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Abstract: Recurrent pregnancy loss (RPL) has become an
important reproductive health issue worldwide. RPL
affects about 2%–3% of reproductive-aged women, and
makes serious threats to women’s physical and mental
health. However, the etiology of approximately 50% of
RPL cases remains unknown (unexplained RPL), which
poses a big challenge for clinical management of these
patients. RPL has been widely regarded as a complex
disease where its etiology has been attributed to
numerous factors. Heretofore, various risk factors for RPL
have been identified, such as maternal ages, genetic
factors, anatomical structural abnormalities, endocrine
dysfunction, prethrombotic state, immunological fac-
tors, and infection. More importantly, development
and applications of next generation sequencing technology
have significantly expanded opportunities to discover

chromosomal aberrations and single gene variants respon-
sible for RPL,whichprovidesnew insight into its pathogenic
mechanisms. Furthermore, based upon patients’ diagnostic
evaluation and etiologic diagnosis, specific therapeutic
recommendations have been established. This review will
highlight current understanding and recent advances on
RPL, with a special focus on the immunological and genetic
etiologies, clinical diagnosis and therapeutic management.

Keywords: etiologic diagnosis; genetic etiology; next
generation sequencing; recurrent pregnancy loss; thera-
peutic recommendations.

Introduction

Recurrent pregnancy loss (RPL) is defined as two or more
spontaneous pregnancy losses before 20 weeks of gestation,
according to the guidelines from the European Society of
Human Reproduction and Embryology (ESHRE) and the
American Society for Reproductive Medicine (ASRM) [1]. The
latest Chinese expert consensus also suggested that RPL
refers to experiencing two or more consecutive preg-
nancy losses with the same spouse before 28 weeks of
gestation in China [2]. With regard to the terminology of
RPL, ESHRE recommends “recurrent pregnancy loss” as a
general term to describe repeated pregnancy losses and
use of “recurrent miscarriage” to describe recurrent
intrauterine miscarriages [3]. Furthermore, the definition
of RPL encompasses pregnancy losses after spontaneous
conception and assisted reproductive treatment (ART),
but excludes pregnancy failures such as ectopic, molar
pregnancies and implantation failures [4]. Whether RPL
includes non-consecutive losses or biochemical losses
remain controversial among countries or international
societies. Likewise, estimating the prevalence of RPL is
challenging, because it is influenced by distinct patient
populations, different guidelines and varied RPL definition.
For instance, a previous report showed that recurrent
miscarriage (RM) has a prevalence of about 0.8%–1.4% if
only repeated intrauterine pregnancy losses (confirmed by
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ultrasonography and histopathology) are counted. Never-
theless, if non-visualized pregnancy losses, such as
biochemical pregnancy loss, are added, the prevalence rises
to 2%–3% [5].

RPL is an important reproductive health issue world-
wide, and, of note, it is regarded to be one of the most
challenging aspects in the field of reproductivemedicine,
owing to the fact that more than 50% of couples with RPL
have no clear etiological explanation [6]. Unlike sporadic
pregnancy loss, RPL needs more medical intervention
and appropriate pregnancy monitoring during future
pregnancies. Nowadays, it is widely accepted that RPL
belongs to a multifactorial disease, and its causation has
been attributed to various factors including chromosome
aneuploidy, anatomical uterine defects, immunological
dysfunction, endocrinological abnormalities, genetic
variants as well as lifestyle influences [7]. However,
URPL, where these aforementioned factors were devoid
of causative influences, brings tough challenges in both
diagnosis and treatment for clinicians and also gives rise
to a severe psychological distress on the couples.

Here, we aim to give an in-depth review of current
understanding of the diagnosis, pathophysiology and
management of RPL. In particular, novel insights into
immunological and genetic etiologies of RPL will also be
outlined.

Epidemiology of RPL

According to previous epidemiological surveys, the inci-
dence of RPL has increased annually worldwide [1].
Advanced maternal age is one of the main risk factors for
RPL, and numerous studies have shown that the risk of
miscarriage is lowest in women between the ages of 20
and 29, rises significantly after the age 30, and can grow
more than 50% above the age 45 [8]. RPL is a unique
reproductive problem with the following characteristics:
(1) the risk of RPL is directly related to previous pregnancy
outcomes [9–12]. Patients who have a history of miscar-
riage only once are less likely to have another. In addition,
the risk of RM increases by 10% for each additional
miscarriage, especially in patients who have 3 or more
miscarriages, where the risk of RM can exceed 40% [8]. (2)
The incidence of clinically identified RPL (1%) is higher
than the expected incidence (0.34%) [13]. (3) Compared to
spontaneous miscarriage, the fetal chromosomal abnor-
malities in RPL couples are less frequent [14]. (4) RPL
tends to affect women with specific reproductive charac-
teristics, such as a history of intrauterine growth retar-
dation (IUGR), late miscarriage, stillbirth or neonatal
death, ectopic pregnancy, or preterm birth [15–18].

Studies have shown that several RPL can be attributed to
adverse environmental conditions, psychological factors,
and poor lifestyle habits [19]. The adverse factors, including
exposure to air and water pollution, radiation, unsuitable
environmental temperature and malnutrition, have been
considered as prominent risk factors for RPL [20]. Also,
mental conditions like distress, hostility and anxiety of
pregnantwomenwere strongly associatedwithRPL [2, 21, 22].
In addition, many domestic and international guidelines or
consensus have highlighted the correlation between adverse
lifestyle habits and psychological factors and RPL [3, 19],
suggesting that RPL patients should quit smoking, avoid
alcohol abuse, maintain an appropriate body mass index
(BMI), and get necessary psychological counseling.

