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Abstract: Recently, an increasing number of studies have indicated that long-non-coding RNAs
(IncRNAs) can participate in various crucial biological processes and can also be used as the most
promising biomarkers for the treatment of certain diseases such as coronary artery disease and various
cancers. Due to costs and time complexity, the number of possible disease-related IncRNAs that can
be verified by traditional biological experiments is very limited. Therefore, in recent years, it has been
very popular to use computational models to predict potential disease-IncRNA associations. In this
study, we constructed three kinds of association networks, namely the IncRNA-miRNA association
network, the miRNA-disease association network, and the IncRNA-disease correlation network
firstly. Then, through integrating these three newly constructed association networks, we constructed
an IncRNA-disease weighted association network, which would be further updated by adopting
the KNN algorithm based on the semantic similarity of diseases and the similarity of IncRNA
functions. Thereafter, according to the updated IncRNA-disease weighted association network,
a novel computational model called PMFILDA was proposed to infer potential IncRNA-disease
associations based on the probability matrix decomposition. Finally, to evaluate the superiority
of the new prediction model PMFILDA, we performed Leave One Out Cross-Validation (LOOCV)
based on strongly validated data filtered from MNDR and the simulation results indicated that the
performance of PMFILDA was better than some state-of-the-art methods. Moreover, case studies
of breast cancer, lung cancer, and colorectal cancer were implemented to further estimate the
performance of PMFILDA, and simulation results illustrated that PMFILDA could achieve satisfying
prediction performance as well.

Keywords: IncRNA; disease; miRNA; IncRNA-disease associations; identifying disease-related IncRNA

1. Introduction

Long non-coding RNAs (IncRNAs) are a class of important heterologous ncRNAs that differ in
length from miRNAs by more than 200 nucleotides [1]. For a long time, IncRNAs have been considered
to be transcriptional noise, and only recently have these views been changed by increasing evidence [2].
Related studies have shown that IncRNA plays an indispensable role in many biological processes,
such as chromatin remodeling, gene transcription, protein transport and trafficking, and epigenetic
regulation [3-9]. In addition, the dysregulation of IncRNA in coronary artery disease, autoimmune
disease, neurological disorder, and various cancers suggests that IncRNA plays an important role in
many complex diseases [10]. Recently, IncRNAs are increasingly attracting the attention of researchers
in the field of bioinformatics [10-13].
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With the rapid development of high-throughput sequencing technology, thousands of IncRNAs
have been discovered in mammalian transcriptions. Numerous studies have also revealed the
important role of IncRNA in biological processes and the significant effects in complex human
diseases [1]. There is no doubt that IncRNAs are closely related to complex human diseases, and more
importantly, some IncRNA-disease associations have been experimentally confirmed. For example,
the expression of XIST is up-regulated in glioma tissues and GSCs. Functionally, XIST knockdown
exerts tumor suppressor function by reducing cell proliferation, migration and invasion, and inducing
apoptosis [14]. LncRNA HOTAIR is highly expressed in prostate cancer and is associated with
the growth and aggressiveness of prostate cancer cells [15]. Hence, it is meaningful to identify as
many potential IncRNA-disease associations as possible. However, up to now, due to the high
costs of traditional biological experiments, the IncRNA-disease associations supported by biological
experiments are still very limited. Therefore, it is highly desirable to develop effective computational
models to predict potential IncRNA-disease associations. In recent years, some computational models
have been developed already, and all these models can be approximately divided into three different
categories such as the machine learning-based models, biological network-based models and the
models without relying on known IncRNA-disease associations [16].

As for the machine learning-based models, Chen Xing et al. proposed a computational model called
LRSLDA to predict potential IncRNA-diseases associations [17] through acquiring two different scores
from IncRNA space and disease space simultaneously for the same IncRNA-disease pair. Huang et al.
proposed a prediction model called ILNCSIM by combining the LRSLDA, IncRNA functional similarity
and disease semantic similarity to calculate the probabilities of IncRNA-disease associations [18].
Zhao et al. developed a Bayesian classifier-based model to identify new cancer-associated IncRNAs by
using known cancer-associated IncRNAs such as multivariate data, genome, regulatory protein and
transcription data integration [19].

As for the biological network-based models, based on the assumption that IncRNAs with
similar functions are often associated with phenotype-like diseases, Sun et al. proposed a model
called RWRIncD based on the IncRNA-IncRNA function similarity network [20]. Through integrating
known IncRNA expression profiles, IncRNA-disease associations, IncRNA functional similarity, disease
semantic similarity, and Gaussian interaction profile kernel similarity, Chen et al. developed a prediction
model called KATZLDA to discover potential IncRNA-disease associations [21].

Among these machine-learning-based models and biological network-based models mentioned
above, one of their common features is that known IncRNA-diseases relationships are required during
the implement of prediction. However, so far, due to the time complexity and high costs of traditional
biological experiments, the experimentally identified known IncRNA-disease associations are still very
limited. Hence, some computational models that do not rely on known IncRNA-disease associations
have been proposed in recent years. For instance, Liu et al. proposed a model based on the intermediate
node genes to predict the potential disease-related IncRNAs [22]. Chen et al. proposed a model
called HGLDA based on integrating miRNA-disease associations and IncRNA-miRNA interactions to
discover novel IncRNA-disease associations [23].

