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High sensitivity organic inorganic hybrid X-ray
detectors with direct transduction and broadband
response
H.M. Thirimanne1, K.D.G.I. Jayawardena1, A.J. Parnell 2, R.M.I. Bandara1, A. Karalasingam1, S. Pani3,

J.E. Huerdler4, D.G. Lidzey2, S.F. Tedde4, A. Nisbet3,5, C.A. Mills1 & S.R.P. Silva 1

X-ray detectors are critical to healthcare diagnostics, cancer therapy and homeland security,

with many potential uses limited by system cost and/or detector dimensions. Current X-ray

detector sensitivities are limited by the bulk X-ray attenuation of the materials and conse-

quently necessitate thick crystals (~1 mm–1 cm), resulting in rigid structures, high operational

voltages and high cost. Here we present a disruptive, flexible, low cost, broadband, and high

sensitivity direct X-ray transduction technology produced by embedding high atomic number

bismuth oxide nanoparticles in an organic bulk heterojunction. These hybrid detectors

demonstrate sensitivities of 1712 µCmGy−1 cm−3 for “soft” X-rays and ~30 and 58 µCmGy−1

cm−3 under 6 and 15 MV “hard” X-rays generated from a medical linear accelerator; strongly

competing with the current solid state detectors, all achieved at low bias voltages (−10 V)

and low power, enabling detector operation powered by coin cell batteries.
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X-rays are widely used in homeland security, therapeutic
and diagnostic healthcare and industrial process control
(e.g. pharmaceuticals) with each application necessitating

specific detector requirements1. For example, direct conversion
detectors based on materials such as amorphous selenium2 are
currently used in mammography, but are limited by their low X-
ray attenuation for energies higher than 50 keV. Detectors based
on p-type silicon with its high radiation-damage resistance are
used in radiotherapy for dose measurement or beam imaging3.
However, their propensity to damage from accumulated dose and
drift due to environmental effects makes these less useful for
beam calibration4. High-quality single crystal Cd(Zn)Te5 is used
for homeland security screening, but suffers from being limited to
small dimensions, high cost, charge carrier trapping and high-
voltage operation (>500 V). Similarly, X-ray detection in the non-
destructive evaluation sector is currently dominated by CsI (Tl)
scintillator screens coupled to a-Si which, despite their high
stopping power and spatial resolution, are limited to sizes less
than 60 × 60 cm2. Therefore, there is a demand for broadband,
high sensitivity, low-cost radiation detectors, which current
inorganic detectors fail to fulfil.

Organic semiconductors can be fabricated over large areas in a
flexible format, enabling conformability to complex structures at
low cost and are now commercialized for photovoltaics, displays
etc6. There is increasing attention given to organic photodetectors
for X-ray detection7,8. This often involves the coupling of scin-
tillator screens with organic photodiodes9, insertion of high-
atomic number (Z) nanoparticles (NPs)10, quantum dots11 or
scintillator particles into organic diodes12, or the use of thin film
organic semiconductors8 or crystals13. Of these, the use of X-ray

scintillators is often preferred as this enables the already mature
organic photodetector technologies to be adapted for X-ray
detection. However, the absorption of light by the organic
semiconductor forms bound electron–hole pairs (excitons), which
need to be dissociated12 resulting in significant losses, limiting
detector sensitivity as opposed to a direct conversion process.

Here, we introduce a broadband, direct, X-ray detector concept
based on a thin film, hybrid semiconductor diode consisting of
an organic bulk heterojunction (BHJ)—bismuth oxide (Bi2O3)
NP composite. These direct X-ray detectors demonstrate high
sensitivities of 1712 µCmGy−1 cm−3 under 50 kV soft X-rays
and ~30 and 58 µCmGy−1 cm−3 under 6 and 15 MV hard
X-rays. Furthermore, we also demonstrate a flexible detector
based on the same device concept which offer a high sensitivity
of 280 µC mGy−1 cm−3. More importantly, these sensitivities
are achieved at −10 V.