Primary risk factors for RPL

The etiology of RPL is complicated and multiple risk factors,
mainly including genetic factors, anatomical structural
abnormalities, endocrine dysfunction, prethrombotic state,
immunological imbalance and infection, have been identi-
fied as primary causes of RPL. Among these factors, genetic
factors and maternal immune dysregulation have been
regarded as two of themost important causes of RPL, andwe
will discuss in great detail in the following sections.
Anatomical structural factors, including congenital uterine
anomalies (septate uterus, arcuate uterus, bicornuate uterus,
unicornis uterus, and double uterus), and acquired uterine
structural abnormalities (intrauterine adhesion [IUA], hys-
teromyoma, andadenomyosis), accounted for approximately
16% of RPL, which is significantly higher than incidence of
uterine anatomical abnormalities in the general female
population [23, 24]. Frequently, women with endocrine dis-
orders, such as abnormal thyroid function, hyper-
prolactinemia (HPRL), luteal phase deficiency (LPD), and
polycystic ovary syndrome (PCOS), predispose them to RPL,
and account for approximately 8%–12% of RPL patients [25].
Studies have shown that endocrine related pregnancy fail-
ures are likely to occur early in pregnancy, indicating that
hormonal regulation might play crucial roles in attachment
and early implantation of an embryo into the uterus [26]. The
maternal hypercoagulable state of blood is a physiological
change in the blood system during normal pregnancy [27],
and when excessive hypercoagulability of the blood occurs,
the blood develops a pathological condition which pre-
disposes to thrombus formation called prethrombotic state
(PTS). Many studies have demonstrated that PTS, either he-
reditary or acquired, is associated with an increased risk of
RPL [28, 29]. Hereditary PTS is caused by mutations in genes
related to anti-coagulation, coagulation and fibrinolysis, and
acquired PTS mainly involves antiphospholipid syndrome
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(APS), acquired HHcy, as well as other thrombogenic disor-
ders. Hereditary PTS due to FVL and coagulation Factor II
mutations are rare in the Han population, while the defi-
ciency of Protein C and Protein S are more common, which is
reversed in Europeans and Americans.

Bacterial and viral infections may be also related to
increased risks of RPL. The association of bacterial vagi-
nosis and dysbiosis of the reproductive tract with RPL has
been reported but the results are inconsistent [30, 31]. The
incidence of chronic endometritis, possibly induced by
infection, is significantly higher in patients with infer-
tility, recurrent embryo implantation failure (RIF) and
RPL, and oral antibiotic therapy may improve the preg-
nancy prognosis in this group of patients [32]. However,
more randomized controlled trials (RCT) are necessary
to confirm and to provide more reliable evidence for veri-
fying association of infection with the reproductive failures.

Immunological factors in the
etiology of RPL

Maternal immune dysregulation is
associated with RPL

Maternal immune dysregulation has been regarded as one
of the leading causes in the etiology of RPL [33]. Most
notably, patients with a history of RPL may often have
autoimmune abnormalities or alloimmune problems [20].
It is likely that autoimmune abnormalities contribute to
RPL by producing tissue-specific or tissue non-specific
autoantibodies. The tissue non-specific antibodies mainly
comprise antiphospholipid antibodies (aPLs) and anti-
nuclear antibodies (ANAs), etc. And the tissue-specific
antibodies comprise anti-sperm antibodies and anti-
ovarian antibodies, etc. Moreover, these autoantibodies
could attack the mother’s own tissues and placenta, and
damage the vascular endothelial cells, thus leading to
pregnancy loss. Alloimmune problems which associated
with disruptions of maternal-fetal interface immune toler-
ance, were also a major cause of RPL. Although immune
related factors have become the focus of current research
into the development of RPL, the immune cells and factors
responsible for the immune response are intricate, and the
current research is still in its infancy, and more in-depth
and specific studies need to be conducted in the future.

Autoimmune diseases and RPL

Autoimmune diseases (AID) are chronic inflammatory dis-
eases inwhich the immune system responds to self-antigens

and causes damage to its own tissues. Many studies have
shown that AID such as APS [34], systemic lupus ery-
thematosus (SLE), Sjogren’s syndrome (SS), rheumatoid
arthritis (RA), systemic sclerosis (SSc) and undifferenti-
ated connective tissue disease (UCTD) have a higher risk
of RPL. Women with SLE, for instance, have a high rate of
spontaneous miscarriage (approximately 20%), espe-
cially in middle and late stages of pregnancy, and the
stillbirth rate is 2–4 times higher than that of normal
pregnant women. Importantly, many common autoanti-
bodies have been found in these co-morbid AID patients
like aPLs and ANAs, which were also related to RPL.
aPLs, sensitive indicators of intrauterine distress or
death, are found in almost all stillborn patients with SLE.
Classical aPLs include lupus anticoagulant (LA), anti-
cardiolipin antibody (aCL) and anti β2 glycoprotein I anti-
bodies (aβ2GP I) [35]. Currently, some non-classical aPLs,
such as anti-β2GP I domain I antibody, anti-prothrombin
antibody (aPT-A), and anti-phosphatidylserine/prothrombin
complex antibody (aPS/PT), have also been found to be
associated with RPL [36]. ANAs belong to a class of self-
antibodies that bind to DNA, RNA, protein or molecular
complexes in the nucleus, and more than 20 types of ANAs
have been identified at present. Studies have found that
women with more times of pregnancy loss are often asso-
ciated with higher positive rate of ANAs. Furthermore, pos-
itive rate of ANAs in RPL patients is 8%–50%, 38.1%
in patients with two consecutive miscarriages and increases
up to 43.5% in those with three or more consecutive
miscarriages.

Antiphospholipid syndrome and RPL

APS is also an AID, which is characterized by recurrent
arteriovenous thrombosis, RPL, thrombocytopenia, and
persistent positive serum aPLs. In addition, APS whose
main clinical characteristic with pathological pregnancy is
called obstetrical antiphospholipid syndrome (OAPS) [37],
and APS with only typical clinical manifestations or only
typical laboratory diagnostic criteria are called non-criteria
OAPS (NOAPS). aPLs, whosemain target antigens are β2GP
I and prothrombin, play crucial roles in the pathogenesis of
RPL caused by APS. Studies have shown that under path-
ological conditions, more open form of β2GP I, which
prefers to bind to aPLs, accumulates on the decidual
endothelial cells as well as villi and extravillous tropho-
blasts. The aPLs and β2GP I complex can then activate
complement system, which in turn dampens the coagula-
tion system by increasing fibrin deposition and placental
vascular thrombosis. Moreover, this complex not only
affects angiogenesis and spiral arteries remodeling, but
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also inhibits proliferation and differentiation of trophoblast
cells and induces apoptosis by promoting an inflammatory
response (Figure 1). Importantly, it is worth mentioning that
RPLpatients causedbyOAPSneedsmore attentionandnon-
standard aPLs tests are worth using in patients negative for
classical aPLs but with significant clinical symptoms.

