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Floral thermogenesis plays a crucial
role in pollination biology, especially

in plant–pollinator interactions. We have
recently explored how thermogenesis is
related to pollinator activity and odour
release in Magnolia sprengeri. By analyz-
ing flower temperatures, emission of vol-
atiles, and insect visitation, we found
that floral blends released during pistil-
late and staminate stages were similar
and coincided with sap beetle visitation.
Thus, odour mimicry of staminate-stage
flowers may occur during the pistillate
stage and may be an adaptive strategy of
Magnolia species to attract pollinators
during both stages, ensuring successful
pollination. In addition to the biological
significance of floral thermogenesis in
Magnolia species, we explored the under-
lying regulatory mechanisms via profiling
miRNA expression in M. denudata flow-
ers during thermogenic and non-thermo-
genic stages. We identified 17 miRNAs
that may play regulatory roles in floral
thermogenesis. Functional annotation of
their target genes indicated that these
miRNAs regulate floral thermogenesis by
influencing cellular respiration and light
reactions. These findings increase our
understanding of plant–pollinator inter-
actions and the regulatory mechanisms in
thermogenic plants.

Thermogenic plants produce an unusu-
ally large amount of heat during the floral
stages,1 which has been reported in flowers
of several families of seed plants.2-8

Thermogenesis is considered a direct
energy reward for the insect visitors that
usually reside in a floral chamber.9 Ther-
mogenesis is also associated with

volatilisation of floral scents, which attract
pollinators during the anthesis.10-12

Recently, we studied the relationship
between thermogenesis and pollinator
activity during flowering ofM. sprengeri by
investigating flower temperatures, emis-
sion of volatiles, and insect visitation. It
was found that release of floral blends and
insect visitation were closely associated
with heat production. In addition, we
found that floral odours during pistillate
and staminate stages were fundamentally
similar, indicative of odour mimicry of sta-
minate-stage flowers during the pistillate
stage. Based on these results, floral thermo-
genesis plays a role in pollination biology
of M. sprengeri by promoting emission of
floral scents, which act as a signal of food
rewards for pollinators.13

Flowers of thermogenic plants have the
ability to maintain a relatively higher tem-
perature than ambient environments dur-
ing anthesis.14-16 In this study, although
the floral temperature of M. sprengeri
changed constantly throughout anthesis, it
was relatively higher than ambient air
temperature, and heat production showed
2 noticeable peaks; one at the pistillate
stage and the other at the staminate stage.
The thermogenic pattern of M. sprengeri
was identical to that of its close relative,
M. denudata—both flower during early
spring and produce heat in the daytime.13

The thermogenic peaks of these species
are well-synchronised with the activity of
their pollinators. It is interesting to note
that pollinators of M. ovata (which produ-
ces heat at night) are active at night.16

These studies reveal an association
between floral thermogenesis and pollina-
tor visitation.
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Thermogenesis is closely related to the
volatilisation of floral odour in M. spren-
geri. Since floral odour and heat produc-
tion are dynamic processes, the relative
proportions of the odour compounds var-
ied across anthesis. We found that the flo-
ral blends released during pistillate and
staminate stages were very similar in M.
sprengeri, indicative of odour mimicry of
staminate-stage flowers in pistillate-stage
flowers. Previously, it was suspected that
staminate-stage flowers mimic pistillate-
stage flowers in M. hypoleuca, as the for-
mer offers no pollen reward but has strong
fragrance.17 Our results confirm odour
mimicry between the female and male
stage flowers in a Magnolia species. In
another study, a similarity in the smells of
pistillate- and staminate-stage flowers of
M. ovata was reported.18 These results
reveal that flowers of Magnolia species at
both pistillate and staminate stages attract
pollinators through odour mimicry. Con-
sidering that odour emission coincided
with the 2 thermogenic episodes, it is pos-
sible that thermogenesis promotes odour
release, which attracts pollinators at both
the pistillate and staminate stages, ensur-
ing reproductive success at low tempera-
tures during the early spring.

Although the ecological significance of
thermogenesis is widely recognized,19-21

little information on the underlying regu-
latory mechanisms is available.20 miRNAs

are crucial regulators of various biological
processes in eukaryotic cells,22,23 but their
roles in floral thermogenesis remain
unclear. We recently profiled miRNA
expression in M. denudata flowers during
thermogenesis using high-throughput
sequencing.21 A total of 82 conserved and
32 novel miRNAs were identified in M.
denudata flowers, among which 17 were
differentially expressed between thermo-
genic and non-thermogenic stages, and
thus were thought to play roles in regulat-
ing floral thermogenesis. Gene Ontology
(GO) enrichment analysis revealed that
target genes of these thermogenesis-related
miRNAs were enriched in the functional
groups of ‘polyprenyl transferase activity’
and ‘photosynthetic electron transport’.
Thus, we propose that regulation of floral
thermogenesis may be associated with cel-
lular respiration and photosynthesis in M.
denudata.

Two types of thermogenesis have been
identified among thermogenic plants. In
some species, floral temperature is main-
tained within a constant range, indepen-
dently of ambient temperature,
throughout anthesis (Fig. 1A). These are
thermoregulatory species, such as Philo-
dendron selloum,24 Nelumbo nucifera,25

and Symplocarpus foetidus.26 In other ther-
mogenic species, heat production usually
corresponds to the period when female
flower parts are most receptive to

pollination and when floral scents are
strongest (Fig. 1B), such as in Dracunculus
vulgaris, Helicodiceros muscivorus,24,27 and
Magnolia species.28 Such thermogenic
plants are sometimes referred to as
pseudo-thermoregulatory species. Ther-
mogenesis directly rewards pollinators
(beetles) with energy, especially at night
when no floral scents are released.19,29

Compared with thermoregulatory flowers,
which produce heat during anthesis,
pseudo-thermoregulatory species use less
energy, as their heat production is tied to
the circadian cycle. They experience
intense warming only during peaks of
scent emission, promoting odour release
to attract visiting insects. The pseudo-
thermoregulatory strategy for attracting
pollinators may be more efficient than the
thermoregulatory strategy in having more
benefits and fewer costs. The divergence
of the 2 strategies may involve co-evolu-
tion with pollinator insects. Further com-
parative studies of the 2 types of
thermogenesis may facilitate our under-
standing of evolution and of regulatory
mechanisms driving floral thermogenesis.
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