Results
X-ray response of BHJ-NP detectors. The device compromises
of a diode architecture where the BHJ-NP composite is sand-
wiched between indium tin oxide (ITO) and aluminium (Al)
electrodes (Fig. 1a). Here, the introduction of the Bi2O3 (Z= 83
for Bi) is utilised to increase the X-ray attenuation14. We have
chosen Bi2O3 from the many metal oxides available based on its
direct conversion of X-rays and lower environmental impact
and health risks when compared to, for example, high Z Pb-based
semiconductors. Given its existing use as a non-toxic dental
material such as in the case of hydraulic silicate cements15 with an
opacity to X-rays makes it an ideal candidate for our application.
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Fig. 1 X-ray detector overview. a Device schematic structure. b Performance comparison of current solid state X-ray detectors—(1)13, (2)10, (3)36, (4)37,
(5)38, (7)8, (9)11, (11)3, (14)39, (15)40, (16)7, (17)41, (18)42, (19)43, (20)44, and (24)20 are direct detectors, (6)45, (8)46, (21)7,47 and (22)48 are inorganic
detectors, and (10)12, (12)9, (13)25 and (23)49 are indirect detectors—with the technology developed in this work—(25) Bi2O3-40, (26) Bi2O3-80, (27)
Bi2O3-40 and (28) Bi2O3-40. The operating voltage is given adjacent to each data point. The total attenuation coefficient values of carbon, selenium,
methylammonium lead iodide (MAPbI3) and Bi2O3 are given as shaded areas showing the previous limits to detector technology based only on bulk
attenuation processes. c An X-ray imager based on the hybrid X-ray detector and 70 kV X-ray image of a bolt taken using the X-ray imager
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Regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-
Phenyl C71 butyric acid methyl ester (PC70BM) were selected as
the BHJ system. The formation of nanoscale diodes throughout
the volume of the BHJ, in close proximity to the NPs leads to
an in-built depletion region, with local electric fields as high
as ~200 V µm−116, which has been experimentally quantified
with Fourier-transform IR-absorption spectroscopy for the
P3HT:PCBM system. This is further enhanced by dielectric
inhomogeneities in the material17,18. The above factors, in com-
bination with the high crystallinity of P3HT:PC70BM enables
efficient electron and hole extraction from the entirety of the
depleted active layer under low reverse-bias voltages (<10 V). The
above factors enable an X-ray detector with high sensitivity that
strongly competes with all existing solid state X-ray detector
technologies, under low voltages as well as over a broad X-ray
energy range (Fig. 1b and Supplementary Figure 1) with potential
applications in X-ray imaging as shown from a prototype imager
developed through this work (Fig. 1c).

For optimisation of the detector, the NP loading within the
device active volume was increased in order to increase the X-ray
attenuation by varying the Bi2O3 content in the parent solution
(0, 10, 20, 30, 40, 50, 60, 70 and 80 mgml−1: X mg ml−1 is noted
as Bi2O3-X). It is worth to note that the highest NP-loaded device
which could be fabricated using the given procedure is Bi2O3-80,
due to the formation of cracks during the annealing process at
higher loadings beyond Bi2O3-80. However, with the appropriate
selection of the organic bulk heterojunction and with tuning of
the solvent used, much higher Bi2O3-loaded device fabrication
maybe possible. Assuming a periodic structure for the NPs within
the BHJ, this enables the unit cell dimensions to be reduced from
72 nm for Bi2O3-40 to 64 nm for Bi2O3-80 (Supplementary
Figure 2 and Supplementary Note 1). The detectors with
thicknesses of ~10–30 μm (Supplementary Figure 3) demonstrate
dark current densities in the range of 10−4 (Bi2O3-80) to 10−6

(Bi2O3-0) A cm−2 at −10 V, and ~1 and ~40 nA cm−2 under 0
and −1 V, respectively (Supplementary Figure 4a). We note
recent work in the literature where the dark current can be tuned
to meet industrial requirements through appropriate BHJ
selection as a promising route for further improvements 19.