Alloimmune risk factors in RPL

Furthermore, early studies have attributed alloimmune
related RPL to Th1/Th2 imbalance, and in recent years, an
increasing number of studies have found that Treg/Th17
imbalance is associated with a higher risk of URPL. Treg
has a strong immunosuppressive activity by decreasing
inflammation, and in contrast, Th17 promote the pro-
inflammatory responses [38]. IL-17, which is produced by
Th17 cells and plays an important role in the acute
inflammatory response and autoimmune response, has
been identified as a prominent immunological risk factor

for RPL. Also, studies have shown that either increase in
the amount and hyperfunction of Th17 cells, or abnormal
function and reduced number of Treg cells, could greatly
contribute to RPL. Furthermore, abnormal number and
activity of NK cells are also reported to be involved in the
pathogenesis of RPL. Decidual NK (dNK) cells have
capacities to modulate trophoblast invasion, and decidua
and spiral arteries remodeling through producing various
of cytokines and growth factors. The disturbance of these
processes caused by dNK cells dysfunction may be related
to RPL [39]. Furthermore, the detection of the number and
function of circulating peripheral blood NK cells and
uterineNK cells is useful in diagnosis and treatment of RPL.

Immune homeostasis at fetal-maternal
interface links to reproductive success

Pregnancybeginswith successful implantationof anembryo,
anda successful pregnancy requires a combinationof factors,

Figure 1: Dysregulation of immune and coagulation systems at the maternal-fetal interface in RPL patients. Decidual lymphocytes modulate
immune response via interactingwith each other and also regulate invaded trophoblasts anddecidual cells by secreting various cytokines and
chemokines. Notably, disturbance of immune regulation at the interface, which leads to impaired immune tolerance, is frequently associated
with RPL. dNK cells are the dominant immune cells at the interface, and they induce immune tolerance by recognizing different kinds of HLA
molecules on EVTs by encoding various types of inhibitory KIR. Recent single-cell transcriptomics analyses show that reduction of specific dNK
subsets such as CD27−CD11b−, pregnancy trained dNK, and CSF1+ CD59+ KIRs−may be related to RPL. Furthermore, increased Th1/Th2 andM1/
M2 ratios, reduced immunosuppressive Treg cells andDC, and increased pro-inflammatory Th17 cells, have also been identified as risk factors
for RPL. In addition, aPLs interacts with open form of β2GP I in endothelial and placental cells, and can activate the complement system,which
inhibits angiogenesis and the development of spiral arteries, as well as proliferation and differentiation of trophoblast cells. RPL, recurrent
pregnancy loss; EVTs, extravillous trophoblast cells; KIR, killer cell immunoglobulin like receptors; DC, dendritic cells.
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in general, including a healthy embryo with a great
growth potential and an excellent intrauterine environ-
ment with appropriate hormone levels [20]. The endo-
metrium undergoes decidualization under the combined
action of estrogen and progesterone before embryo
implantation. After the blastocyst enters the uterine cav-
ity, the endometrium has a short window period for the
blastocyst to attach. During the window period, the
endometrial stromal fibroblasts spontaneously differen-
tiate into metaphase cells and the immune cells, such as
uterine NK cells and macrophages, begin to accumulate.
Multiple risk factors, such as chronic inflammation of the
endometrium, luteal insufficiency, metabolic (obesity)
and endocrine disorders (abnormal thyroid function), and
luteal insufficiency can lead to impairment of the
decidualization process, which is in turn linked to
RPL [21, 40, 41].

Once the embryo is implanted, the maternal-fetal
interface is formed, and constitutes a complicated cell-to-
cell interaction network from cells of maternal and fetal
origins (Figure 1). At the interface, the fetal trophoblasts
differentiate into syncytiotrophoblasts (STBs) and extra-
villous trophoblast cells (EVTs). The maternal decidual
cells contain decidual stromal cells (DSCs) and decidual
immune cells (DICs). DICs account for approximately 40%
of all cells at thematernal-fetal interface in early pregnancy
and are intricately regulated during the implantation pro-
cess to ensure maternal tolerance of fetal placenta.
Immune imbalance at the maternal-fetal interface is also
an important risk factor for RPL. As an example, uterine NK
cells which comprise 70% of DIC can recognize HLA-G on
the surface of EVTs and activate uterine NK themselves to
secrete growth factors that promote embryonic develop-
ment [39, 42]. However, relationship between the number
and function of uterine NK cells and RPL has not been
fully clarified. Macrophages (10%–20%), T cells (10%–
20%) and dendritic cells (DCs) also play important roles in
maintaining immune homeostasis of the maternal-fetal
interface [43–45]. Remarkably, the critical roles of Treg
cells in pregnancy have been demonstrated in multiple
recent studies [46], and the immunosuppressive tolero-
genic DCs can induce Treg cell differentiation in the
endometrium.Nevertheless, there is a significant reduction
in tolerogenic DCs in RPL patients, emphasizing the
importance of tolerogenic DCs in maternal-fetal immune
regulation [47].

More importantly, several single-cell transcriptomics
analyses of decidua have been recently performed, which
offer more detailed information on the regulation of
immune responses at the maternal-fetal interface. These
studies not only revealed new subsets of uterine immune

cells, but also uncover their potential contributions to
RPL. For instance, Vento-Tormo et al. showed that three
major subsets of dNK cells were detected in the first-
trimester decidua, among which CD27−CD11b− dNK subset
was the dominant cell population that has the typical dNK
functions [48]. And Wang et al. investigated abnormal
properties of dNK subsets in decidua from RPL patients
and found that CD27−CD11b− dNK1 cells show a strikingly
lower frequency, implying its causal roles in RPL [49].
Furthermore, a significant decrease of pregnancy trained
dNK (PT dNK), which shows the comparable function of
CD27−CD11b− dNK1 subset, has been demonstrated to be
associated with RPL [50, 51]. A new subset of dNK cells
(CSF1+ CD59+ KIRs−) was also revealed in decidua, and
their reductionmight be linked to URPL [49]. Besides, new
subsets of dDCs, T cells, macrophages, decidualized
stromal cells and the cell-cell interaction were also
investigated, and these novel findings indeed expand our
knowledge of the maternal-fetal interface immune toler-
ance as well as its relation to the onset of RPL [52–54].

