simulation,
and the simulation results are shown in Table 1 and the following Figure 5. Obviously, from Table 1 and
Figure 5, it is easy to see that our newly proposed prediction model PMFILDA is superior to HGLDA.

Figure 5. The ROC curve and AUCs of PMFILDA based on the same known 183 lncRNA-disease
associations proposed by HGLDA.

Finally, while comparing PMFILDA with the method proposed by Yang et al, in order to make
a fair comparison, we implemented LOOCV on both PMFILDA and method proposed by Yang et al.
based on the same dataset also, i.e., we used the same 319 known lncRNA-disease associations between
37 lncRNAs and 52 diseases proposed by Yang et al in the comparison simulation, and the simulation
results are shown in Table 1 and the following Figure 6. Obviously, from Table 1 and Figure 6, it is easy
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to see that our newly proposed prediction model PMFILDA can achieve a reliable AUC of 0.9090 that
is much higher than the AUC of 0.8568 achieved by Yang et al.

Figure 6. ROC curves and AUCs of PMFILDA and the method proposed by Yang et al.

4.2. Contribution Analysis of lncRNA-Disease Associated Network

In our method, we constructed a weighted lncRNA-disease association networks based on the
known lncRNA-disease, microRNA-disease and lncRNA-microNA association networks. It may be
useful to discuss the contribution of lncRNA-disease associations separately here. Hence, without
considering the relationship between lncRNA and disease, we constructed a weighted network
of lncRNA-disease through using known lncRNA-microRNA associations and microRNA-disease
associations only. Based on the steps in Section 3.2, we finally obtained 304 lncRNA-disease associations
including 60 lncRNAs and 73 diseases. Thereafter, we further obtained the corresponding weight
matrix Wld, and then performed LOOCV 100 times on the PMFILDA. The results were shown in
the following Figures 7 and 8, obviously, the AUC value achieved by PMFILDA based on three
association networks can be increased by 0.0763 than the AUC value achieved by PMFILDA based on
two association networks.

Figure 7. ROC curves and AUCs achieved by PMFILDA based on two association networks.
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Figure 8. ROC curves and AUCs achieved by PMFILDA based on three association networks.

4.3. The Effects of KNN on Performance

Considering that known lncRNA-disease associations are very sparse, there may exist some
lncRNAs with no associations with any diseases, or some diseases with no associations with any
lncRNAs. Hence, some potential associations between predicted lncRNAs and diseases will be invalid.
Therefore, in this paper, we rebuilt the weight matrix Wld based on KNN algorithm to solve this kind
of problem.

Here, we also investigated the influence of KNN algorithm on our method from two aspects.
One is that we do not use KNN algorithm to deal with the weighted network GLDMN , the other is
to update the weighted network GLDMN with other algorithms, such as K-means algorithm. When
PMFILDA is directly executed without using KNN algorithm to process the weighted network GLDMN ,
the result is shown in Figure 9. It is easy to see that PMFILDA could achieve an average AUC of 0.8794
while the weight of GLDMN was reallocated; however, while the weight of GLDMN was not reallocated,
PMFILDA can achieve an average AUC of 0.8042 only, which demonstrated that it can improve the
performance of our model through adopting the KNN algorithm to re-allocate the weight of GLDMN .

Figure 9. AUCs achieved by PMFILDA in LOOCV while the weight of GLDMN was reallocated or not
reallocated respectively.
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And in addition, to estimate the impacts of other algorithms, we selected the K-means algorithm
for further testing. After performing LOOCV 100 times, we presented the simulation results in the
following Table 2, and from observing the results in Table 2, it is easy to see that the performance of
KNN is better than K-means.

Table 2. Comparison of the effects of KNN and K-means on PMFILDA.