Visible light photocurrent measurements are a useful tool in
determining whether NP incorporation disrupts the BHJ phase
separation thereby impeding charge transport. The lack of
significant variation in the visible light photocurrent response
for different Bi2O3 loadings indicates that the phase separation
within the BHJ remains undisturbed (Supplementary Figure 4b).
The X-ray photocurrent response of the detectors tested under a
50 kV X-ray source at −10 V bias, demonstrates a linear increase
with increasing NP loading from Bi2O3-0 to Bi2O3-40 (Fig. 2a, b),
followed by a non-linear increase for Bi2O3-60 and upwards. The
X-ray sensitivity (S) depends on the amount of X-rays stopped,
which depends on both the device cross section and its thickness,
and hence, the sensitivity of the detector is calculated by:

S ¼
R

IX�ray tð Þ � Idark
h i

dt

D ´V
ð1Þ

where, IX-ray and Idark are the current under X-ray irradiation and
in the dark respectively, D is the dose and V, the detector volume.
For the detectors studied herein, S increases from 41 (Bi2O3-10)
to 1712 (Bi2O3-80) µCmGy−1 cm−3 (Fig. 2c). We note that
Ciavatti et al.20 recently reported Bi2O3 NP-loaded PFO polymer-
based diodes for X-ray detection where the highest S observed
was 160 µCmGy−1 cm−3 which is slightly higher than the S of
Bi2O3-40 (105 µCmGy−1 cm−3). Despite the similarity in
magnitude of these S values, we note that the former work
employed a 35 kV Mo target as opposed to the 50 kVW target

used in this work. As stated and shown schematically (Fig. 1b),
the X-ray attenuation significantly improves by approximately
one order of magnitude as the X-ray spectrum shifts to lower
energies which is expected to result in the nearly similar S values
for the Bi2O3 NP-loaded PFO polymer-based diodes and the
Bi2O3-40 diodes. We expect the S values for the Bi2O3-40 diodes
to be higher if measured under low kV sources due to the
enhanced X-ray attenuation as a result of increase in the mass
attenuation, especially under high NP loading as well as due to
the use of the BHJ thick films which enables a more balanced
carrier transport. The combination of the direct conversion of X-
ray photons to charge carriers as well as the very high electric
fields at the hybrid interfaces adjacent to the NPs, is a necessity
for the much improved currents observed. The number of charges
extracted (as calculated from the X-ray photocurrent response)
vs. the number of X-ray photons absorbed (calculated based on
the bulk X-ray attenuation model—Supplementary Figure 5)
indicates a ~× 103 enhancement in charge collection efficiency
(CCE) than expected from the bulk attenuation model for Bi2O3-
10 to Bi2O3-70, and a ~× 105 CCE increase for Bi2O3-80 (Fig. 2d).
In comparison, the Bi2O3-0 system shows nearly an order of
magnitude lower CCE.

The voltage dependence of the BHJ-NP X-ray detectors display
a linear behaviour for low reverse-bias voltages (<10 V) with
sensitivity of 0.13 µC mGy−1 cm−3 for low-voltage bias (−2.5 V)
indicating its suitability for portable, real time radiation
monitoring, powered by coin cell batteries or by indoor lighting.
An X-ray photocurrent response was also obtained under short-
circuit conditions (at 0 V) (Fig. 2e, f). A non-linear X-ray current
response is observed for higher biases due to space charge-limited
conduction with a three orders of magnitude improvement
observed under −50 V. Further, as the voltage increases, the X-
ray response increases while retaining the dark currents of 6 and
41 nA cm−2 (at −0.1 and −1 V, respectively). The sensitivity of
0.13 µC mGy−1 cm−3 under reverse-bias voltages of <3 V
indicates the suitability of this technology for portable, real time
radiation monitoring, with power provided by coin cell batteries
or by indoor light harvesting photovoltaic cells.

Figure 2g shows that the rise time (to 90% of the maximum
signal) and the fall time (to 10% of the maximum signal)
increases as the Bi2O3 loading increases. The slow response under
reverse bias is due to the trap states generally present in metal
oxide surfaces21 and between the metal/semiconductor inter-
faces22. Further development in passivation of these defects is
expected to significantly improve the response time of these
detectors. We note that the rise and fall times are significantly
reduced to less than 100 ms when the diodes are operated under
0 V. Another important detector metric is the linearity of the
detector response, which enables the rapid determination of
the X-ray dose, especially for dosimetry. Supplementary Figure 6
shows a representative X-ray photocurrent response curve for the
Bi2O3-40 device in which an excellent linear response is observed.

