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RNA-Seq improves annotation of protein-coding
genes in the cucumber genome
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Abstract

Background: As more and more genomes are sequenced, genome annotation becomes increasingly important in
bridging the gap between sequence and biology. Gene prediction, which is at the center of genome annotation,
usually integrates various resources to compute consensus gene structures. However, many newly sequenced
genomes have limited resources for gene predictions. In an effort to create high-quality gene models of the
cucumber genome (Cucumis sativus var. sativus), based on the EVidenceModeler gene prediction pipeline, we
incorporated the massively parallel complementary DNA sequencing (RNA-Seq) reads of 10 cucumber tissues into
EVidenceModeler. We applied the new pipeline to the reassembled cucumber genome and included a comparison
between our predicted protein-coding gene sets and a published set.

Results: The reassembled cucumber genome, annotated with RNA-Seq reads from 10 tissues, has 23, 248 identified
protein-coding genes. Compared with the published prediction in 2009, approximately 8, 700 genes reveal
structural modifications and 5, 285 genes only appear in the reassembled cucumber genome. All the related
results, including genome sequence and annotations, are available at http://cmb.bnu.edu.cn/Cucumis_sativus_v20/.

Conclusions: We conclude that RNA-Seq greatly improves the accuracy of prediction of protein-coding genes in
the reassembled cucumber genome. The comparison between the two gene sets also suggests that it is feasible
to use RNA-Seq reads to annotate newly sequenced or less-studied genomes.

Background
As new sequencing technologies develop, thousands of
eukaryotic genomes across all kingdoms of life will be
sequenced during the next decade [1,2], and this trend
will spark an improvement in our knowledge of evolu-
tionary biology and functional genomics. Genome anno-
tation is a stepping stone to bridge the gap between
genomic sequences and the biology of organisms [3]. It
can be stated that the quality of genome annotations
represents the value of genome sequences.
Gene prediction, within the process of genome annota-

tion, is a complex endeavor. In eukaryotic species, it is
usually carried out by integrating multiple sources of evi-
dence [4], such as complementary DNA (cDNA), proteins
in closely related species, and de novo predictions [5].
Representing the integral sequences of messenger RNAs

(mRNAs), full-length cDNAs (FL-cDNAs) are recognized
as the gold-standards for discovering and annotating gene
structures in eukaryotic genomes [5,6]. Additionally, even
incomplete cDNAs, i.e. expressed sequence tags (ESTs),
provide more accurate evidence than other sources.
Nevertheless, until recently, the sequencing of cDNA was
a laborious and capital-intensive task.
Thanks to the massively parallel cDNA sequencing

(RNA-Seq) technologies [7], scientists can obtain cDNA
fragments from transcriptomes with reasonably complete
coverage in a reduced time scale and at a lower cost [8].
With its informative content, RNA-Seq is expected to
revolutionize the prediction of genes [9]. RNA-Seq has
been used to improve the genome annotations, including:
(i) correcting predicted gene structures [10]; (ii) detecting
new alternative splicing isoforms [11]; and (iii) discover-
ing new genes and new transcripts [12,13]. However,
most of these applications focused on species with well-
annotated genomes, such as human, mouse, yeast, Arabi-
dopsis thaliana, and rice. Among these studies, Trapnell,
Williams and Pertea et al. and Guttman, Garver and
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Levin et al. correctly reconstructed full-length transcripts
for most known expressed genes in specific mouse tissues
[12,13]; nevertheless, their procedures still need to be
tested in other eukaryotic genomes, because of varied
genome characteristics [8]. For less-studied genomes,
Denoeud, Aury and Da Silva et al. used the short RNA-
Seq reads to build thousands of gene models for the
grape genome [14]; however, fewer genes were predicted
than in the public annotation [15].
Although far from perfect, the considerable potential

demonstrated in these studies for the applicability of
RNA-Seq in gene predictions encourages us to update the
original gene prediction of the cucumber genome (Cucu-
mis sativus var. sativus line 9930), which was annotated
and published in 2009 [16]. Therefore, based on EVidence-
Modeler (EVM) [17], we built a genome annotation pipe-
line in which we incorporated analyses of Solexa/Illumina
RNA-Seq reads. In an attempt to provide a high-quality
gene set for the scientific community and for further
study, we reassembled and reannotated the cucumber gen-
ome. We subsequently compared the two versions of the
gene predictions to evaluate any improvements brought
about by RNA-Seq. The comparison presented here sup-
ports the hypothesis that RNA-Seq has a positive impact
on gene prediction of the cucumber genome.