In this paper, unlike the most advanced prediction models described above, a new model based on
probability matrix decomposition called PMFILDA is proposed to discover potential IncRNA-disease
associations. At present, matrix decomposition has been widely used in the field of bioinformatics.
For example, in the prediction of miRAN-disease correlation, Chen et al. proposed to predict
miRNA-disease correlation based on induction matrix complementation, matrix decomposition and
heterogeneous graphs [24,25]. Zhao et al. proposed a method based on symmetric non-negative matrix
factorization and Kronecker regularized least squares to predict the correlation of miRNA-disease [26].
The difference between our PMFILDA method and above-mentioned models is that we first constructed
three kinds of binary association networks based on experimentally validated IncRNA-miRNA
associations, miRNA-disease associations, and IncRNA-disease associations separately. Then, based on
these three newly constructed association networks, we constructed a weighted IncRNA-disease
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association network. Moreover, based on the semantic similarity of disease and the functional similarity
of IncRNA, we further adopted the KNN algorithm [27] to update the weighted IncRNA-disease
association network. Then, according to the updated weighted IncRNA-disease association network,
we decomposed the weight matrix of IncRNA-disease into low-order characteristic matrices U and V
of the IncRNAs and diseases based on the probability matrix factorization. Finally, the product of U
and V would be used to predict the scores of IncRNA-disease pairs. The flowchart of our prediction
model PMFIDLA is shown in the following Figure 1.

IncRNA-miRNA association network miRMNA-disease association network

IncRN A-disease association
network

Disease Semantic Similarity LncRNA Function Similarity

kR
i
X/

Update IncRNA-disease
weight network
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IncRNA miRNA  disease
Figure 1. The flowchart of our prediction model of PMFILDA.

In Subgraph A of above Figure 1, the IncRNA-miRNA association network is constructed based
on known IncRNA-miRNA associations downloaded from starbase [28]. Nodes that are linked by
solid lines indicate that they are associated. In Subgraph B, the miRNA-disease association network
is constructed based on known miRNA-disease associations downloaded from HMDD [29]. Nodes
that are linked by solid lines indicate that they are associated. In Subgraph C, the IncRNA-disease
association network is constructed based on known IncRNA-disease associations downloaded from
MNDR v2.0 [30]. Nodes that are linked by solid lines indicate that they are associated. In Subgraph D,
the IncRNA-disease weight network is constructed based on Subgraph A, Subgraph B, and Subgraph
C. Nodes that are linked by solid lines indicate that they are related. The blue dashed lines indicate
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the weight of the initial assignment between nodes. Subgraph E is a network of disease semantic
similarity and the numbers in E are similarity scores. Subgraph F is a network of IncRAN functional
similarity and the numerics in F are similarity scores. Subgraph G is a IncRNA-disease weighting
network that has been updated and the red dashed line indicates weights having been redistributed
between nodes. Subgraph H is the IncRNA-disease associations that are ultimately predicted by our
method, and the solid red lines indicate the predicted IncRNA-disease associations with relatively high
rankings. The KNN is a K-nearest neighbor algorithm used to find the most similar nodes. The PMF is
a probability matrix factorization algorithm.

2. Materials

Since known IncRNA-disease associations were considered in our prediction model PMFIDLA,
in this section, we download three kinds of gold standard datasets consisting of known
IncRNA-miRNA associations, miRINA-disease associations, and IncRNA-disease associations from
relevant authoritative databases, respectively.

2.1. Human LncRNA-MiRNA Associations and MiRNA-Disease Associations

Firstly, we downloaded the datasets of experimentally validated known miRNA-disease
associations and IncRNA-miRNA associations from the two authoritative databases such as HMDD [29]
and starbase [28] separately. Then, after having further unified the names of miRNAs in these two
datasets, we could obtain 246 common miRNAs from both of these two datasets. For convenience,
we denoted the set of these shared miRINAs as con_M. Thereafter, based on these 246 shared miRNAs
in con_M, we finally downloaded 4704 different miRINA-disease associations and 9086 different
IncRNA-miRNAs associations from above two authoritative databases. In addition, for convenience,
we denoted the set of these 4704 different miRINA-disease associations as MD and the set of these
9086 different IncRNA-miRNAs associations as LM separately. Moreover, through statistics, there are
373 different diseases in MD and 1089 different IncRNAs in LM respectively (see Supplementary
Materials Tables S1 and S2).

2.2. Human LncRNA-Disease Associations

Secondly, we downloaded the dataset of experimentally validated known IncRNA-disease
associations from the MNDR v2.0 database [30], and for convenience, we denoted the dataset of
these downloaded known IncRNA-disease associations as LD. Furthermore, to adapt the downloaded
data to our prediction model, we would further process the original data as follows:

Step 1: Obtaining the set of different IncRNAs shared in both LD and LM. In addition, for convenience,
we denoted the set of these shared IncRNAs as con_L.

Step 2: Obtaining the set of different diseases existed in MD and LD. In addition, for convenience,
we denoted the set of these shared diseases as con_D.

Step 3: Obtaining the set of IncRNA-disease associations with both IncRNAs in con_L and diseases in
con_D based on the set of LD.

And as a result, we finally obtained 407 different IncRNA-disease associations including 77
different IncRNAs and 95 different diseases(see Supplementary Materials Tables S3).

3. Methods

3.1. Construction of the IncRNA-miRNA Association Network and miRNA-Disease Association Network

Based on the set of LM and MD, we can construct the IncRNA-miRNA association network and
miRNA-disease association network according to the following steps respectively:

Step 1: Supposing that there are n; different IncRNAs in LM, and for convenience, we denote the set
of these IncRNAs as L = {ly,lp,..., 1y}
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Step 2: Supposing that there are n,; different diseases in MD, and for convenience, we denote the set of
these diseases as D = {dy,dy, ..., dy,}.

Step 3: Supposing that there are n,, different common miRNAs existed in both MD and LM, and for
convenience, we denote the set of these miRNAs as con_M = {my,my, ..., my, }.