An area of significant interest of X-ray imaging is the
development of flexible, conformable imagers, a feature not
enabled by current digital flat panel X-ray detectors. In order to
evaluate the performance of the BHJ-NP detectors under
deformation, we fabricated the optimized Bi2O3-40 X-ray
detectors on a flexible substrate. The detectors demonstrate a
nearly unchanged, high sensitivity of 280 µC mGy−1 cm−3

(Fig. 2h) both prior to, and after undergoing 10 bend cycles of
~3 mm bend radius (Fig. 2i). A slight variation in the rise and
decay constant was observed possibly due to the poor mechanical
properties of the contact materials or the use of a fullerene-based
acceptor, as opposed to an all polymer-based BHJ, which might
have deteriorated the mechanical properties of the BHJ23.
Based on our concept of hybrid organic–inorganic materials for
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X-ray detectors, many new and more suitable combinations can
now be examined for future detectors.

A major potential application for such conformable X-ray
detectors is, as dosimeters to be used in combination with a
medical linear accelerator (LINAC), which are widely used for
cancer therapy. The use of a conformable dosimeter as an in vivo
detector on the surface of the patient or within a body cavity is
highly likely to enable a more accurate X-ray delivery to patients
thereby minimizing additional normal tissue damage as well as
potential risks related to secondary cancer induction. A recent
review in this field has recommended that all the radiotherapy
treatments with curative intent should be verified through in vivo
dose measurements in combination with pre-treatment checks24.
As such, our optimized Bi2O3-40 detectors were tested under
6 and 15 MV X-rays from a medical LINAC (Fig. 3). Under a
114 µGy s-1 dose rate and −10 V reverse bias, the detector
delivered a sensitivity of 30 and 58 µC mGy−1 cm−3 for 6 and 15
MV X-rays, respectively. These values are nearly ×100 higher
than those reported for organic photodetectors tested under 6 and

15 MV LINAC X-rays using Gd2O2S:Tb as a scintillator9,25,
therefore demonstrating that the BHJ-NP architecture developed
here is a promising dosimeter concept for accurate dose delivery.
It is noted that the Bi2O3-40 device did not show a noticeable
performance degradation when exposed to 6 and 15 MV X-rays
over several X-ray exposure cycles which results in a cumulative
exposure dose of 0.15 Gy.

Structural characterisation. We examined the impact of the
Bi2O3 NP inclusion on the structural properties of the P3HT:
PC70BM through Grazing Incidence Wide Angle X-Ray
Scattering (GI-WAXS) (Fig. 4a). While the intensity of the
Bi2O3 diffraction rings increases with increasing Bi2O3 loading,
a high P3HT crystallinity is also observed for all films,
peaking at Bi2O3-40, with a slight reduction in the Bi2O3-60
to Bi2O3-80 devices. Further structural characterisation is
explained in Supplementary Figures 7, 8 and Supplementary
Note 2, 3.
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Energy dispersive X-ray analysis carried out on the BHJ-NP
film cross sections (Fig. 4b) shows a uniform Bi2O3 NP
distribution throughout the device thickness, indicating a
homogeneous distribution of NPs and minimal dead volume
without any NP sedimentation unlike previous reports10.
Such distribution of the NPs offer an efficient X-ray to
charge direct conversion, throughout the entirety of the
device thickness. SEM and atomic force microscopy
topographical analysis (Supplementary Figure 9) of the films sug-
gests NP aggregation on the film surfaces which we
have previously reported to enable efficient charge extraction
through enhancements in the electric field via metal electrode
structuring 26.