Results and Discussion
Genome reassembly
Using the improved SOAPdenovo program [18] (Release
1.04), we reassembled the cucumber genome by integrat-
ing additional large insert paired-end Illumina GA reads
from Cucumis sativus var. sativus (7.4-fold genome cov-
erage, 5 Kb insert size) and from Cucumis. sativus var.
hardwickii (3.8-fold, 5 Kb insert size; 3.2-fold, 10 Kb
insert size; see Additional file 1, Table S1 for details). The
final assembly (assemVer 2.0) spans 197 Mb and contains
12, 845 scaffolds (see Additional file 1, Table S2 for
details). This is approximately 46 Mb less than the pre-
vious assembly (assemVer 1.0) and this difference mostly
represents redundant repetitive sequences and contami-
nating sequences. The N50 and N90 contig sizes of
assemVer 2.0 are 37.9 Kb and 8.9 Kb, respectively, and
90% of the assembly falls into 153 scaffolds larger than
281 Kb. Compared to assemVer 1.0, assemVer 2.0 is
more contiguous, thus facilitating genome annotation.

Reconstructing transcripts from RNA-Seq by de novo
assembly and ‘align-then-assemble’ approaches
We obtained about 220 million Solexa/Illumina RNA-Seq
reads from poly(A) RNAs extracted from 10 cucumber
tissues (Table 1).
Two different approaches, de novo assembly and ‘align-

then-assemble’ [8], were used to reconstruct transcripts
from these RNA-Seq reads. The de novo assembly was

carried out by Inchworm, a de novo assembler of RNA-
Seq in Trinity [19], which reconstructed 802, 216 de novo
contigs from the 10 tissues (Table 1). We applied
CD-HIT [20] to remove some de novo contigs, such as
assembled artifacts with low-coverage or redundancies
from different tissues. Finally, 258, 876 de novo contigs
assembled by RNA-Seq reads remained for gene predic-
tion. In the ‘align-then-assemble’ approach, we mapped
and generated spliced alignments of the RNA-Seq reads
from each tissue to the reassembled cucumber genome
using Bowtie [21] and TopHat [22] (Table 1; Additional
file 1, Table S3 for mapping details of reads). Cufflinks
[13] was then used to reconstruct 220, 590 transcripts
belonging to 59, 481 transcriptional units from the align-
ments of 10 tissues. However, a complete open reading
frame (ORF) could be found in only 9, 964 (4.5%) tran-
scripts reconstructed by Cufflinks using getorf in
EMBOSS [23].

Reannotation of the cucumber genome
The reassembled cucumber genome (assemVer 2.0) con-
tains 23, 248 protein-coding genes with 25, 600 tran-
scripts (Table 2), 621 tRNAs, 20 rRNA, 157 snRNAs, 201
snoRNAs, 1, 025 miRNAs (Additional file 1, Table S4)
and 217, 826 transposable elements (Additional file 1,
Table S5). This version of the annotation is labeled
as annotVer 2.0 (available at http://cmb.bnu.edu.cn/
Cucumis_sativus_v20/).
Compared with the published annotation of the

cucumber genome (labeled as annotVer 1.0, Table 2),
annotVer 2.0 contains 3, 434 fewer protein-coding
genes, mostly because of the reduced size of the reas-
sembly and the removal of some contaminating bacterial
segments implied by about 2, 000 bacterial genes in
annotVer 1.0. Consistent with the reduction of gene
number in annotVer 2.0, there is an increase in the
number of multi-exon genes, which indicates an
improvement of the protein-coding prediction to some
extent, because the prediction of single-exon genes is
still unreliable in eukaryotic genomes.
Two other improvements resulting from the incorpora-

tion of RNA-Seq are the prediction of untranslated regions
(UTRs) and alternative splicing isoforms. Of the 23, 248
protein-coding genes in annotVer 2.0, 18, 690 genes have
UTRs and 1, 935 genes appear to have alternative splicing
isoforms. In general, incorporating RNA-Seq reads offers
overwhelming evidence for the prediction of these two fea-
tures. The prediction of UTRs was uncertain before the
appearance of RNA-Seq, because of the incompleteness of
ESTs and the difficulty of collecting bona fide FL-cDNAs.
Furthermore, because they are not well conserved across
species, comparative predictive techniques are not suited
to UTR detection. However, the use of high-throughput
RNA-Seq from the same species naturally removes both of
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these difficulties. Similarly, RNA-Seq provides evidence
pointing to the potential for alternative splicing, though it
is still quite difficult to determine full-length isoforms
from these short reads. With the help of de novo

assemblies and PASA assemblies [24], 2, 352 full-length
isoforms of 1, 935 genes were identified. RNA-Seq pro-
vides an opportunity to comprehensively study alternative
splicing events in cucumber, as in other species.