Maternal and paternal genetic
factors account for RPL

Maternally derived numerical and structural
chromosomal abnormalities

Embryonic chromosomal aneuploidies have been regar-
ded as the leading genetic cause of human pregnancy
loss, and account for approximately 60% of sporadic
spontaneous pregnancy losses [55]. Of these cases, auto-
somal trisomies (59.7%) have been identified as the most
common chromosomal abnormalities, followed by poly-
ploidies (22%), monosomies (7.5%), structural chromo-
some rearrangement (7%) and multiple aneuploidies
(3.8%) [56], according to a recent survey of 1000 products
of conception (POC) samples. These chromosome abnor-
malities mostly originate from random errors in maternal
meiosis I (MI) that possibly result from abnormal segre-
gation during oocyte development, and advanced
maternal age is generally associated with higher rates of
embryonic aneuploidies during pregnancy [57]. Many
studies have shown that embryonic chromosome anom-
alies can also explain RPL [56, 58]. However, compared
with sporadic spontaneous pregnancy loss, women with
RPL have a decreased embryonic chromosomal aneu-
ploidy rate [59]. Several recent studies have estimated that
carriers of structural and numerical chromosomal
abnormalities are detected in about 3.74%–9.88% of RPL
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couples [60, 61]. Out of these chromosomal abnormal-
ities detected in RPL couples, balanced translocation
(38.00%–47.05%) is the most frequent chromosomal abnor-
mality, followed by inversions (29.41%–34.70%), numerical
abnormalities (11.76%–16.50%), and Robertsonian trans-
locations (10.70%–11.76%) [60–62]. Interestingly, several
studies have shown that among RPL couples with chromo-
somal aberrations, female carriers tend to be more frequent
than male carriers [60, 63]. As well, studies have demon-
strated that RPL women of advanced maternal ages have
consistently shown a higher incidence of aneuploidy [64, 65].

Maternal aneuploidy and chromosomal
mosaicism

Maternal mosaicism may also contribute to embryonic
chromosomal aneuploidy, in addition to random errors in
the first meiotic division of the oocyte and parental carrier of
chromosomal aneuploidy [66]. Chromosomal mosaicism is
commonly known as the existence of genetically different
cells within an individual, and mosaicism occurs during
embryonic development as a result of chromosomal segre-
gation in the course of mitotic cell division. Robinson et al.
have reported that eight RPL couples with normal karyo-
types show a recurrence of the same chromosomal abnor-
malities (trisomy 15, 16, 22, and triploidy), possibly arising
from maternal mosaicism [67]. To date, many groups have
reported that chromosomal aneuploidies were detected in
the POCs in several cases with a history of RPL and normal
karyotype of fibroblasts or lymphocyte genome. Their
results revealed that maternal mosaicism most probably
gives rise to embryonic chromosome aneuploidies [68–71].
Recently, Ghevaria et al. [72] has focused on the maternal
aneuploidy mosaicism (germinal mosaicism) that arises
either in the primordial germ cells (gonadal mosaicism) or
during the premeioticmitotic divisions of the oogonia. Their
study estimated that the incidence of premeiotic aneuploidy
in non-selected oocytes was greater than 10%. In fact, the
recurrence of numerical anomalies is rare, and maternal
mosaicism must be taken into account when the parental
karyotype is obviously normal and the same anomaly has
been observed repeatedly.

Maternal factors associated with genome
stability of early embryonic cells

With respect to RPL, the origins of embryonic chromosomal
abnormalities can be explained by parental carriers and

maternalmosaicism, aswell asmaternal age. Indeed, other
causes, which are independent of these risk factors and
could contribute to embryonic or fatal aneuploidy, still
need to be explored in RPL population. For example,
Burada et al. [73] reported a couple with three distinct
consecutive trisomic pregnancies, in whom the existence
of abnormal karyotypes and mosaicisms in both members
was excluded. Delhanty et al. [74] have shown that some
patients are inclined to repeatedly produce abnormal em-
bryos with mosaic aneuploidy in in vitro fertilization (IVF)
cycles (chaotically dividing embryos). These observations
bring about the possibility that variations in certain factors
ofmaternal origin in the oocytesmaydisturb the division of
embryonic cells, independent of maternal ages. Zhang
et al. have discovered two heterozygous deletions in
KHDC3L gene (p.E150_V160del and p. E150_V172del) in
two women with a RPL history, and their findings further
demonstrated that deficiencies of KHDC3L may be associ-
ated with genomic abnormalities and apoptosis of early
embryonic cells [75]. Significantly, McCoy et al. [76] first
reported that common variants in PLK4 gene, involved in
the regulation of centriole duplication during mitosis, are
linked to an increased risk of aneuploidy during human
early embryo development. Women with high-risk geno-
types produce fewer embryos, possibly due to a lower
potential for development of early embryos. Zhang et al. [77]
investigated association between maternal variant
(rs2305957) of PLK4 gene and blastocyst formation rate in a
Chinese cohort, and found that infertile females with A/A
genotype presented a lower rate of blastocyst formation
compared to those with genotype of either A/G or G/G.

Maternal inherited thrombophilic factors
variants

A series of studies suggest that thrombophiliamight increase
women’s risk for RPLby impairingnormal placental vascular
function. It is important to note that thrombosis or occlusion
of placental vesselsmaydecrease placental perfusion,which
may contribute to adverse pregnancy outcomes including
RPL [78]. Notably, several inherited variants in three
thrombophilic factors, such as factor V gene, homocysteine
metabolism associated enzymes (MTHFR, MTR and MTRR),
and prothrombin gene (PTG), have been extensively inves-
tigated for their associations with RPL [79, 80]. FVL, a
missensemutation in the factorVgene (p.R506Q), is themost
extensively studied thrombophilic variants in patients with
RPL. The allele frequency of FVL varies among different
populations, with the highest in Europe (4.4%) and the
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lowest inAsia (0.6%) [81].FVL can induceactivatedproteinC
(APC) resistance, which in turn leads to a hypercoagulable
state [82]. However, the susceptibility of FVL to RPL is
controversial, and both strong and negative associations
with RPL have been reported [83–85]. Recently, Eslami
et al. [86] have performed a large scale meta-analysis which
includes 10,410 RPL cases and 9,406 controls, and their
results indicated that FLV presents a significant association
with RPL in overall population analysis, and the positive
association was also observed in Asian, European, Africa
populations but not in south Americans. In addition, the
prothrombin G20210A mutation, giving rise to elevated
mRNA and protein expression of prothrombin, is associated
with an increased risks of thrombosis [87]. Liu et al. also
reported a systematic review andmeta-analysis of 89 studies
containing 30,254 individuals, and their finding revealed
that women carrying the FVL mutation or the G20210A
mutation had a higher risk of developing RPL [88].