Charge transport analysis. Transport of both electrons and holes
was analysed by photo-induced time-of-flight (TOF), a technique
widely used to measure the charge carrier transport in various
low mobility semiconductors27. The mobility (μ) of the charges
is determined from28 μ ¼ d2=ðttrans ´VÞ where d is the
sample thickness and V is the biased voltage. Figure 5a and
b gives an example of TOF characteristics for electrons in a
Bi2O3-20 device. Calculation of the carrier mobilities from the
TOF transients indicates balanced electron and hole mobilities
of ~10−3 cm2 V−1s−1, with minor variation occurring for dif-
ferent electric fields (Fig. 5c, d). These values are comparable to
those observed for thinner P3HT:PC70BM photovoltaic devices29.
The Bi2O3-40 device exhibits the highest charge carrier mobility,

e
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which is in agreement with the high crystallinity observed in the
GI-WAXS as explained previously, as well as through DSC given
in Supplementary Information 8 where a high crystallinity in
excess of 45% is observed.

An important point for consideration in the development of X-
ray detectors is their CCE, described by the Hecht equation14;

Q ¼ Q0
μhτhE
d

1� exp � x
μhτhE

� �� �
þ μeτeE

d
1� exp � d � x

μeτeE

� �� �� �

ð2Þ
Here, Q and Q0 are the number of charges extracted and
generated respectively at a distance x from the anode, E is the
electric field and µh, µe, τh and τe are the hole and electron
mobilities and transit times, respectively. Figure 5e exhibits the
collected electron charge for different devices with a fit for the
Hecht equation. For the BHJ-NP detectors, the CCE of electrons
and holes separately are ~63% with relatively similar μτ product
of μτ �10−7 cm2 V−1.

Origins of high sensitivity. As discussed previously, a thousand-
fold increase in charges extracted is observed with respect to
the absorbed X-rays for Bi2O3-10 to Bi2O3-70 devices which
increases to ~× 105 for Bi2O3-80 devices (Fig. 2d). An important
effect for enhanced sensitivity is impact ionization due to hot
X-ray photoelectrons (PEs) and holes which enables ~103 free
carriers to be generated per photon30. However, the CCE of ~63%
points towards the possibility to an additional mechanism for
sensitivity enhancement. One contributing factor towards this
enhancement is photoconductivity gain, which results from
trapping either electrons or holes14. The emergence of rise decay
times well exceeding 100 ms from the device Bi2O3-50 upwards
suggests photoconducting gain as a possible sensitivity enhance-
ment mechanism for Bi2O3-50 devices and upwards. However,
the <100 ms rise times for the lower NP loading is indicative
of a different gain mechanism that enables fairly high rise and
decay times to be observed.

In astrophysical environments, it is well known that dust and
ice NPs efficiently scatter X-rays due to their grain geometric sizes
being on the same scale as the photon wavelengths31,32. In such
studies, the classical Mie model is used as an approximation in
determining differential and total scattering cross sections for
nano-sized particles32. Mie-scattering results when electromag-
netic radiation (EMR) interacts with particles with dimensions
larger than the EMR wavelength. Due to the sub-nanometre
wavelength of X-rays, NPs are extremely efficient Mie scatters of
X-rays where the ratio of scattered X-ray intensity Is λð Þ, to the
irradiated X-ray intensity IR λð Þ; can be found through 33,

IS λð Þ
IR λð Þ ¼

Z Ro

rd

Z π

0

Z 2π

0
sin θdθdφ dr

Z amax

amin

∂nðr; aÞ
∂a

f λ; θ; að Þj j
1þ r2

R2 � 2 r
R

da

ð3Þ
where R and rd are the distance from the X-ray source to the
detector and the detector thickness. a is the NP radius, θ is the X-
ray scattering angle, φ is the Azimuthal angle with respect to the
axis source-detector and λ is the radiation wavelength. The
differential cross section for the scattering of unpolarised
radiation is given in Supplementary Note 4.