Table 1 Number of de novo assemblies and “align-then-assembled” transcripts

Tissues # RNA-Seq reads # De novo assembled transcripts Mapped reads # “Align-then-assembled” transcripts

Ovary 19, 247, 768 86, 994 17, 656, 392 (91.7%) 52, 530

Fertilized ovary 18, 466, 067 81, 650 17, 047, 763 (92.3%) 50, 987

Unfertilized ovary 19, 111, 746 84, 628 17, 394, 685 (91.0%) 52, 003

Root 18, 732, 466 86, 572 17, 162, 238 (91.6%) 52, 167

Stem 24, 535, 215 71, 977 22, 789, 659 (92.9%) 45, 710

Leaf 26, 400, 675 79, 344 24, 405, 569 (92.4%) 49, 351

Male flower 26, 050, 858 83, 957 24, 531, 662 (94.2%) 51, 630

Female flower 23, 818, 868 85, 345 21, 886, 487 (91.9%) 51, 701

Tendril 22, 472, 146 71, 489 20, 585, 234 (91.6%) 44, 658

Base part of tendril 21, 653, 855 70, 260 19, 556, 866 (90.3%) 44, 995

Table 2 Summary statistics and annotation comparison of cucumber genome

Genome assemVer 1.0 assemVer 2.0 assemVer 2.0

Size (bp) 243, 568, 484 197, 271, 687 197, 271, 687

GC Content 31.50% 31.86% 31.86%

Genes annotVer 1.0 annotVer 1.0 (mapped) annotVer 2.0

Number of Genes 26, 682 20, 923 23, 248

Number of Genes on Plus Strand 13, 331 10, 488 11, 656

Number of Genes on Minus Strand 13, 351 10, 435 11, 592

Mean Gene Length (bp) 2, 685 2, 966 3, 213

Gene density (Kb/gene) 9.1 9.4 8.5

Number of Transcripts 26, 682 20, 923 25, 600

Percent of Transcripts with Introns 69.37% 74.36% 81.55%

Mean Transcript Length (bp) 2, 685 2, 966 3, 314

Mean CDS Length 1, 046 1, 095 1, 134

Percent Coding 11.49% 11.64% 14.75%

Exons annotVer 1.0 annotVer 1.0 (mapped) annotVer 2.0

Number 117, 116 100, 721 136, 008

Mean Number per Transcript 4.39 4.81 5.31

GC Content 44.96% 43.73% 42.03%

Mean Length (bp) 239 228 270

Total Length (bp) 27, 991, 662 22, 988, 520 36, 686, 879

Introns annotVer 1.0 annotVer 1.0 (mapped) annotVer 2.0

Number 90434 79, 798 110, 408

Mean Number per Transcript 3.39 3.81 4.31

GC Content 32.18% 32.37% 32.44%

Mean Length (bp) 483 490 436

Total Length (bp) 43, 647, 564 39, 074, 873 48, 152, 435

UTRs annotVer 1.0 annotVer 1.0 (mapped) annotVer 2.0

Number of Genes Having UTRs NA NA 18, 690

Mean UTR Length (bp) NA NA 234

Number of 5’ UTRs NA NA 15, 703

Mean 5’ UTR Length (bp) NA NA 175

Number of 3’ UTRs NA NA 16, 737

Mean 3’ UTR Length (bp) NA NA 289.08
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Evidence Support for multi-exon genes
For the 18, 580 multi-exon genes in annotVer 2.0, we
inspected different sources of evidence for them, and the
results suggested that most of the multi-exon genes were
supported by reliable evidence, such as transcript evidence
or protein evidence [5]. In fact, there are three sources of
evidence in our pipeline: transcript evidence from RNA-
Seq or ESTs, proteins from related species, and predictions
from de novo predictors (see Methods), which actually pro-
vided introns in the final gene structures [17]. We did not
include the predictions of Augustus [25] and Geneid [26]
in this analysis because the two predictors had used RNA-
Seq information and homologous proteins, respectively.
Our analysis shows that most of the multi-exon genes