Step 4: Hence, we can firstly obtain an IncRNA-miRNA association network Gy pn = (L, con_M, Ep,,,),
where Ej,, denotes the set of experimentally verified known associations in LM. For VI; €
L,m; € M, we define that there is an edge el—m between [; and m; in E};;, if and only if there is
an experimentally verified known associations between /; and m; in LM.

Step 5: Simultaneously, we can also obtain an miRNA-disease association network Gypn =
(con_M, D, E,,;), where E,,; denotes the set of experimentally verified known associations in
MD. For Vm; € con_M,d; € D, we define that there is an edge - between m; and d; in E;;
if and only if there is an experimentally verified known associations between m; and d; in MD.

3.2. Construction of the Weighted IncRNA-Disease Association Network

Based on the newly constructed association networks such as Gy py and Gypn, we can further
obtain a weighted IncRNA-disease association network Gy pwn = (L, D, Ej5, Wy4), where E;; denotes
the set of edges between different IncRNAs in L and diseases in D. For VI; € L, dj € D, we define that
there is an edge el —d; between /; and d; in Ej,; if and only if there is at least one miRNA . in con_M
with experimentally verified known associations with both [; in LM and d; in MD simultaneously.
In addition, W); = {wli—d]-|li €L, d; €D, el—d; € E;;} denotes the set of weight of the edge €4, in
Ejy,and for Vl; € L,d; € D, if there is e,—q; € Ej4, then the weight Wy, —g; corresponding to ej,—q; can be
calculated according to the following steps:

Step 1: Supposing that there are T different miRNAs in con_M with experimentally verified known
associations with both [; in LM and d jin MD simultaneously, and for convenience, we denote
the set of these T different miRNAs as CM = {mq,my,..., mr}.

Step 2: Supposing that RM;, = {my ,my,,..., mlip} is a set consisting of all miRNAs that have
experimentally verified known associations with /; in LM, and RMd], = {mdﬂ, Moy md].q} is
a set consisting of all miRNAs that have experimentally verified known associations with d;
in MD.

Step 3: Let RM = RM], URM,, = {my,my, ..., mg}, then we can calculate the weight of ej,—d; In GLpwN

according to the following Formula (1):

)

)1 if /; associated with d; in LD
li=dj T/(S+1) Otherwise

3.3. Similarity Calculation

3.3.1. Disease Semantic Similarity Measure

Considering that the similarity between disease pairs can calculated by their directed acyclic
graphs (DAGs) [31], while estimating the semantic similarity of diseases, for any given disease, we will
firstly express it as its directed acyclic graph (DAG), and as illustrated in the following Figure 2, in its
corresponding DAG, all annotated terms associated with this disease will be contained. For instance,
in Figure 2 the DAGs of two different diseases such as Breast Neoplasms (d;) and Liver Neoplasms
(d2) are shown, and it is obvious that the DAG of d; can be denoted as DAGy, = (dq, Ty, Eg,),
where T, denotes all the ancestor nodes of “dy” and itself, and E;, represents the set of edges in
DAG,. Moreover, for any disease d' in DAGy,, its semantic contribution to d; can be calculated
according to the following Formula (2):
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Dy (d') = { 1 if there is d’ = dq in DAGy, 2
1 max{A x Dy (d") Otherwise. Here d” € childrenofd'inDAGy,

where A will be set to 0.5 based on the suggestion proposed by the state-of-the-art literature [31].
Moreover, in the same way; it is easy to see that the DAG of d, can be denoted as DAG,, = (d3, Ty,, E4,),
and then, for any given diseases d; and d;, the semantic similarity between them can be measured
according to the following Formula (3) obviously:

Dy ) = ZrETa T (P4 () + D) o
VT Yier, Doy () + Lier, Day (1)

DAG(d]):Breast Neoplasms DAG(d2): Liver Neoplasms

C17:Skin and Connective 004: Neoplasns C06;Digestive

C04;Neoplasms ) . :
Tissue Disease System Disease

J C04. 588 ;Neoplasms

C17.800;Skin Disease by Site
v \
C04. 588;Neoplasms
by Site ' C04. 588. 274;C06. 301; 006. 552; Liver Disease
C17.800. 090; Digestive System Neoplasms
Breast Disease

/

C04. 588. 180;C17. 800, 090. 500 ;Breast Neoplasms C04. 588. 274. 623;C06. 301. 623 ;C06. 552. 679;Liver Neoplasms

Figure 2. The DAGs of the disease Breast Neoplasms and Liver Neoplasms. In addition, the disease
term and its identification numbers are included in corresponding node. The common terms of the two
diseases are illustrated by green nodes.

3.3.2. LncRNA Similarity Measure

The functional similarity between IncRNAs measures how similar their functions will be.
In this section, based on the method proposed by the state-of-the-art literature [31], for any given
IncRNAs [; and I;, Supposing that /; and [; have known associations with a group of diseases
GD(l;) = di1,dip, ..., dip and GD(lj) = djy,djp, ..., djs in LD respectively, then the functional similarity
between them can be measured according to the following Formula (4):

Y 1S(dy, GD(1))) + X!_, S(djy, GD(1;))

FS(ly,1j) = PR @)
S(d,, GD(1;)) = SD(dy,d 5
(dx, GD(1;)) e (dx, di) Q)

3.3.3. Weight Redistribution in Gy pwy Based on the KNN Algorithm

Based on the above descriptions, it is easy to see that we can represent the network G; pyn with
its weight matrix Wj;, where W,i][j] = wy,—q;- Moreover, considering that known IncRNA-disease
associations are very sparse, which may cause that there exist some IncRNAs with no associations
with any diseases, or some diseases with no associations with any IncRNAs. Hence, some potential
associations between predicted IncRNAs and diseases will be invalid. Therefore, in this paper, we will
rebuild the weight matrix W, to solve this kind of problem as follows:
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Step 1: Firstly, representing the ith row of the weight matrix Wz as Wig(l;,:) = {wy,_g,, W;,—gy, - - -, W14, , },
and the jth column of the weight matrix Wiz as Wi, (:, d;) = {wll,d],, Why—d;s - - .,wlnl,dj}.