In order to assess the impact of the NP size on the Mie
scattering of X-rays, we simulated the Mie-scattering process for
spherical Bi2O3 NPs with diameters (d) of 20, 40 and 100 nm. The
NP size is crucial for detector sensitivity as NPs in the quantum
dot regime (<10 nm) lead to indirect X-ray detection34, while
large nanoparticles (≥100 nm) reduce the extraction probability
for charges generated within the NP and also reduce the

differential scattering cross section as the particle size becomes
very much greater than the X-ray wavelength31. These simula-
tions do not take into consideration the effect of an ensemble
of NPs, particle size distribution of the NPs, the formation of
NP clusters, or deviations in the aspect ratio from a simple
spherical geometry. Figure 6a shows the angular dependent
differential cross sections for photon energies ranging from 1 to
30 keV for d= 40 nm NPs, where a high scattering effect can be
seen at small angles. Considering a simplistic scenario where
the Bi2O3 NPs are arranged in a periodic structure throughout
the detector volume, an incident X-ray photon (on a NP) with
energy of 8 keV (Ei) has a high scattering cross section within 2°
(Supplementary Figure 10 and Supplementary Note 5). Under
elastic scattering this photon will be scattered by ~45 NPs within
the detector volume. However, as Mie scattering is an inelastic
process, the scattered photon will have a lower energy (Es) than
Ei. Based on the X-ray attenuation curve for Bi2O3, this results in
the deposition of more energy (equivalent to Es) as the scattered
photon interacts with a subsequent NP (Fig. 6b, c). Therefore,
tuning the NP loading such that two NP scattering sites are
placed in close proximity to each other enables a significant
enhancement (×100) in the X-ray path length due to the X-ray
scattering process, and energy deposited even within layers that
are dimensionally “thin” for X-ray detection (i.e. <100 µm).

Following the above simulations, we proceeded to confirm the
predicted enhancement in X-ray scattering through Grazing
Incidence-Small Angle X-ray Scattering (GI-SAXS) for BHJ-
Bi2O3 NP films (same composition) consisting of three different
NP sizes (d= 20, 40 and 100 nm) (characterization of the Bi2O3

NPs used in this study is given in Supplementary Figure 11a, c
and Supplementary Note 6). The comparison between the
simulation and experimental scattering (at 8 keV) is given in
Fig. 6d. The GI-SAXS results are in good agreement with the
predictions based on the Mie-scattering effects, with approxi-
mately an order of magnitude difference in X-ray scattering
at angles < 0.75° for the d= 20 and 40 nm NP dimensions.
However, as the NP diameter increases, up to 100 nm, the X-ray
scattering is reduced by two orders of magnitude as compared
to the d= 40 nm device. While this observation is not
supported by the d= 100 nm simulation carried out for a single
sphere, GI-SAXS analysis (Supplementary Figure 11b) indicates
that the X-ray scattering in this film takes place from ~ 15 nm
sized features. This is indicative of the importance of optimum
NP packing in these films to achieve the desired Mie-
scattering effects.

In order to assess the impact of the Mie-scattering process
on the detector sensitivity, X-ray detectors were fabricated using
the three different NP sizes (d= 20, 40 and 100 nm) under
the Bi2O3-40 condition, and tested under a 50 kV X-ray source
(Fig. 6e, f). The d= 40 nm NP detectors show a three times
higher response compared to the d= 20 and 100 nm NP devices,
which is in good agreement with the enhanced X-ray scattering
theoretically predicted for the d= 40 nm NPs. We note that
while quantum mechanical effects due to nanoscopic features
can also influence the scattering processes this would require
more in-depth theoretical and experimental studies, which are
outside the scope of this work.

Discussion
In conclusion, we have developed a hybrid ‘inorganic in organic’,
direct transduction X-ray detector that delivers outstanding
sensitivities of 1712 and 58 µCmGy−1 cm−3 for soft and hard
X-rays respectively. Furthermore, flexible detectors also show a
high sensitivity approaching 300 µCmGy−1 cm−3, highlighting
the promise of the technology for dosimetry and imaging in
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non-planar architectures. The improved X-ray sensitivity is a
result of impact ionization, and an enhanced path length due to
Mie scattering and the efficient separation, and transport of these
by the BHJ-NP architecture resulting in high-charge collection
efficiencies (>60%). Based on this concept, a preliminary flat
panel imager has also been demonstrated. The method of direct
detection and imaging, combined with low cost, flexibility and
scalability for large-area manufacture, improves on current solid

state X-ray detector performance by 2–3 orders of magnitude,
under low voltages, while delivering novel attributes suitable
for a range of current and previously unexplored detection and
imaging applications.