are supported by reliable evidence, such as transcripts or
proteins. In Figure 1.A, 16, 270 (87.5%) multi-exon genes
are supported either by transcript evidence or protein
evidence, while 12, 049 (64.8%) genes are supported by
all three kinds of evidence. To check which evidence has
a more positive effect on the gene prediction, we traced
the sources of evidence for full-length supported genes,
because full-length-supports, for single gene prediction,
ensure the accuracy of the gene structural prediction.
Herein, a gene that is supported by one type of evidence
is termed as full-length supported gene if all of the gene’s
introns are fully supported by the evidence. As expected,
transcript evidence from RNA-Seq or ESTs supported
more full-length genes than the other two kinds of evi-
dence for multi-exon genes in annotVer 2.0 (Figure 1.B).
In fact, 13, 342 (71.8%) multi-exon genes are full-length
supported genes when supported by transcript evidence,
while 10, 528 (56.7%) genes and 7, 447 (40.1%) genes are
fully supported by de novo predictions and protein evi-
dence, respectively.
De novo predictions are also necessary for gene predic-

tions. Although RNA-Seq has a high coverage, de novo
predictions actually support more multi-exon genes than
do transcripts (Figure 1.A), because of the large number of
genes generated by the three de novo predictors, for exam-
ple, GeneMark.hmm-ES predicted more than 40, 000
genes. Furthermore, about one tenth of the multi-exon
genes (2, 003/10.8%) are supported only by de novo predic-
tions, which indicates that de novo predictions are indis-
pensable to the completeness of the final gene sets.
As transcript evidence plays a considerable role in the

multi-exon gene prediction, we examined the contribu-
tions of RNA-Seq to the final gene set, especially when
compared with ESTs. Figure 1.C shows that most of the
ESTs are covered by RNA-Seq and none of the multi-
exon genes are supported only by ESTs. Despite the fact
that one gene in Figure 1.D is full-length supported by
one EST, we maintain that RNA-Seq could replace ESTs
in the process of protein-coding gene prediction.

Evidential support for multi-exon genes suggests that
RNA-Seq has an innate capability for high coverage in
protein-coding gene predictions. Transcript evidence is
taken as the most valuable evidence in protein-coding
gene prediction, as it often identifies exact intronic bound-
aries [6]. RNA-Seq, among all the transcript evidence that
affects gene prediction, is the one that could increase the
number of genes supported by transcript evidence and
improve the structural predictions. RNA-Seq could also be
used in place of ESTs as the major transcript evidence,
which liberates scientists from time-consuming work in
traditional cDNA sequencing projects. Although RNA-Seq
still could not replace the role of FL-cDNA in gene discov-
ery, sophisticated methods of transcript reconstruction
through RNA-Seq in the near future may help us to
reconstruct more full-length transcripts.

Improvements of protein-coding gene prediction
The prediction of protein-coding genes has many different
features in annotVer 2.0, such as longer transcripts and
coding sequences (CDS), more and longer exons, and
more and shorter introns (Table 2). To analyze the gene
structural differences between annotVer 1.0 and annotVer
2.0, we mapped the CDSs of annotVer 1.0 to the genome,
assemVer 2.0, by spaln [27]. Of 23, 216 CDSs having a hit,
20, 923 CDSs matched complete gene structures with start
and stop codons. Some of the 20, 923 CDSs mapped to
the same gene loci in assemVer 2.0, indicating that some
redundancies in the original assembly have been removed
in assemVer 2.0 (see Additional file 1, Figure S1 for exam-
ple). The comparison of gene predictions is illustrated in
Figure 2, in which 18, 328 genes in annotVer 1.0 fall into
17, 963 gene loci in annotVer 2.0. The structures of 9, 589
genes in annotVer 1.0 are consistent with the structures of
9, 338 genes in annotVer 2.0. The different number of
consistent gene structure in the two versions results from
mapping of two or more genes at one locus, as mentioned
above. Figure 2 also illustrates 2, 595 genes in annotVer
1.0 and 5, 285 genes in annotVer 2.0 that are located in
different loci in the reassembled cucumber genome. To
further compare the difference of the two gene sets, we
performed four analyses, which all suggest that annotVer
2.0 is better than annotVer 1.0.
The first analysis concerned merged or split gene struc-