Step 2: Then, for any given IncRNA /; and any [; in L other than /;, based on above Formula (4), it is
obvious that we can obtain the functional similarity FS(J;, lq) easily, and moreover, after sorting
these values of functional similarities between /; and all remaining IncRNAs other than /; in
descending order, then we can obtain the corresponding IncRNAs from the first K elements in
the sorted results. For convenience, let I1, [y, ..., [x denote these K IncRNAs, then the gth row
of Wy, can be updated according to the following Formula (6):

1

Wia(ly,:) = NI Y & w FS(1, 1)+ Wig(1;,2) (6)

i€[1,K]

where « € (0,1] is a decay factor, which means that a higher decay will be assigned to /; if it is
more dissimilar to Iy, and NL = } ;1 k) FS(1i, Ig) is the normalization factor, which is used for
normalization of the value of Wi,(l,,:). Additionally, in similar way, it is obvious that the pth
column of Wy, can also be updated according to the following Formula (7):

1 P
Wia(: dp) = 5 [;K] Bl SD(dj, dp) * Wig(:, dp) ?)
1€(1,

where d; to dg denote the top K diseases most similar to dp, B € (0,1] is the decay factor, and
ND = Yic(1,x SD(li, 1g) is the normalization factor.

3.4. Construction of Our Prediction Model PMFILDA Based on G pwn

3.4.1. Standard Matrix Factorization

Up to now, the matrix decomposition technology is widely used in the field of recommended
systems, since not only the computational complexity can be reduced by matrix decomposition, but
also good performance can be achieved in solving the matrix scarcity problem. The standard matrix
decomposition aims to find two low-ranking, latent feature matrices whose products are used to fit the
original matrix. Hence, for the weight matrix W;; € R™*"™ constructed above, it is obvious that we
can decompose Wj,; into two different matrices U € R"** and V € R"** (k < min(n;,ny)), and there
is Wiy ~ UVT. Thereafter, the problem of disease-related IncRNA prediction can be further expressed
by the following Formulas (8) and (9):

nl nd N .
argmin ) Y (Wia(i,j) — Wia (i, ) ®
i=1j=1
Wi, ) = U » Vi = 1 Ui # Vig = UV ©)

where the row vectors U; and is V; represent the ith IncRNA-specific and jth disease-specific latent
feature vectors respectively. In addition, obviously, the above Formulas (8) and (9) form a convex
optimization problem, which can be solved by some existing optimization algorithms such as the
iterative update algorithm [32] easily.

3.4.2. Probabilistic Matrix Factorization

Since the probability matrix decomposition is based on the decomposition of the standard matrix,
supposing that Wy, is a positive distribution with Gaussian noise, then we can define the conditional
distribution over the W;d as:
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n ng

p(WialU, V,0%) = TTTIINWwa (i, )i vi', )] (10)
i=1j=1

where N(Wy, (i, ) |U; VjT, 0?) is the probability distribution function of the normal distribution and

o)1 Wualij)#0
g 0 Otherwise.
the weights).

Obviously, p(Wy4|U, V,c?) is the likelihood function (i.e., the product of all

In addition, supposing that the matrices U and V satisfy the Gaussian prior to a mean of 0, then the
priors of U and V can be denoted as follows:

p(Ulog = TI/L N(U;[0, 07i1)) (11)

p(V|ey =TI N(V;|0,091)) (12)

Here, the matrix [ is a T x T dimensional unit diagonal matrix. Assuming that U and V are
independent of each other, then the posterior distribution of U and V can be obtained by following
Formula (13):

p(WilU, V,02,0%,0%) x p(U, V)
p(Wia|lU, V, 02,08, 07)

~ p(WiglU, V, 0%, 08y, 0%) x p(U, V) = p(Wia|U, V, 02, 0%, %) x p(U) x P(V)

= I T [N (Waa (i, ) [Us VT, o)1+ T N (UG 0, 03 T) * 174, N(V;10, 05 T)

p(U, V|Wy, a2, ‘7121/ (712,) =
(13)

Then the log of the posterior distribution over the features of IncRNAs and diseases can be
calculated as follows:

ny ny
Inp(U, V|Wyy, 02, 0%, 0%) ZZI In N (Wi (i, j)|U; Vi, 0?) +ZlnN U;|0, o 1)
i=1j=1 i=1
ng ny ng _ np 2 1 ng )
+ Y N(Vj[0,631) = 222):11] Wia(i, j) — U;V}') Z ur--5Y iy 9
i=1 i=1j= =1 V=1
1 M 4
—5((2Zlij)ln02+Tnllnaﬁ+Tndlna%/)+C
i=1j=1

Here, C is a constant factor. In addition, as for N(U;|0, (75,1 ), since there is:

1 1 _
N(UO, 031) = ———————exp(~ g Us(ehD) U] (15)
@m?¥ o3}

Hence, considering that the matrix I is an unit diagonal matrix, which means that there is
(cfD) 1 = %I, then we have:

1 uul T u.ur
InN(U;0, 041) = In(— ) — = = —Zn(of) — =5+ Cy (16)
o e’ 2f 2

Here, Cyj is a constant factor. Similar to the above analyses, we can also have:

VVT

20’V

T
InN(Vj|0,091) = —Eln(cr%/) - +Cy (17)
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(Wia (i, j) = U;V]")?
202
Therefore, it is obvious that maximizing the log-posterior on U and V with hyper-parameters
being kept fixed in Formula (13) will be equivalent to minimizing the following objective function:

. 1
lnN(Wld(z,])|Ul-V]-T,02) = —Eln(Uz) - +Cw (18)

1 Ay & Ay &
arg min 2T Wi — UVT)[ 2+ 2 3° ] 2+ 2 3% vy 2 19)
, i=1 i=1
where © is the Hadamard product, Ay = g—zz, Ay = Z—QZ and || - || represents the Frobenius norm.
u 14

3.4.3. Optimization

Based on the properties of Frobenius norm, the Formula (19) can be rewritten as the form of the
LaGrangian function as follows:

1

Le(U, V) = ETr(l OWuWf, —2w,vu’ + uvivur)) 0

+A7uTr(UUT) + )‘Z—VTr(VVT)

Based on above Formula (20), we can further obtain its partial derivatives with respect to U and

V as follows:
oL £

S = IO(=WiV +UvTv) + AU (21)
s _ IOWEU +vUuTu) + Ay Vv (22)
vV Id

Therefore, we can construct the update rules based on the gradient descent algorithm as follows:

U+ Al — A(IO(=WV +UVTY)) (23)

VAV = MIO(-WhHU + VU U)) (24)

where Ay, is the momentum parameter, which can accelerate the convergence speed of U and V,
the parameter A denotes the learning rate, and based on the suggestion proposed by the state-of-the-art
literature [31] (Wang et al., 2010), A, and A will be set to 0.8 and 0.005 respectively [33].

Hence, based on above update rules illustrated in Formulas (23) and (24), we can update the
IncRNA-specific and disease-specific latent feature matrix U and V until they become converged.
Then, we can finally obtain the predicted IncRNA-disease association matrix Wig = FS x UVT x SD.
In addition, as for any column d; in Wy, we can sort the elements (i.e., IncRNAs) in d; in descending
order, then the top-ranked IncRNAs in d; can be predicted as d;-related IncRNAs, while the
bottom-ranked IncRNAs in d; can be predicted as d;- disrelated IncRNAs at the same time.

4. Results and Discussion

4.1. Performance Evaluation Metrics

To evaluate the robustness and prediction performance of PMFILDA, in this section, the Leave One
Out Cross-Validation (LOOCV) was implemented based on the experimentally verified IncRNA-disease
associations. In LOOCYV, each pair of known IncRNA-disease associations is used as a validation
set, while other known IncRNA-disease associations are used as training sets. Moreover, all the
IncRNA-disease pairs without experimentally verify are used as candidate samples. The ranking of
the test sample relative to the candidate sample needs to be evaluated after the implementation of
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PMFILDA. When a threshold is given, if the test sample ranks above the given threshold, then we will
regard that a correctly positive sample has been predicted by PMFILDA, otherwise we will regard that
a correctly negative sample has been predicted by PMFILDA. Moreover, while different thresholds are
set, a series of True Positive Rate (TPR) and False Positive Rate (FPR) can also be obtained according to
the following formulas:

TP

TPR=7p 1 FN @)
FP

FPR= =57 Fp (26)

where TP and TN denote the number of positive and negative samples that have been correctly
identified, while FP and FN represent the number of positive and negative samples that have been
incorrectly identified. Hence, the Receiver Operating Characteristic (ROC) curve can be drawn by
plotting TPRs versus FPRs, and the area under ROC curve (AUC) can be further calculated to measure
the global performance of PMFILDA. Obviously, the closer the value of AUC is to 1, the more robust
the prediction model would be.

Moreover, during simulation, to eliminate the random errors caused by the random initialization
of U and V, we repeated our experiments 100 times and took the mean and variance of AUCs as our
final results, which were shown in the following Figure 3. In addition, from Figure 3, it is easy to see
that our newly proposed prediction model PMFILDA can achieve the mean AUC of 0.8794 and the
standard deviation of 0.0011.

q

09r

08r
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06

— PMFILDA meanAUC=0.6794,std=0.0011

05t f

TFR

0.4

0.3

0.2

01r

1] 0.1 02 03 0.4 0.5 0.6 0.7 0.8 09 1

FPR
Figure 3. ROC curves for PMFILDA.

Next, to further evaluate the performance of PMFILDA, based on the framework of LOOCYV,
we compared PMFILDA with some state-of-the-art models such as NBCLDA [34], HGLDA [23],
and the method proposed by Yang et al. [35]. Similarly, during simulation, to eliminate the random
errors caused by the random initialization of U and V, we repeated our experiments 50 times and took
the mean of AUCs as our final results, which were shown in the following Table 1.

Table 1. Comparison of AUCs of PMFILDA with state-of-the-art methods.

Methods AUCs Methods AUCs Methods AUCs

PMFILDA 0.8793 PMFILDA 0.9169 PMFILDA 0.9090
NBCLDA_GN; 0.8519 HGLDA  0.8519 Method of Yangetal. 0.8568
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In addition, while comparing PMFILDA with the NBCLDA, considering that we did not consider
the genes in our method, then we compared PMFILDA with the NBCLDA_GN; only, and the
simulation results are shown in Table 1 and the following Figure 4. Obviously, from Table 1 and
Figure 4, it is easy to see that our newly proposed prediction model PMFILDA can achieve a reliable
AUC of 0.8793 that is much higher than the AUC of 0.8519 achieved by NBCLDA_GNj.

1

0.9
08
0.7 A
F — — NBCLDA_GN1, AUC=0.8519
o6t Fr — PMFILDA, mean_AUC=0.8793 |
E !
] 0.5

0 0.2 0.2 03 D4 05 0.6 0.7 0.8 0.9 1
FPR

Figure 4. ROC curves and AUC value for NBCLD Ay and PMFILDA.