KNN K-Means

Mean_AUC 0.8794 0.8589
STD 0.0278 0.0011

4.4. Parameter Sensitivity Analysis

From above descriptions, it is easy to see that to improve the prediction performance of PMFILDA,
some parameters have been introduced in the model construction of PMFILDA, whose values will
need to be finalized by the training of the prediction model. For example, how to choose the value of
the parameter K while adopting the algorithm of K-nearest neighbor? How to choose the attenuation
coefficients α and β given in the Formulas (6) and (7)? How to choose the value of the parameter
T while adopting Formula (1) to implement the matrix decomposition? and so on. Hence, firstly,
to evaluate the impacts of the parameters K, α and β to the performance of our model PMFILDA,
during simulation, we will set K from 2 to 10 and α from 0.1 to 0.9, respectively. Moreover, we will set
α = β for convenience. The detailed simulation results were shown in the Supplementary Table S4.
In addition, through experimental results, it is easy to know that our model PMFILDA can achieve the
highest AUC of 0.9204 while K = 10 and α = β = 0.8 in the LOOCV framework. Next, to estimate the
impacts of the parameter T to the performance of our model PMFILDA, during simulation, we will set
T from 10 to 50 and the step size to 10. In addition, through experimental results, it is easy to know that
our model PMFILDA can achieve the highest AUC of 0.9210 while T = 20 in the LOOCV framework.

4.5. Case Studies

In this section, we implemented case studies based on the optimal settings of above parameters to
further verify the prediction performance of PMFILDA. During simulation, for each given disease,
its potentially relevant lncRNAs predicted by PMFILDA will be sorted according to their predicted
scores in descending order. In addition, as a result, the top 20 predicted lncRNAs related to the disease
potentially will be recorded in the Supplementary Table S5, and then, two public databases such
as MNDR V2.0 and LncRNA-Disease database will be used to confirm these potential associations
between the given disease and each of these 20 predicted lncRNAs. In this section, we selected three
kinds of common diseases such as breast cancer, lung cancer, and colorectal cancer as the targets of our
case studies.

As for breast cancer, according to the reports of relevant literatures, it is very common in the
group of women [36,37] and may be caused by a variety of molecular alterations. For example, studies
have shown that the formation of breast tumors is closely related to lncRNA [38,39]. Hence, predicting
breast cancer-associated lncRNA and identifying lncRNA markers are important for the diagnosis and
treatment of breast cancer [39]. In this section, we will implement PMFILDA to discover the potential
breast cancer-associated lncRNAs. In addition, as shown in the following Table 3, it is easy to see that
12 of the top 20 breast cancer-related lncRNAs predicted by our model PMFILDA have been confirmed
in authoritative databases. For example, MALAT1, HOTAIR and H19 ranked the 1st, 2nd and 3rd in
the list of our predicted results respectively, and among them, it is proved that MALAT1 has functional
and prognostic significance as a metastasis driver in ER negative and lymph node negative breast
cancer [40], HOTAIR will be overexpressed in approximately one quarter of human breast cancers and
increased in expression in primary breast tumors and metastases [41], and the down-regulation of
H19 will significantly reduce colony formation and anchorage-independent growth of breast and lung
cancer cells [42].
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Moreover, in recent years, lung cancer is a leading cause of cancer-related deaths worldwide,
regardless of gender. According to the disease patterns and treatment strategies, it can be roughly
divided into non-small cell lung cancer (NSCLC) and small cell lung cancer [43]. To diagnose and
treat lung cancers more effectively, researchers have paid lots of attention to the deregulation of
protein-coding genes in the past few decades to identify oncogenes and tumor suppressors [43–45].
However, recent studies have shown that lncRNAs play a significant role in the development and
progression of lung cancers [43,45]. Hence, in this section, we will implement PMFILDA to infer
the potential lung cancer-related lncRNAs. In addition, as illustrated in the following Table 3, it is
easy to see that 14 of the top 20 potential lung cancer-related lncRNAs predicted by our model
PMFILDA have been confirmed by authoritative biological experiments. For instance, MALAT1,
HOTTIP and MEG3 ranked the 3rd, 4th and 5th in the list of our predicted results respectively, and
among them, it is identified that MALAT1 is highly correlated with lung cancer metastasis [46,47],
will promote lung cancer cell movement by regulating motor-related gene expression [48], and can
be an important biomarker for the development of lung cancer metastasis [49]. Additionally, it is
demonstrated that through knocking out HOXA13 by RNA interference (siHOXA13), HOTTIP can
promote lung cell proliferation, migration, and inhibition of apoptosis, which could serve as a new
biomarker and a therapeutic target for NSCLC intervention [50]. Moreover, as for MEG3, it is proved
that the down-regulation of MEG3 will enhance cisplatin resistance of lung cancer cells through
activation of the WNT/β-catenin signaling pathway [51]. Additionally, the colorectal cancer (CRC)
has a high incidence in Western countries in recent years [52], and more and more research indicates
that lncRNAs play a significant role in the formation of CRC [44,45]. Hence, in this section, we will
implement PMFILDA to predict the potential CRC-related lncRNAs. In addition, as shown in the
following Table 2, it is easy to see that eight of the top 20 CRC-related lncRNAs predicted by our
model PMFILDA have been confirmed by authoritative biological experiments. For instance, MALAT1,
NEAT1 and TUG1 ranked the 2nd, 8th and 10th in the list of our predicted results respectively,
and among them, it is identified that MALAT1 may be a potential predictor of tumor metastasis and
prognosis, and that the interaction between MALAT1 with SFPQ may be a new therapeutic target for
CRC [53]. In addition, it is proved that NEAT1 can be used as an indicator of tumor recurrence and
colorectal cancer prognosis [54], and the expression of NEAT1 in CRC may play a carcinogenic role in
the differentiation, invasion, and metastasis of CRC, hence, the whole blood NEAT1 expression can
be used as a new diagnostic and prognostic biomarker for overall survival in CRC [55]. Moreover,
it is demonstrated that the tumor expression of TUG1 plays an important role in colorectal cancer
metastasis, and TUG1 can be used as a biomarker or therapeutic target for potential CRC [56].