tures, which map to the same locus but with different
gene numbers in the two versions (Additional file 1, Figure
S2). We found that 1, 666 genes in annotVer 1.0 merged
into 799 genes in annotVer 2.0, and 750 genes in annotVer
1.0 split into 1, 589 genes in annotVer 2.0. To discriminate
between true and false positive merged/split events, we
searched each group of genes in one locus against UniProt
plant proteins using BLASTP [28]. Each group of genes
has one merged gene in one version and several split

Li et al. BMC Genomics 2011, 12:540
http://www.biomedcentral.com/1471-2164/12/540

Page 4 of 11



genes in the other. The number and consistency of hits for
the split members decided whether a merged/split event is
optimal (see Methods). Figure 3.A illustrates that the num-
ber of optimal merged/split events in annotVer 2.0 is
greater than in annotVer 1.0.
The second analysis focused on genes at the same locus

but with different structures (see Additional file 1, Figure
S3 for example). There are 5, 824 pairs of genes, each of
which was composed of an annotVer 1.0 and annotVer
2.0 gene that only map to each other, but are structurally
different. We then launched a Pfam domain search by
InterProScan [29] and performed the global pairwise

alignments by stretcher in EMBOSS [23] on each pair
(see Methods). The search of InterProScan found 1, 817
different kinds of Pfam domains in 4, 297 (73.8%) genes
in annotVer 1.0, whereas, 1, 861 different Pfam domains
were found in 4, 399 (75.5%) genes in annotVer 2.0. In
the same way, when identity, similarity, score, and gaps
in alignments are compared, global pairwise alignments
also suggests that genes in annotVer 2.0 are more opti-
mal than genes in annotVer 1.0 (Figure 3.B).
In the third analysis, the presence of non-overlapped

locus protein-coding genes implies specific genes in differ-
ent predicted gene sets. To measure the reliability of

Figure 1 Venn diagram for sources of evidence for multi-exon gene prediction. The different colors indicate various sources of evidence,
and the numbers are the number of gene models supported by each kinds of evidence. A. Evidence support for predicted genes; B. Evidence
support for full-length supported genes; C. Comparison of contributions of RNA-Seq and ESTs to genes; D. Comparison of contributions of RNA-
Seq and ESTs to full-length supported genes.
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Figure 2 Venn diagram for protein-coding gene structural changes. Venn diagram showing the comparative analysis of gene structures
(regardless of UTRs). The number in the overlapped region represents the number of genes with the same structures; the two numbers in the
circles with the solid lines are the number of genes with the same loci but different structures; the two numbers in the dashed circles are the
number of specific genes predicted by annotVer 1.0 and annotVer 2.0 respectively.

Figure 3 Structural prediction improvement in annotVer 2.0. Comparisons of merged/split events and global alignments between genes
with different structures in annotVer 1.0 and annotVer 2.0. A. Blue bars, genes falsely merged/split in annotVer 2.0; red bars, genes optimally
merged/split in annotVer 2.0. B. Blue bars indicate genes predicted in annotVer 1.0 and annotVer 2.0 giving exactly the same result; red bars
indicate genes in annotVer 1.0 that have better statistics than their counterparts in annotVer 2.0; and green bars indicate genes in annotVer 2.0
that have better statistics compared with their counterparts with different structures in annotVer 1.0.
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version specific genes in the two sets, we compared the
percentages of BLASTP hits to UniProt plant proteins and
multi-exon genes between annotVer 1.0 and annotVer 2.0.
The BLASTP results indicated that the prediction of
annotVer 2.0 produces more genes and a higher percen-
tage of hits (3, 134, 59.3%) to UniProt than annotVer 1.0
(684, 26.4%). Meanwhile, the specific genes in annotVer
2.0 contain a significantly higher percentage of multi-exon
transcripts (4, 385, 77.8%) than those in annotVer 1.0 (1,
216, 46.9%).
Finally, a small dataset of 33 WRKY genes and 35

WRKY gene assemblies generated in an experimental
study [30] gave us an opportunity to directly compare the
accuracy of the two gene predictions. We aligned the 33
WRKY genes and 35 assemblies to the newly assembled
genome of cucumber using spaln [27] and mapped out