Moreover, while comparing PMFILDA with the HGLDA, in order to make a fair comparison,
we implemented LOOCV on both PMFILDA and HGLDA based on the same dataset, i.e., we used the
same 183 known IncRNA-disease associations proposed by HGLDA in the comparison simulation,
and the simulation results are shown in Table 1 and the following Figure 5. Obviously, from Table 1 and
Figure 5, it is easy to see that our newly proposed prediction model PMFILDA is superior to HGLDA.

1

09r

08

077

—— PMFILDA mean_AUC=0.9168 std=0.0029

06l

TPR

0.5

0.4

0.3

0z2r

01 . . . . L . . " .
o 01 02 03 0.4 0.5 06 0.7 08 08 1

FPR

Figure 5. The ROC curve and AUCs of PMFILDA based on the same known 183 IncRNA-disease
associations proposed by HGLDA.

Finally, while comparing PMFILDA with the method proposed by Yang et al, in order to make
a fair comparison, we implemented LOOCV on both PMFILDA and method proposed by Yang et al.
based on the same dataset also, i.e., we used the same 319 known IncRNA-disease associations between
37 IncRNAs and 52 diseases proposed by Yang et al in the comparison simulation, and the simulation
results are shown in Table 1 and the following Figure 6. Obviously, from Table 1 and Figure 6, it is easy
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to see that our newly proposed prediction model PMFILDA can achieve a reliable AUC of 0.9090 that
is much higher than the AUC of 0.8568 achieved by Yang et al.

1

09r

08

0.7

0.6

TPR
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04 F
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Figure 6. ROC curves and AUCs of PMFILDA and the method proposed by Yang et al.

Yang et al.s method AUC=0.8568
— PMFILDA mean_AUC=0.9090.std=0.0033

0

0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9 1
FPR

4.2. Contribution Analysis of IncRNA-Disease Associated Network

In our method, we constructed a weighted IncRNA-disease association networks based on the
known IncRNA-disease, microRNA-disease and IncRNA-microNA association networks. It may be
useful to discuss the contribution of IncRNA-disease associations separately here. Hence, without
considering the relationship between IncRNA and disease, we constructed a weighted network
of IncRNA-disease through using known IncRNA-microRNA associations and microRNA-disease
associations only. Based on the steps in Section 3.2, we finally obtained 304 IncRNA-disease associations
including 60 IncRNAs and 73 diseases. Thereafter, we further obtained the corresponding weight
matrix Wy, and then performed LOOCYV 100 times on the PMFILDA. The results were shown in
the following Figures 7 and 8, obviously, the AUC value achieved by PMFILDA based on three
association networks can be increased by 0.0763 than the AUC value achieved by PMFILDA based on

two association networks.
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Figure 7. ROC curves and AUCs achieved by PMFILDA based on two association networks.
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Figure 8. ROC curves and AUCs achieved by PMFILDA based on three association networks.
4.3. The Effects of KNN on Performance

Considering that known IncRNA-disease associations are very sparse, there may exist some
IncRNAs with no associations with any diseases, or some diseases with no associations with any
IncRNAs. Hence, some potential associations between predicted IncRNAs and diseases will be invalid.
Therefore, in this paper, we rebuilt the weight matrix Wj; based on KNN algorithm to solve this kind
of problem.

Here, we also investigated the influence of KNN algorithm on our method from two aspects.
One is that we do not use KNN algorithm to deal with the weighted network Grpumn, the other is
to update the weighted network Gy ppn with other algorithms, such as K-means algorithm. When
PMFILDA is directly executed without using KNN algorithm to process the weighted network G pyn,
the result is shown in Figure 9. It is easy to see that PMFILDA could achieve an average AUC of 0.8794
while the weight of G;ppn was reallocated; however, while the weight of Gy pyny was not reallocated,
PMFILDA can achieve an average AUC of 0.8042 only, which demonstrated that it can improve the
performance of our model through adopting the KNN algorithm to re-allocate the weight of G pyn-

1

0.9}

08¢

07

06F

PEMILDA_with_reallocated weight AUC=0.8794 std=0.0011
PMFILDA_without_reallocated weight AUC=0.8042 std=0.0015

D 1 I i L i 1 I i 1
1] 0.1 0.2 0.3 0.4 0.5 0.6 0. 0.8 0.9 1
FPR

Figure 9. AUCs achieved by PMFILDA in LOOCV while the weight of G pyn was reallocated or not
reallocated respectively.
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And in addition, to estimate the impacts of other algorithms, we selected the K-means algorithm
for further testing. After performing LOOCV 100 times, we presented the simulation results in the
following Table 2, and from observing the results in Table 2, it is easy to see that the performance of
KNN is better than K-means.

Table 2. Comparison of the effects of KNN and K-means on PMFILDA.

KNN K-Means

Mean_AUC 0.8794 0.8589
STD 0.0278 0.0011

4.4. Parameter Sensitivity Analysis

From above descriptions, it is easy to see that to improve the prediction performance of PMFILDA,
some parameters have been introduced in the model construction of PMFILDA, whose values will
need to be finalized by the training of the prediction model. For example, how to choose the value of
the parameter K while adopting the algorithm of K-nearest neighbor? How to choose the attenuation
coefficients & and § given in the Formulas (6) and (7)? How to choose the value of the parameter
T while adopting Formula (1) to implement the matrix decomposition? and so on. Hence, firstly,
to evaluate the impacts of the parameters K, « and p to the performance of our model PMFILDA,
during simulation, we will set K from 2 to 10 and « from 0.1 to 0.9, respectively. Moreover, we will set
« = f3 for convenience. The detailed simulation results were shown in the Supplementary Table S54.
In addition, through experimental results, it is easy to know that our model PMFILDA can achieve the
highest AUC of 0.9204 while K = 10 and &« = § = 0.8 in the LOOCV framework. Next, to estimate the
impacts of the parameter T to the performance of our model PMFILDA, during simulation, we will set
T from 10 to 50 and the step size to 10. In addition, through experimental results, it is easy to know that
our model PMFILDA can achieve the highest AUC of 0.9210 while T = 20 in the LOOCV framework.