Homocysteine (Hcy), a sulfur-containing amino acid, is
generatedduring themetabolismofmethionine. Threemain
enzymes, including methylenetetrahydrofolate reductase
(MTHFR), methionine synthase (MTR), and methionine
synthase reductase (MTRR), are involved in this metabolic
process. Hyperhomocysteinemia has also been regarded as
an important risk factor for thrombophilia [89]. Moreover,
multiple common genetic variants in these enzymatic genes
have been demonstrated to be associated with increased
plasmahomocysteine concentrations [90], and thematernal
accumulated homocysteine could further damage the
endothelium and impair placental function, which may be
related to placenta-associated pregnancy complications,
such as RPL, placental abruption and preeclampsia [91].
Among these variants, MTHFR C677T and A1298C which
contribute to decreased enzyme activities, have been
extensively investigated. Interestingly, earlier studies
have shown thatmaternal homozygous carriers ofMTHFR
C677T, under the condition of folate deficiency, can cause
elevated levels of Hcy [92]. However, the contribution
of maternal MTHFR C677T and A1298C to RPL risk is
controversial [93–96], and inconsistent associations of
MTHFR variants with RPL were also observed among
racial and ethnic groups [97]. Only a few studies have
been performed to evaluate the genetic association of
variants inMTR andMTRR genes with RPL. Sata et al. [98]
have found that women with the MTR c.2756 A/G geno-
type show a decreased risk of RPL in Japanese population.
Kim et al. [99] also reported that female carriers of the
MTR c.2756 A/A have a higher risk of RPL in Korean
population. Furthermore, Zhang et al. [100] have shown

that heterozygous women for MTRR c.66 A > G show a
higher RPL risk in Chinese population. However, the
susceptibilities ofMTR c.2756 A > G andMTRR c.66 A > G to
RPL were not replicated in Vietnamese population [80].

Maternal factors implicated in modulating
immune responses

The fetus expresses the antigens of paternal origin, and just
like a semi-allograft, the fetus is foreign to the maternal
immune system [101]. Therefore, fetomaternal immune
tolerance is essential for the maintenance of a healthy
pregnancy. Studies have paidmore attention to investigate
the RPL-related immunological risk factors, such as auto-
antibodies, peripheral and uterineNK-cells, and regulatory
T cells [102]. Indeed, several genetic variants of maternal
origin, affecting immunoregulatory process, have been
identified as risk factors for RPL. Specially, there is
considerable interest in the HLA-G (a non-classical MHC
Class I antigen), which shows a restricted expression in the
EVT and functions at the maternal-fetal interface. Previous
studies indicated that a low degree of polymorphism has
been observed in the coding regions of HLA-G gene.
Therefore, many studies have focused on variants in the
non-coding regions, such as 5′ upstream promoter region
(−725 C/G/T [103], −1573 T/C and −1746 C/A [104]) and 3′
untranslated region (14 bp deletion/insertion [105]) of
HLA-G gene [103, 106, 107]. However, both positive and
negative association of maternalHLA-G gene variants with
RPL were reported by these researches. Meuleman et al.
systematically investigated the association of maternal
HLA alleles, includingHLA I,HLA II and non-classicalHLA
I alleles, with RM, and their meta-analysis indeed
demonstrated that specific maternal HLA alleles were
associated with RM susceptibility. However, they consid-
ered that there was no consistent conclusion for the asso-
ciations of HLA and RM, due to the existing information
and selection bias [108]. More strict inclusion criteria,
including ethnicity, diagnosis, and sample size, are
required to reveal the association of HLA alleles with risks
for RPL. Furthermore, studies have demonstrated that
multiple interleukin (IL) genes are associated with RPL
susceptibility. Among those, the pro-inflammatory IL gene
variants, including IL-1β (−511 T/C), IL2 (−330 A/C), IL-17
(rs2275913), IL18 (137 G/C) and IL33 (rs16924159), have been
shown to be risk factors for RPL, because these factors
stimulate the activity of the immune response [109–112].
Besides, anti-inflammatory IL genes, such as IL-10 (2195
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A/G and −819 C/T) and IL-6 (−634 C/G), contribute signif-
icantly to an increased risk of RPL [113–116]. A rare muta-
tion (c.610 C>T) in IL22RA2 has been detected in 4 out of 328
Chinese womenwith a history of RPL, and in silico analyses
show its potential pathogenic roles in RPL. In addition to IL
genes, other cytokines, such as TGF-β1 (rs1800471) [117] and
TNF-α (−863 C/A and −308 G/A) [118, 119], were also linked
to RPL risks. Moreover, the transcription factor Forkhead
Box P3 (FOXP3), which plays an important role in the
development of Treg cells, is significantly linked to RPL
susceptibility [120, 121], that is also supported by a recent
large-scale meta-analysis. Cytotoxic T-lymphocyte-associ-
ated protein 4 (CTLA-4) functions as a negative regulator
of T-cell activation and participates in regulating the T cell
response and immune tolerance. Several studies have
revealed an association of multiple genetic variants of
CTLA4 with RPL [116, 122–124]. It is well known that pro-
grammed cell death 1 (PD1) and programmed cell death
ligand 1 (PDL1) signaling has been demonstrated to be a key
negative regulator of T cell activity by inhibiting prolifera-
tion and cytokine production [125]. Indeed, Hayashi
et al. [126] have found that two variants (rs36084323 and
rs3481962) of PD1 gene confer a significant risk for RPL. Cho
et al. [127] have demonstrated the positive relationship
between complement factor D (CFD) and complement factor

H (CFH) and RPL risks, suggesting the important roles of
the complement system in gestation.

Whole exome sequencing inwomenwith RPL

Next generation sequencing (NGS), particularly the
exome sequencing, has been extensively used to identify
the gene variants underlying human genetic diseases. To
date, fourteen studies have been reported to perform
exome sequencing for identification of potential genes
and genetic mutations contributing to RPL (Table S1 and
S2 [128–141]). Most of these studies focus on the discovery
of RPL-associated mutations in women patients, and a total
of 66 candidate maternal genes and 12 paternal genes have
been reported to be associated with RPL (Table 1). Intrigu-
ingly, among these genes, only two genes (KHDC3L and
CCNB3) were repeatedly detected in two different studies
(Table S1), suggesting heterogeneous and complicated
conditions of RPL. Moreover, these studies also show that
these RPL-related genes are mainly enriched in biological
processes, including coagulation and angiogenesis, extra-
cellular matrix (ECM) composition and degradation, and
immune regulation (Table 1). Although these findings pro-
vide novel insights into the pathogenesis of RPL, functional