32 loci, where WRKY9 and WRKY10 aligned to the same
locus due to the change in assembly. The prediction in
annotVer 1.0 missed 2 loci of WRKY genes and predicted
only 22 WRKY genes with the same structures as the
experimental data. By contrast, annotVer 2.0 only missed
1 WRKY gene and 26 of them had structures consistent
with the experimental data. Even though five WRKY gene
structures in annotVer 2.0 are different from the experi-
mental data, one of them, which is supported by protein
evidence, shows a better structure than the experimental
data (Figure 4). In this example, the experimental data is
consistent with annotVer 1.0, but the transcripts recon-
structed by RNA-Seq, ESTs and homologous proteins all
indicate an extra exon at the 5’ end, whereas a single-
exon gene is predicted by annotVer 1.0. Although the
first exon boundary is different in the two isoforms, they

Figure 4 An example of WRKY gene prediction. An example of WRKY gene prediction with and without RNA-Seq reads. Green tracks are the
WRKY genes predicted in annotVer 2.0. Yellow tracks are the WRKY genes predicted in annotVer 1.0. The purple track is the GeneWise alignment
of proteins and the red track is shown for the transcripts generated by PASA from de novo contigs. The orange track shows the transcripts
reconstructed by ‘align-then-assemble’ approach implemented by Cufflinks and the dark red track illustrates de novo contigs and ESTs of
cucumber aligned by spaln. The blue track is the FL-cDNA of the cucumber WRKY assembly and gene aligned by spaln, and the two pink tracks
are proteins and ESTs aligned by spaln.
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are supported either by GeneWise or transcript evidence.
Thus in this case, two genes in annotVer 1.0 are merged
into one gene with two isoforms when predicted in
annotVer 2.0.
In all four analyses, annotVer 2.0 shows a better perfor-

mance than annotVer 1.0. Although the processes of gen-
eration of the two gene sets are different (Glean for
annotVer 1.0 [16]), they are comparable, because the prin-
ciples of evidence combination are nearly the same. In
fact, annotVer 2.0 used less protein evidence and homolog
EST evidence than did annotVer 1.0 [16]; however, using
RNA-Seq compensates for this minor deficiency and actu-
ally obtains a better gene set. Thus, adopting the RNA-Seq
technique proved to be vital to the quality of protein-cod-
ing gene prediction in the reassembled cucumber genome.

Conclusions
A genome project requires continual refinement, even
after the publication of its genome sequence. Some pro-
blems, such as bacterial DNA contamination during
genome sequencing and redundancy of repetitive DNA
sequences, were found in the first assembly of the
cucumber genome; therefore, we reassembled the
cucumber genome. After RNA-Seq evidence of tran-
scription was generated, we improved the prediction of
protein-coding genes in the reassembled cucumber gen-
ome, based upon the RNA-Seq reads. In the new assem-
bly, about 8, 700 protein-coding gene structures are
modified and about 5, 200 genes are newly predicted.
Based upon the comparison of the gene sets of the two
versions, we conclude that the considerable improve-
ment in protein-coding gene prediction is largely due to
the use of the RNA-Seq technique. We also suggest
that, for newly sequenced or less-studied eukaryotic
genomes, RNA-Seq is a good choice for providing evi-
dence for prediction of protein-coding genes, as it
reduces the necessity for EST sequencing and increases
the utility of each round of genome annotation.

Methods
Genome reassembly
To link more contigs, we sequenced additional long insert
sized (5 kb) paired-end Illumina GAII reads of Cucumis
sativus var. sativus, representing approximately 7.4-fold
genome coverage.
We first assembled paired-end short reads with short

insert sizes (insert size < 1 kb) into contigs. To increase
the assembly accuracy, only high quality reads were con-
sidered. These contigs were further linked into scaffolds
by paired-end relationships (300-550 bp insert size), mate-
pair reads (2-10 kb), fosmid ends (~40 kb), and BAC ends
(~100 kb). We then filled gaps in all the reads generated
by both Illumina GAII and Sanger methods.

During the process of linking contigs to scaffolds,
paired-end reads with long insert sizes (approximately
3.8-fold genome coverage, 5 Kb insert size; approxi-
mately 3.2-fold, 10 Kb insert size) from wild cucumber
(Cucumis sativus var. hardwickii) were also used.