4.5. Case Studies

In this section, we implemented case studies based on the optimal settings of above parameters to
further verify the prediction performance of PMFILDA. During simulation, for each given disease,
its potentially relevant IncRNAs predicted by PMFILDA will be sorted according to their predicted
scores in descending order. In addition, as a result, the top 20 predicted IncRNAs related to the disease
potentially will be recorded in the Supplementary Table S5, and then, two public databases such
as MNDR V2.0 and LncRNA-Disease database will be used to confirm these potential associations
between the given disease and each of these 20 predicted IncRNAs. In this section, we selected three
kinds of common diseases such as breast cancer, lung cancer, and colorectal cancer as the targets of our
case studies.

As for breast cancer, according to the reports of relevant literatures, it is very common in the
group of women [36,37] and may be caused by a variety of molecular alterations. For example, studies
have shown that the formation of breast tumors is closely related to IncRNA [38,39]. Hence, predicting
breast cancer-associated IncRNA and identifying IncRNA markers are important for the diagnosis and
treatment of breast cancer [39]. In this section, we will implement PMFILDA to discover the potential
breast cancer-associated IncRNAs. In addition, as shown in the following Table 3, it is easy to see that
12 of the top 20 breast cancer-related IncRNAs predicted by our model PMFILDA have been confirmed
in authoritative databases. For example, MALAT1, HOTAIR and H19 ranked the 1st, 2nd and 3rd in
the list of our predicted results respectively, and among them, it is proved that MALAT1 has functional
and prognostic significance as a metastasis driver in ER negative and lymph node negative breast
cancer [40], HOTAIR will be overexpressed in approximately one quarter of human breast cancers and
increased in expression in primary breast tumors and metastases [41], and the down-regulation of
H19 will significantly reduce colony formation and anchorage-independent growth of breast and lung
cancer cells [42].
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Moreover, in recent years, lung cancer is a leading cause of cancer-related deaths worldwide,
regardless of gender. According to the disease patterns and treatment strategies, it can be roughly
divided into non-small cell lung cancer (NSCLC) and small cell lung cancer [43]. To diagnose and
treat lung cancers more effectively, researchers have paid lots of attention to the deregulation of
protein-coding genes in the past few decades to identify oncogenes and tumor suppressors [43-45].
However, recent studies have shown that IncRNAs play a significant role in the development and
progression of lung cancers [43,45]. Hence, in this section, we will implement PMFILDA to infer
the potential lung cancer-related IncRNAs. In addition, as illustrated in the following Table 3, it is
easy to see that 14 of the top 20 potential lung cancer-related IncRNAs predicted by our model
PMFILDA have been confirmed by authoritative biological experiments. For instance, MALATI,
HOTTIP and MEGS3 ranked the 3rd, 4th and 5th in the list of our predicted results respectively, and
among them, it is identified that MALAT1 is highly correlated with lung cancer metastasis [46,47],
will promote lung cancer cell movement by regulating motor-related gene expression [48], and can
be an important biomarker for the development of lung cancer metastasis [49]. Additionally, it is
demonstrated that through knocking out HOXA13 by RNA interference (siHOXA13), HOTTIP can
promote lung cell proliferation, migration, and inhibition of apoptosis, which could serve as a new
biomarker and a therapeutic target for NSCLC intervention [50]. Moreover, as for MEGS3, it is proved
that the down-regulation of MEG3 will enhance cisplatin resistance of lung cancer cells through
activation of the WNT/ B-catenin signaling pathway [51]. Additionally, the colorectal cancer (CRC)
has a high incidence in Western countries in recent years [52], and more and more research indicates
that IncRNAs play a significant role in the formation of CRC [44,45]. Hence, in this section, we will
implement PMFILDA to predict the potential CRC-related IncRNAs. In addition, as shown in the
following Table 2, it is easy to see that eight of the top 20 CRC-related IncRNAs predicted by our
model PMFILDA have been confirmed by authoritative biological experiments. For instance, MALAT],
NEAT1 and TUGI ranked the 2nd, 8th and 10th in the list of our predicted results respectively,
and among them, it is identified that MALAT1 may be a potential predictor of tumor metastasis and
prognosis, and that the interaction between MALAT1 with SFPQ may be a new therapeutic target for
CRC [53]. In addition, it is proved that NEAT1 can be used as an indicator of tumor recurrence and
colorectal cancer prognosis [54], and the expression of NEAT1 in CRC may play a carcinogenic role in
the differentiation, invasion, and metastasis of CRC, hence, the whole blood NEAT1 expression can
be used as a new diagnostic and prognostic biomarker for overall survival in CRC [55]. Moreover,
it is demonstrated that the tumor expression of TUG1 plays an important role in colorectal cancer
metastasis, and TUG1 can be used as a biomarker or therapeutic target for potential CRC [56].

Table 3. The experimentally confirmed IncRNAs in the top 20 potential IncRNAs predicted by
PMFILDA in three kinds of case studies.