Methods
Materials. Regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT, 40 mg, Rieke
4002 EE) and [6,6]-Phenyl C71 butyric acid methyl ester (PC70BM, 40 mg, 99%
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pure; Solenne) were added to dichlorobenzene (1 ml) to produce a P3HT:PC70BM
(Bi2O3-0) solution. Bi2O3 nanoparticles (β phase with a tetragonal crystal structure;
38 nm diameter; surface area 18 m2 g−1; Alfa Aesar) were dispersed in P3HT:
PC70BM solution to give Bi2O3 concentrations of 10 (Bi2O3-10), 20 (Bi2O3-20), 30
(Bi2O3-30), 40 (Bi2O3-40), 50 (Bi2O3-50), 60 (Bi2O3-60), 70 (Bi2O3-70) and 80
(Bi2O3-80) mg ml−1.

Device fabrication. Rigid devices were fabricated on ITO (In2O3:Sn) glass
substrate (15 mm × 15 mm, 10 Ω per square, Luminescence Technology Corp.)
and flexible devices were fabricated on Kapton substrates (15 mm × 15mm,
Dupont), with a patterned chromium (Cr; 10 nm)/gold (Au; 50 nm) bilayer
contact deposited as the anode using e-beam evaporation. A electron blocking and
hole transporting Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)
(PEDOT:PSS; P VP Al 4083; Heraeus) layer was spin coated in air (5000 rpm
for 40 s) and annealed at 150 °C for 10 min to give a thickness of 40 nm. Bi2O3

solutions (90 µl) were then casted. Devices were annealed (60 °C) for 20–45 min in
air, until a relatively dry layer was obtained. After the low temperature
annealing process, all the devices were annealed at 140 °C for 10 min in a N2 glove
box (MBraun MB20G). Devices were kept under vacuum at a pressure of less
than 3 × 10−6 mbar for 24 h to remove any residual solvent. This was followed
by deposition of the hole blocking layer (5 nm thickness), 1-2,9-dimethyl-4,7-
diphenyl-1,10-phenanthroline (BCP; sublimed grade, Sigma Aldrich, 99.99% pur-
ity) followed by deposition of an Al cathode (~150 nm) by thermal evaporation.
Device encapsulation was carried out with the deposition of UV light cure adhesive
glue (20 µl of Ossila Ltd) pressed with an encapsulation glass slide (Ossila) for the
rigid devices, and a Kapton sheet for the flexible devices and the epoxy UV cured
for 5 min.

Electrical characterization. All the measurements are carried out in air at room
temperature using an active device area of 0.68 cm2. A Keithley 2400 source
measure unit was used to measure the current-voltage characteristics. The pho-
tocurrent performances of the devices were characterised in air using a 150W Xe
arc lamp solar simulator (Abet Technologies) fitted with an AM 1.5G filter. A
reference Si cell (Newport, PVM 165) was used to adjust the intensity of the lamp
to 100 mW cm−2.

X-ray irradiation and characterization. Six devices were tested for each X-ray
irradiation measurement. Three different X-ray beam sources were employed for
the characterisation of the detectors:

1. A tungsten tube X-ray beam (Seifert RP-149 Semiconductor Irradiation System)
with accelerating voltage of 50 kV under a dose-rate range of 27–131 µGy s−1.
Dose calibration was completed using an ion beam chamber (Radcal; 10 × 6–6).
A Keithley 2400 source measure unit was used for recording the electrical
characteristics.

2. A 70 kV X-ray source (Siemens MEGALIX Cat Plus 125/40/90, 124GW) with
a tungsten anode. The X-ray spectrum was filtered with a 2.5-mm-thick Al plate.

3. 6 and 15 MV X-rays from a multi-mode linear accelerator (Clinac iX, Varian
USA) located at the Royal Surrey County Hospital. Dose rates from 100 to 400 cGy
min−1 were provided by the LINAC and a Keithley 2400 source measurement unit
was used for recording the electrical characteristics of the devices.