RNA-Seq experiment
Cucumis sativus var. sativus line 9930 was used in all
experiments. A total of 10 tissues were collected: root,
stem, leaf, male flower, female flower, ovary, expanded
ovary under fertilization (7 days after flowering),
expanded ovary not fertilized (7 days after flowering),
base part of tendril, and tendril. In accordance with the
manufacturer’s instructions, total RNA was isolated with
TRIzol (Invitrogen, Carlsbad, CA, USA) from each sam-
ple. Samples were treated with RNase-free DNase I for
30 minutes at 37°C (New England BioLabs, Ipswich, MA,
USA) to remove residual DNA. The OligoTex mRNA
mini kit (QIAGEN, Hilden, Germany) was used to isolate
poly(A) mRNA from the total RNA samples. The first
cDNA strand was synthesized using random hexamer
primers and reverse transcriptase (Invitrogen). The sec-
ond strand cDNA was synthesized using RNase H (Invi-
trogen) and DNA polymerase I (New England BioLabs).
The sequencing library was constructed following the
manufacturer’s instructions (Illumina, San Diego, CA,
USA). Fragments of approximately 200 bp were excised
and enriched by 18 cycles of PCR. The fragments were
loaded onto flow cell channels at a concentration of 2
pM to generate paired-end reads with lengths of 75 bp.
The Illumina GA processing pipeline v0.2.2.6 was used
for image analysis and base calling. The data is obtainable
with the accession number SRA046916 in the Sequence
Read Archive (SRA) at NCBI.

Reconstructing transcripts
De novo assembly was carried out by Inchworm [19],
which utilizes the Kmer graph method to assemble Illu-
mina RNA-Seq reads. Although it prefers strand-specific
RNA-Seq reads, Inchworm can also deal with the non-
strand-specific RNA-Seq reads generated from the
RNA-Seq experiments. Low-coverage artifacts or redun-
dancies from different tissues were removed by CD-HIT
[20], with an identity threshold of 95%.
In the ‘align-then-assemble’ approach, we firstly mapped

the RNA-Seq reads from each tissue to the reassembled
cucumber genome using Bowtie [21] and the spliced
aligner TopHat [22]. Cufflinks [13] assembled the results
of TopHat into transcript assemblies, followed by the inte-
gration of transcript assemblies from different tissues.
Transcripts that were shorter than 150 bp were deemed as
false positives and removed before gene prediction. We
used getorf in EMBOSS [23] to find ORFs in the
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transcripts. Only ORFs with start and stop codons were
regarded as complete ORFs.

Genome reannotation
RepeatMasker masked the repeat elements in the newly
assembled genome using a custom library. The custom
library included: (i) Repbase [31]; (ii) TIGR plant repeat
database [32]; and (iii) a cucumber de novo transposable
element library built in-house. Three types of de novo soft-
ware, PILER-DF [33], RepeatScout [34], and LTR_Finder
[35] were used to predict species-specific transposable ele-
ment sequences in the cucumber genome. PILER-DF and
RepeatScout were used for the repeat sequences in
cucumber assembly. Based on the cucumber assembly,
full-length LTR retrotransposons were identified using
LTR_Finder. We filtered repeat elements belonging to
rRNA, satellites, and organellar sequences by BLASTN.
Elements belonging to high-copy number genes were fil-
tered by BLASTX searching of UniProt-SwissProt (release
2010_07). After removing redundant repeat elements by
all-versus-all BLASTN and manual curation, the de novo
TE library for cucumber was obtained.
We used spaln [27] and PASA [24] to align 90, 307

cucumber ESTs sequenced by Guo, Zheng and Joung et al
[36], 260 cucumber FL-cDNAs downloaded from NCBI,
and transcripts reconstructed by Inchworm [19]. The
result of ‘align-then-assemble’ procedure was also directly
used as transcript evidence. PASA strictly aligns EST or
cDNA sequences to the genome and assembles the aligned
sequences into transcripts called ‘PASA assemblies’. ORFs
are found from these PASA assemblies as a training set.
We selected genes with complete structures and removed
some redundant genes with 70% identity at the amino acid
level by CD-HIT [20].
Five de novo gene predictors were used on the masked