Diseases IncRNAs Evidence (PUBMED)

Breast Cancer MALAT1 22492512, 22996375, 24499465, 27250026, 27777857, 27191888
Breast Cancer HOTAIR 24499465, 20930520, 21925379, 20393566, 19182780, 21903344
Breast Cancer H19 22996375, 21489289, 14729626, 16707459, 21748294, 18794369
Breast Cancer MEG3 27166155, 14602737, 22393162, 22487937
Breast Cancers GAS5 27034004, 18836484, 20673990, 22487937, 22664915, 26662314
Breast Cancer PTPRG-AS1 26409453

Breast Cancer NEAT1 25417700, 27147820, 21532345, 27556296

Breast Cancer PVT1 24780616, 17908964, 25122612, 26889781

Breast Cancer = CDKN2B-AS1 17440112, 20956613, 20453838, 20956613

Breast Cancer TUG1 27791993

Breast Cancer XIST 17545591, 27248326, 18006640, 19440381, 24141629, 26637364
Breast Cancer ZFAS1 21460236

Lung Cancer H19 27186394, 26729200

Lung Cancer HOTAIR 27186394, 26729200, 24757675, 23668363, 27270317
Lung Cancer MALAT1 25217850, 20937273, 20937273, 27777857
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Diseases IncRNAs Evidence (PUBMED)
Lung Cancer HOTTIP 27347311, 26265284
Lung Cancer MEG3 14602737, 26059239
Lung Cancer CDKN2B-AS1 27307748, 26729200, 26453113, 25964559, 25889788
Lung Cancer GAS5 27631209, 26634743, 24357161
Lung Cancer CCAT1 25129441
Lung Cancer XIST 27501756, 26339353
Lung Cancer CASC2 26790438
Lung Cancer PVT1 26908628, 26729200, 25400777
Lung Cancer ZNRD1-AS1 27166266
Lung Cancer NEAT1 27351135, 27270317, 25889788
Lung Cancer TUG1 24853421, 27485439
Colorectal Cancer H19 8564957, 22427002, 11120891, 26989025, 19926638, 26068968
Colorectal Cancer HOTTIP 26617875, 26678886, 27546609
Colorectal Cancer XIST 17143621
Colorectal Cancer NEAT1 26314847, 26552600
Colorectal Cancer MEG3 25636452, 26934323
Colorectal Cancer TUG1 26856330, 27421138
Colorectal Cancer PVT1 26990997, 24196785
Colorectal Cancer CCAT1 23416875, 26064266, 26823726, 24594601,23594791,26752646

5. Discussion

Increasing research has shown that IncRNAs play a crucial role in the occurrence, formation,
diagnosis, treatment, and prognosis of diseases. The discovery of complex disease-associated
IncRNAs as biomarkers based on existing biological experiments is not only costly but also requires
a large amount of clinical data. Therefore, it is a future trend to integrate potential biological data
resources and use developed computers to develop efficient and accurate computational models to
predict potential new disease-related IncRNAs. In this paper, we proposed a novel computational
model called PMFILDA to predict potential disease-associated IncRNAs. In this model, we first
integrated known IncRNA-miRNA associations, miRNA-disease associations, and a small number
of known IncRNA-disease associations into a new weighted IncRNA-disease association network.
Then, based on the newly constructed association network, through adopting the semantic similarity
of the disease, the functional similarity of IncRNA and the KNN algorithm to update the weight
network, an IncRNA-disease association matrix Wj; can be obtained. Hence, through adopting the
probability matrix decomposition scheme to decompose the matrix Wj; into the feature matrix U
of IncRNA and the feature matrix V of the disease, we can finally construct our model PMFILDA
based on the two feature matrices to predict the potential associations between IncRNAs and diseases.
Compared to existing state-of-the-art models, simulation results have demonstrated that our model
PMFILDA has better prediction performance. Moreover, case studies of breast cancer, lung cancer
and colorectal cancer also indicated that PMFILDA can be used as a superior computational model
to predict potential IncRNA-disease associations. However, it is obvious that there are still some
biases in our model. When we only use IncRNA-disease associations and regardless of any miRNAs,
the performance of PMFILDA may be reduced. To illustrate this situation, we did the following
experiment. After processing the data, we obtained 246 pairs of IncRNA-disease associations, including
44 IncRNAs, 68 diseases. Then we performed 100 LOOCVs on the PMFILDA method, and the average
AUC value was 0.8111, and the standard deviation was 0.0073. When we used miRNA, the average
AUC value was 0.8794 and the standard deviation was 0.0011. The reason for this difference is that
when we don't consider miRNAs, the information we use for IncRNA-disease may be incomplete.
There may be some important associations that do not exist in the IncRNA-disease data set. When the
miRNA node is added, these important relationships can be re-established. Therefore, in our model,
we need to consider not only the IncRNA-disease relationship, but also the nodes that can improve the
IncRNA-disease relationship.
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6. Conclusions

In this study, our major contributions are as follows: Firstly, we constructed a novel weighted
IncRNA-disease association network through integrating the known IncRNA-miRNA association
network, the known miRNA-disease association network and the known IncRNA-disease association
network. Secondly, based on the semantic similarity of disease and the similarity of IncRNA function,
we adopted the KNN algorithm to update the newly constructed weighted IncRNA-disease association
network. Thirdly, based on the probability matrix decomposition model, we proposed a novel
computational model called PMFILDA to predict potential IncRNA-disease associations, which cannot
only predict the potential associations between IncRNAs and disease contained in the experimentally
validated IncRNA-disease associations, but also predict the potential associations of its elements
in unknown datasets. To improve the efficiency of our model, in the future, we plan to integrate
more intermediate nodes such as genes to update the weighted IncRNA-disease association network.
In addition, we also believe that the results [25,57-63] of the miRNA-disease association prediction field
will promote the development of IncRNA-disease correlation prediction. Moreover, while studying
the association prediction of IncRNA-disease, focusing on the research results in other fields will also
broaden our horizons.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2073-4425/10/2/126/s1.
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