Table : RPL associated genes revealed by whole exome sequencing analysis

Groups Biological processes Maternal genes Paternal genes

 Coagulation and angiogenesis ANXA, FA, F, FGA, FN, THBS,
THBD, FLT, ADAMTS

KDR, ITGB

 Chromatin remodeling BPTF BPTF
 Cell surface receptor FGFR, APP, EPS, MSA
 DNA methylation DNMT, MECP, MBD MECP
 DNA replication, RNA

transcription and splicing
CBX, NCOA EFTUD, POLRB

 DNA repair REXO, MSH
 Extracellular matrix

composition and degradation
COLA,TNC, MMP, MMP, LAMA MMP, LAMA, COLA

 Immune regulation FKBP, TLR, NLRP, NLRP, CR,
NFAM, CSFR, PSG

–

 Mitosis PLK, CENPH, PIF, CEP, CCDC PLK, BUBB
 Meiosis CCNB
 Membrane transporters ABCA, ABCB, TCN, CAPS, SLCA –
 Membrane protein that mediates

cell adhesion
TRO, CDH, CDH, YES –

 Metabolic process FOXA, IDO, OSBPL, GFA
 Oocyte maturation and early

embryonic development
KHDCL, PADI –

 Transcription factors BNC, EPAS, SOX SOX
 Others AMN, BMP, TRAFIP, LIFR, DNAH, PLCD,

IFT, AL.
–

The name of genes are given in italics. RPL, recurrent pregnancy loss.
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studies are required to delineate the contribution of these
genetic variants to RPL, thereby accelerating the develop-
ment of specific treatments for RPL.

Paternal chromosome abnormalities

In addition to genetic abnormalities in females, more and
more investigations indicated that male factors, especially
genetic causes, alsomake a large contribution to RPL [142].
Owing to the fact that paternal genome activation and
subsequent zygotic genome activation (ZGA) occurs at the
4–8 cells stage in human embryos [143], genetic abnor-
malities in sperm (variants of paternal origin) may not
impact pre-ZGA embryonic development, but may relate to
defects in later stages of embryonic development or
abnormal intrauterine fetal development.

Most importantly, numerical or structural chromo-
someabnormalities in spermatozoa have been identified as
the leading causes related to embryonicmortality and RPL.
In general, these abnormalities might arise de novo during
spermatogenesis [144], and in turn, give rise to chromo-
somally abnormal embryos. Ramasamy et al. [145] reported
that sperm aneuploidy was detected in 40% of men who
exhibited normal sperm density and motility and experi-
enced RPL. Intriguingly, compared to men with normal
sperm parameters, a higher proportion of sperm sex chro-
mosome aneuploidy was observed in men with abnormal
sperm density and motility (62% vs. 45%). And, abnormal
strict morphology (based on Kruger strict criteria) was
greatly associated with increased rates of sperm aneu-
ploidy. Likewise, a recent systematic review [146] shows
that the incidence of sperm aneuploidy was significantly
higher in men whose spouses have a history of RPL, which
is mostly in agreement with previous studies [147–149]. A
recent multicenter study also supports the notion that
the sperm aneuploidy may contribute to unexplained
RPL [150]. In addition to the sperm de novo chromosome
abnormalities, carriers with chromosomal aberrations
were also detected in couples with RPL or RM. Several
earlier studies [151, 152] showed that 2.7%–6.5% of RPL
couples carried structural chromosome rearrangement,
which was significantly higher than that reported in gen-
eral human population (about 0.5%) [153]. Recently, Li
et al. performed a comprehensive survey among 3,235 RPL
couples, and revealed that 121 individuals (3.74%),
including 75 women and 46 men, harbor structural or
numerical chromosome abnormalities [60]. Among these
variants, balanced translocations were identified as the
dominant abnormalities (46/101), following by inversions
(42/101), numerical abnormalities (20/101), andRobertsonian

translocations (13/101). Dong et al. [154] investigated chro-
mosomeabnormalities in 1090 coupleswithRM through low-
pass genome sequencing approach, and 127 chromosomal
abnormalities were uncovered in 126 couples. Similarly, a
higher prevalence of balanced translocations was observed
among these RM-affected couples (61.9%, 78/126). Balanced
translocation commonly has no effect on the carriers’
phenotype but the carriers can generate genetically unbal-
anced gametes due to the meiotic errors.

Sperm DNA fragmentation

Sperm DNA integrity is essential to fertilization and
embryo development, and sperm DNA damaging, also
called sperm DNA fragmentation (SDF), can result in low
fertilization rates, embryonic arrest, and pregnancy
loss [155]. Indeed, fertilization by the damaged sperma-
tozoon may lead to an increased DNA damage in embryo
genome, which could result in defects at different stages
of embryogenesis and fetal development [156]. Robinson
et al. [157] completed a meta-analysis of 16 cohort studies
involving 2969 couples, and their findings showed that
high sperm DNA damage was strongly associated with
increased risk of sporadic miscarriage. Also, according to
a meta-analysis of 19 studies involving 1182 couples with
unexplained RM and 1231 couples without RM, Dai et al.
demonstrated that increased levels of SDF are signifi-
cantly associated with unexplained RM, suggesting that
the male factor SDF may be implicated in the pathogen-
esis of RM [158]. Furthermore, several large-scale meta-
analyses have been recently performed to investigate the
correlation between SDF and RPL.McQueen et al. enrolled
579 men with a history of RPL and 434 male controls, and
their results showed that SDF is clearly associated with
RPL [159]. To assess the relationship between SDF and
idiopathic RPL, Tan et al. conducted a meta-analysis of 12
prospective and 2 retrospective studies including 530men
with a history of RPL and 639 fertile controls, their find-
ings indicated that SDF provides a diagnostic value over
standard semen analysis, and also raises the possibility
that SDF could serve as a paternally derived genetic origin
of idiopathic RPL [160].

Y chromosome microdeletions

Reijo et al. [161] first reported in 1995 the finding of Y
chromosome microdeletions, that was identified in 12
men with azoospermia. Deletion in this region, also
described as azoospermia factor (AZF) or Deleted in
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AZoospermia (DAZ), is associated with spermatogenic
failure and male infertility. Further analysis showed that
AZF locus can be divided into three subregions (AZFa,
AZFb and AZFc), and microdeletions in these subregions
can lead to varying degrees of spermatogenetic failure.
Intriguingly, microdeletions in the overlapping region
between AZFb and AZFc may relate to the range of
sperm counts (no measurable sperm to normal sperm
count) [162]. Thus, several studies have investigated the
relationship between Y-chromosome microdeletions and
RPL. Dewan et al. [162] first demonstrated that men from
RPL couples present a significantly higher prevalence of
Y-chromosome microdeletions in the proximal AZFc re-
gion than men from fertile or infertile couples. This
finding was mostly supported by two subsequent
studies [163, 164]. However, Dai et al. [165] recently
evaluated the contribution of Y chromosome micro-
deletions to RPL in Northeast China, by recruiting 1,072
men with a history of RPL and 971 infertile and 200 fertile
males as controls. Their finding did not reveal an asso-
ciation between Y chromosome microdeletions and RPL,
which is in accordance with previous studies [166–168]
in Sri Lanka, Mexican and Iran. Till now, many possible
explanations, such as selection of sequence-tagged sites
(STSs) marker [165], extraction of DNA from different cells
(peripheral blood or spermatozoa) [168], and sample
size [163], havebeen suggested for this obvious discrepancy.
Importantly, further investigations and more information
are needed to explore the roles of Y chromosome micro-
deletions, as a male factor, in RPL pathogenesis.