Table 3. The experimentally confirmed lncRNAs in the top 20 potential lncRNAs predicted by
PMFILDA in three kinds of case studies.

Diseases lncRNAs Evidence (PUBMED)

Breast Cancer MALAT1 22492512, 22996375, 24499465, 27250026, 27777857, 27191888
Breast Cancer HOTAIR 24499465, 20930520, 21925379, 20393566, 19182780, 21903344
Breast Cancer H19 22996375, 21489289, 14729626, 16707459, 21748294, 18794369
Breast Cancer MEG3 27166155, 14602737, 22393162, 22487937
Breast Cancers GAS5 27034004, 18836484, 20673990, 22487937, 22664915, 26662314
Breast Cancer PTPRG-AS1 26409453
Breast Cancer NEAT1 25417700, 27147820, 21532345, 27556296
Breast Cancer PVT1 24780616, 17908964, 25122612, 26889781
Breast Cancer CDKN2B-AS1 17440112, 20956613, 20453838, 20956613
Breast Cancer TUG1 27791993
Breast Cancer XIST 17545591, 27248326, 18006640, 19440381, 24141629, 26637364
Breast Cancer ZFAS1 21460236
Lung Cancer H19 27186394, 26729200
Lung Cancer HOTAIR 27186394, 26729200, 24757675, 23668363, 27270317
Lung Cancer MALAT1 25217850, 20937273, 20937273, 27777857
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Table 3. Cont.

Diseases lncRNAs Evidence (PUBMED)

Lung Cancer HOTTIP 27347311, 26265284
Lung Cancer MEG3 14602737, 26059239
Lung Cancer CDKN2B-AS1 27307748, 26729200, 26453113, 25964559, 25889788
Lung Cancer GAS5 27631209, 26634743, 24357161
Lung Cancer CCAT1 25129441
Lung Cancer XIST 27501756, 26339353
Lung Cancer CASC2 26790438
Lung Cancer PVT1 26908628, 26729200, 25400777
Lung Cancer ZNRD1-AS1 27166266
Lung Cancer NEAT1 27351135, 27270317, 25889788
Lung Cancer TUG1 24853421, 27485439