Image readout and processing. An X-ray imager was fabricated using a method
reported elsewhere7 under the device architecture of ITO/PEDOT:PSS/P3HT:
PC70BM:Bi2O3/Au. The P3HT:PC70BM:Bi2O3 ratio is 1:1:1 (equivalent to Bi2O3-40
device) with an active layer thickness of 250 µm.

X-ray beam source (2) was used for the characterisation.
Images were taken by custom-made driving and readout electronics with a

commercial available readout IC (ROIC) (ISC9717 from Flir). The backplane of the
imager consists of a Borosilicate glass substrate with an array of 256 × 256 a-Si:H
TFTs with 98 μm pixel pitch. The signal at the input was simultaneously integrated,
amplified, low pass filtered and converted from analog to digital with a 14-bit
converter. The integration time was 10 ms and the integrator feedback capacitance
Cf was 4 pF. To eliminate fixed pattern noise and image inhomogeneity, a flat
fielding has been performed.

GI-SAXS. Devices for GI-SAXS were fabricated as stated above, but with 20, 38 and
100 nm Bi2O3 NPs in Bi2O3-40 devices. Measurements were completed on a XEUSS
2.0 (Xenocs, France) equipped with a Cu Kα microfocus source and a Pilatus 300k
detector (Dectris, Switzerland). The scattering vector (q) range of the data was
calibrated using a silver behenate standard material. The detector was positioned
2.495m away from the sample to utilise the lowest q range available. The sample
was aligned such that the surface was in the centre of the beam and parallel with the
beam. For the GI-SAXS measurements, the sample was tilted by 1°. This moved the
specular reflection sufficiently far away in q that the scattering from the particles on
the surface could be measured. The scattering was recorded for 30min.

GI-WAXS. X-ray measurements were performed with a Xeuss 2.0 (XENOCS,
France) system. The system is equipped with a MetalJet (Excillum, Sweden)

liquid gallium source, providing a 9.24 keV X-ray beam collimated to a beam
spot of 400 µm laterally at the sample position, measuring the full sample length.
X-ray diffraction patterns were acquired with a Pilatus3R 1M 2D detector
(Dectris, Switzerland) placed at ~311 mm from the sample. The distance
between the sample and the detector was measured using a silver behenate
calibrant in transmission geometry. Samples were measured in GI-WAXS
geometry at an incident angle of 0.3° (calculated to probe the entire film thickness)
under vacuum atmosphere. Diffraction images were then remapped from pixel
to scattering vector coordinates with the calibration equations reported35 and by
using MATLAB software.

SEM/AFM/EDX. SEM was carried out using a FEI Quanta 200F Environmental
scanning electron microscope and AFM was carried out using a VEECO Dimen-
sion 3000 atomic force microscope. EDX analysis was carried out using an x-act
Oxford Instrument system coupled with the SEM.

Time-of-flight. Devices were fabricated as stated above, but with a 20 nm thick Al
contact for irradiation through the Al (hole transport analysis). As an excitation
source, a 6 ns-pulsed Nd:YAG laser (Quantel, 532 nm, 45 mJ) was used, and the
bias voltage was applied to the sample using a Keithley 2400. The transient current
was measured as the voltage drop over a load resistor (10 kΩ) and recorded with an
oscilloscope (Agilent infiniium 1 GHz, 4 GSa s−1)

Simulation. FLUKA, a Monte Carlo simulation programme designed for the
interaction and transport of articles and nuclei in matter, was used for simulation
of the X-rays interaction with the active material. In order to simulate the energy
depletion of our devices, the geometry of the P3HT:PC70BM BHJ with embedded
Bi2O3 NPs (the thickness variation of the active layer was obtained experimentally)
were modelled and irradiated with 50 kV X-ray photons to be processed by the
FLUKA programme. Mie-scattering differential cross section simulations were
carried out using MATLAB software, using a Mie function.

Data availability. The data supporting the findings of this study is available at
6571337.
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