Single gene variants of paternal origin

Association of maternalMTHFR C677T polymorphismwith
a susceptibility to RPL has been well investigated. Several
recent studies have also found that paternal C677T poly-
morphism is connected with RPL aetiology [93, 169]. It is
now widely accepted that thrombophilia is a common risk
factor for RPL and can be observed in about 40%–50% of
RPL cases [78]. Ozdemir et al. found that both paternal and
maternal mutations of thrombophilic genes, including
FVL, FVR2, ACE, and ApoE2, are related to RPL [170].
ANXA5, an anticoagulant protein that is abundantly
expressed in human placenta, has also been identified as a
RPL associated factor. Bogdanova et al. [171] first verified
that carriers of M2 haplotype in theANXA5 promoter region
have over 2-fold higher risk of RPL compared to general
population, which is indeed supported by a recent large-
scale meta-analysis [172]. So far, the association of ANXA5
M2 haplotype with RPL has been replicated in multiple

populations, such as Japanese [173], Malay [174], and
Indian [175], but not in Estonia and Denmark. Remarkably,
Rogenhofer et al. [176] demonstrated that, in line with
maternal mutation, paternal ANXA5 M2 haplotype also
confer an increased risk of RPL. Ubiquitin pathway proved to
be implicated in fertilization and embryo development, and
USP26 (ubiquitin specific peptidase 26) gene variants have
been previously identified as risk factors for male infertility.
Moreover, according to the findings fromAsadpor et al. [177],
aUSP26 haplotype, comprised of 370–371 insACA, 1423 C > T
and 494 T > C mutations, shows significantly higher fre-
quency inmenwith a history of idiopathicRPL than that of in
fertile men, supporting the important roles of paternal ge-
netic variants of USP26 gene in RPL etiology.

Diagnosis and therapeutic
management of RPL

Guidance on diagnosis and management of
RPL

At present, therapeutic recommendations for RPL are
mainly to take some symptomatic treatments based upon
the underlying causes [20]. Many guidelines have been
formulated and developed by many domestic and interna-
tional societies, such as ESHRE, Royal College of Obstetri-
cians and Gynaecologists (RCOG) [178], ASRM [1], German
Society of Gynecology and Obstetrics (DGGG), Austrian
Society of Gynecology and Obstetrics (OEGGG) and Swiss
Society ofGynecology andObstetrics (SGGG) [179]. Although
the definitions and diagnosis of RPL are not completely
uniform across national guidelines, the management of
this condition is similar. Systematic etiologic screening is
recommended for patients with RPL. However, in patients
with a history of only one miscarriage, systematic etiologic
screening is not recommended except for a clear family
history or clinical manifestations of associated diseases.
Depending on the underlying causes of RPL, corresponding
managements or therapeutic intervention are established
(Table 2, and more details are listed in Table S3).

Novel strategies for management of RPL

Nowadays, in addition to routine management for RPL
patients with clear cause, a number of novel trail treat-
ments have emerged. For instances, several studies have
shown that multivitamin supplement especially Vitamin D
was effective for RPL patients, but the supplement doses
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are inconsistent among these studies [180–182]. Addition-
ally, immunotherapy for RPL has been intensively studied,
and many different treatment options have been devel-
oped. Typically, treatments such as lymphocyte immuno-
therapy (LIT), anti-tumor necrosis factor (TNF) alpha
agents, granulocyte colony stimulating factor (G-CSF) and
paternal cell immunization all have been applied to clin-
ical treatment [183–185]. However, several studies indi-
cated that immunotherapy treatments like intravenous
immunoglobulin G (IVIG) cannot increase live birth rates of
RPL [3, 183]. Some meta-analysis and RCT trails also
showed that immunomodulatory agent may benefit on
certain subgroup of RPL patients [186–189]. Therefore, the
latest consensus concluded that immunotherapy treat-
ments are recommended to use only in clinical research.

Furthermore, therapeutic intralipid infusion and endome-
trial scratching have also been evaluated, but the results
indicated that these treatments were not effective for
RPL [2, 46].

Interestingly, many groups have investigated the
mesenchymal stem cells (MSCs) based therapy in abortion-
pronemousemodel, and demonstrated thatMSC treatment
could improve pregnancy outcome through modulating
the immune responses at the maternal-fetal interface [190].
Eskandarian et al. showed that MSC therapy could
remarkably reduce the abortion rate of abortion-prone
mice, possibly by increasing the frequency of uterine DCs
(uDCs) [191]. Kahmini et al. injected adipose-derived MSCs
into the abortion-prone mice, and their results indicated
that MSCs can improve the tolerogenic microenvironment

Table : The recommended managements of women with recurrent pregnancy loss based on etiology

Etiology Clinical testing Therapeutic managements and intervention References

Genetic factors Karyotype analysis of RPL
couples and aborted embryo
tissues

Genetic counseling before the next pregnancy
PGT

[]

Anatomical structural
factors

Routine pelvic ultrasonography Monitoring during pregnancy
Hysteroscopic mediastinectomy is used for severe IUA
Hysteroscopic myomectomy is used for submucosal
fibroids
Prophylactic cervical cerclage is recommended for
cervical insufficiency

[, ]

Endocrine factors Endocrine testing Thyroxine management to keep the level of TSH
controlled in an appropriate range.
Exercises, oral hypoglycemic drugs and insulin
injection for abnormal glucose metabolism
Progesterone supplementation for LPD

[, –]

Prethrombotic state Hereditary PTS screening and
classical detection of aPLs
excludes APS-related acquired
PTS

Monotherapy or combination therapy of
LMWH and LDA

[, –]

OAPS Classical aPLs testing including
LA, aCL, and β-GPIAb

LDA combined with LMWH, plus HCQ
or glucocorticoids if necessary

[, –]

NOAPS Individualized testing for
nontypical aPLs profile

The managements were not unified. Existing treatments
can still refer to the treatment of OAPS and need to be
administered by experienced obstetricians and
rheumatologists.