Colorectal Cancer H19 8564957, 22427002, 11120891, 26989025, 19926638, 26068968
Colorectal Cancer HOTTIP 26617875, 26678886, 27546609
Colorectal Cancer XIST 17143621
Colorectal Cancer NEAT1 26314847, 26552600
Colorectal Cancer MEG3 25636452, 26934323
Colorectal Cancer TUG1 26856330, 27421138
Colorectal Cancer PVT1 26990997, 24196785
Colorectal Cancer CCAT1 23416875, 26064266, 26823726, 24594601,23594791,26752646

5. Discussion

Increasing research has shown that lncRNAs play a crucial role in the occurrence, formation,
diagnosis, treatment, and prognosis of diseases. The discovery of complex disease-associated
lncRNAs as biomarkers based on existing biological experiments is not only costly but also requires
a large amount of clinical data. Therefore, it is a future trend to integrate potential biological data
resources and use developed computers to develop efficient and accurate computational models to
predict potential new disease-related lncRNAs. In this paper, we proposed a novel computational
model called PMFILDA to predict potential disease-associated lncRNAs. In this model, we first
integrated known lncRNA-miRNA associations, miRNA-disease associations, and a small number
of known lncRNA-disease associations into a new weighted lncRNA-disease association network.
Then, based on the newly constructed association network, through adopting the semantic similarity
of the disease, the functional similarity of lncRNA and the KNN algorithm to update the weight
network, an lncRNA-disease association matrix Wld can be obtained. Hence, through adopting the
probability matrix decomposition scheme to decompose the matrix Wld into the feature matrix U
of lncRNA and the feature matrix V of the disease, we can finally construct our model PMFILDA
based on the two feature matrices to predict the potential associations between lncRNAs and diseases.
Compared to existing state-of-the-art models, simulation results have demonstrated that our model
PMFILDA has better prediction performance. Moreover, case studies of breast cancer, lung cancer
and colorectal cancer also indicated that PMFILDA can be used as a superior computational model
to predict potential lncRNA-disease associations. However, it is obvious that there are still some
biases in our model. When we only use lncRNA-disease associations and regardless of any miRNAs,
the performance of PMFILDA may be reduced. To illustrate this situation, we did the following
experiment. After processing the data, we obtained 246 pairs of lncRNA-disease associations, including
44 lncRNAs, 68 diseases. Then we performed 100 LOOCVs on the PMFILDA method, and the average
AUC value was 0.8111, and the standard deviation was 0.0073. When we used miRNA, the average
AUC value was 0.8794 and the standard deviation was 0.0011. The reason for this difference is that
when we don,t consider miRNAs, the information we use for lncRNA-disease may be incomplete.
There may be some important associations that do not exist in the lncRNA-disease data set. When the
miRNA node is added, these important relationships can be re-established. Therefore, in our model,
we need to consider not only the lncRNA-disease relationship, but also the nodes that can improve the
lncRNA-disease relationship.
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6. Conclusions

In this study, our major contributions are as follows: Firstly, we constructed a novel weighted
lncRNA-disease association network through integrating the known lncRNA-miRNA association
network, the known miRNA-disease association network and the known lncRNA-disease association
network. Secondly, based on the semantic similarity of disease and the similarity of lncRNA function,
we adopted the KNN algorithm to update the newly constructed weighted lncRNA-disease association
network. Thirdly, based on the probability matrix decomposition model, we proposed a novel
computational model called PMFILDA to predict potential lncRNA-disease associations, which cannot
only predict the potential associations between lncRNAs and disease contained in the experimentally
validated lncRNA-disease associations, but also predict the potential associations of its elements
in unknown datasets. To improve the efficiency of our model, in the future, we plan to integrate
more intermediate nodes such as genes to update the weighted lncRNA-disease association network.
In addition, we also believe that the results [25,57–63] of the miRNA-disease association prediction field
will promote the development of lncRNA-disease correlation prediction. Moreover, while studying
the association prediction of lncRNA-disease, focusing on the research results in other fields will also
broaden our horizons.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/2/126/s1.
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