[, –]

Immune factors ANAs and ENAs profile screening Fertility counseling
immunosuppressants, combined with LDA or LMWH if
necessary

[]

Infection factors Infection-related factors checking
during pregnancy

Appropriate antibiotic treatment for patients with obvious
symptoms of genital tract infection.

[]

Other factors Recording clinical information
of RPL couples

Keep good lifestyle habits and stay away from adverse
environments

[]

LDA, Low-dose aspirin; LMWH, low-molecular weight heparin; HCQ, hydroxychloroquine; IUA, intrauterine adhesion; LPD, luteal phase
deficiency; OAPS, obstetrical antiphospholipid syndrome; NOAPS, non-criteria obstetrical antiphospholipid syndrome; RPL, recurrent
pregnancy loss; PTS, prethrombotic state; aPLs, antiphospholipid antibodies; ANAs, antinuclear antibodies; LA, lupus anticoagulant; aCL,
anticardiolipin antibody.
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at thematernal-fetal interface by decreasing the infiltration
of CD49b+ NK cells to the decidua [192]. Farrokhi et al.
revealed that MSCs based therapy could also reduce
the abortion rate of the abortion-prone mice through
enhancing Tregs expansion as well as upregulating
expression of Treg-related genes [193]. Furthermore, Xiang
et al. found that injection of exosomes from MSCs into
uterine horns could modulates T cell and macrophages
responses at the maternal-fetal interface, thereby leading
to a decreased abortion rate of abortion prone mice [190].
Indeed, these attempts and explorations open up new
opportunities for the development of novel therapeutic
options to improve pregnancy outcome of RPL patients.

Recent advances in treatment of unexplained
RPL

URPL is a diagnosis of exclusion and should first meet
the diagnostic criteria for RPL, while autoimmune dis-
eases, PTS, anatomical abnormalities of the reproductive
system, endocrine and chromosomal as well as genomic
abnormalities should be excluded. Several studies sug-
gest that unexplained RPL may have a genetic predis-
position [194] and may be also related to some unknown
immune factors. Several meta-analyses have been con-
ducted and revealed multiple susceptible genes showing
association with idiopathic or unexplained RPL, indi-
cating that genetic factors may play important roles in
the etiology of URPL. Interestingly, most of these genes
were enriched in important biological processes, such as
immune response, coagulation, metabolism, angiogen-
esis [195, 196] and placental function. In addition to
genetic causes, many evidences also suggested that im-
mune related factors may explain the etiology of URPL.
van der Zwan et al. found that the altered proportion of
the small activated subset of dDC cells and CD8+ T cells
that exhibited cytotoxic properties may contribute to
URPL [44]. Svensson-Arvelund et al. also demonstrated
that a high ratio of M1/M2 ratio of macrophage may
associate with pathogenesis of URPL [43].

Due to lack of sufficient evidences, clinical man-
agement of URPL is challenging and limited. On one
hand, routine use of (IVIG) [197–199], liposomes, LIT,
anticoagulant therapy (LDA or LMWH), glucocorticoids,
cyclic Cyclosporine A (CsA), G-CSF, TNF-α inhibitors and
other treatment methods are not recommended [2]. On
the other hand, it is recommended to encourage unex-
plained RPL patients to participate in clinical research
programs according to their specific conditions. Impor-
tantly, decoding the genetics that drive URPL may

provide a promising avenue to develop new treatments
for this disorder.

Conclusions and outlook

The present review has summarized the current knowl-
edge and recent advances on the etiology, diagnosis and
treatment strategies of RPL. These recent updates in the
understanding of RPL would provide novel insights into
the origin of pregnancy loss, andmay further facilitate the
development of novel strategies for management of
women with RPL.

Although significant progress has been made in this
field, more than half of the RPL patients have no clear
explanation for their failed pregnancy. Currently, there is a
lack of effective treatment options for these URPL patients,
owing largely to limited understanding of the mechanisms
underlying URPL. The supportive care for couples with
unexplained RPL is primarily recommended by many inter-
national guidelines [200]. To improve pregnancy outcomes
ofURPLpatients, future studies shouldpaymore attention to
these patients. Importantly, the newly developed technolo-
gies may provide opportunities to uncover the patient-
specific pathogenic mechanisms. For example, single-cell
RNA sequencing of patient-specific pregnancy-related tis-
sues, and investigation of patient-specific endometrial [201]
and placental organoids [202], are promising options
for discovering causal factors in specific URPL couples.
Furthermore, these patient-specific findings may lead to
development of personalized therapeutic strategies.

A large number of genetic predisposing factors to RPL
have been identified currently (Figure 2). As aforemen-
tioned, the RPL-associated genes are enriched in various
functional categories, such as chromosomal abnormalities,
thrombosis and immune responses. Studies have shown
that discoveries of genetic variations in RSA population,
especially the unexplained recurrent spontaneous abortion,
should contribute to explaining the unknown causes of
RPL [196, 203]. Furthermore, the interplay between genetic
and environmental factors indeed plays an important role in
understanding pathogenesis ofmany humandiseases [204].
However, till now, fewer large-scale studies have been
conducted to investigate the complex interactions between
RPL susceptible genes and environmental factors. Typically,
the interaction of MTHFR gene variants with folic acid
supplements has been extensively investigated, and this
gene-nutrient interplay plays critical roles in multiple
pregnancy complications [205]. Future work, focusing on
the combined effects of environmental risk factors and ge-
netic variants, is expected to yield more results to delineate
the etiology of RPL.
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NGS, such as whole exome sequencing [206, 207], has
been widely used for discovering genetic causes of human
inheriteddisorders, including theRPL.Until now,more than
14 studies have been performed to identify RPL causing
mutations (Table 1). Indeed, a series of disease associated
rare variants have been detected, and these newly identified
genes provide novel insights into the pathogenesis of RPL as
well as explanations for a specific subset of RPL patients.
Nonetheless, the causal roles of most variants remain to be
disclosed, and further functional studies, based on cellular
and animal models, could be undertook to investigate
functional relevance of these genetic variants. In addition,
NGS is also a powerful tool in clinical diagnosis [208], and
for instance, it shows advantages over conventional cyto-
genetic analysis. Dong et al. demonstrated that compared
to conventional karyotype analysis, low-pass genome
sequencing significantly enhanced diagnostic yield of
chromosomal abnormalities [154] in RPL population.

In conclusion, both clinical investigations and
fundamental researches are required to accelerate our

understanding of RPL and to develop new strategies to
improve outcomes of these complex medical conditions.
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