genome. GlimerHMM [37], SNAP [38], and Augustus
[25] were trained with the training set generated by
PASA; Geneid [26] used the parameter of Cucumis spp.;
and GeneMark.hmm-ES [39] only used unmasked geno-
mic data and was self-trained.
The dataset used for protein homology alignment

included: (i) UniProt-SwissProt plant proteins (release
2010_07); (ii) Arabidopsis thaliana proteins (TAIR9,
Augustus 2009 release); and (iii) Oryza sativa proteins
(TIGR Release 5.0, January 2007 release). We used spaln
[40], TBLASTN [28] and BLAT [41] to search for nucleo-
tide homology in the cucumber genome. Scipio [42] made
use of the BLAT result to identify intron-exon boundaries.
Proteins with the highest score in TBLASTN were pro-
cessed by BLAST2GENE [43] to predict gene structures
by GeneWise [44].
EVM, which is an effective automated annotation com-

biner [17], computed the gene structures for the reas-
sembled genome of cucumber as a weighted consensus

of all available evidence obtained above. The gene models
generated by EVM were updated by PASA with ESTs and
de novo assembled transcripts. This process modified
exons or gene models, added UTRs, and found alterna-
tively spliced isoforms. Finally, we removed genes encod-
ing proteins with less than 50 amino acids and
incomplete genes without start and stop codons. Gene
models and the different evidence were visualized by
GBrowse [45].
Three non-coding RNA gene predictors were used

independently to identify different types of non-coding
RNA genes in the cucumber genome. tRNA-SE [46] was
used to identify tRNA genes. Snoscan [47] was used to
identify C/D-box small nucleolar RNAs. INFERNAL
[48] searches against the Rfam [49] database identified
miRNAs, small nuclear RNAs, and H/ACA-box small
nucleolar RNAs.

Comparing gene structural prediction
In annotVer 1.0, 26, 882 CDSs were aligned to the reas-
sembled cucumber genome by spaln [27] and gene
structures that have less than 50 amino acids or without
start and/or stop codons were removed.
During the comparison, only the coding regions were

considered, because the UTRs had more changes between
the two versions. Genes with at least one base pair over-
lapping the coding region were assumed to occupy the
same gene locus. If genes occupying the same gene locus
had different structures in all alternative spliced isoforms,
they were viewed as genes with different structures. We
filtered genes with alternative spliced isoforms to simplify
further analyses.
When genes mapped to the same locus but with differ-

ent numbers in the two gene sets (i.e. genes that were
merged/split into one or more genes in the other version),
we grouped each locus as a group. We then used BLASTP
[28] to search each group against UniProt plant proteins
(release 2010_07). A group was treated as false positive
when no hits were found in UniProt. If a merged gene in
annotVer 2.0 and more than two of its counterparts in
annotVer 1.0 had the same best hit, the merged event was
regarded to be optimal. On the other hand, if the split
genes in annotVer 2.0 had more than one best hit, the split
structures were considered to be better than the merged
structure in annotVer 1.0. In exceptional cases, where only
one of the split genes has a best hit, we were confused as
to which was better, because there are two conditions we
have to consider. If the best hit was longer than the aligned
split gene without connection to other split ones, the
merged gene would not seem to be better than the split
ones. On the other hand, if the best hit was as long as the
aligned split gene without other hits to the remaining split
ones, then the split genes would also not seem to be better
than the merged one.
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If different structural genes in the two versions were
mapped to the same locus, methods developed by Lorenzi,
Puiu and Miller et al. [50] were modified and used to
describe the structural changes. First, we searched the
Pfam domain for each pair of genes with different struc-
tures by InterProScan [29]. Then, we used the proteins of
each pair to search UniProt plant proteins (release
2010_07). The proteins in the pairs with the same best hit
were aligned to the matching proteins in UniProt by
stretcher in EMBOSS [23]. Gene structures with higher
identity, similarity, score, and fewer gaps were considered
as better structures.

Comparing non-overlapped locus protein-coding genes
Comparison of non-overlapped locus protein-coding
genes in the two versions was carried out by BLASTP
[28] searches against UniProt plant proteins (release
2010_07), with an E value threshold of 10-5. The percen-
tage of multi-exon genes was also used as an index to
evaluate the gene set for the inaccuracy of single-exon
gene prediction.

Validation by experimental study of WRKY gene family
A dataset of 33 cucumber WRKY genes and 35 assembled
WRKY gene cDNAs generated in a previous experimental
study [30] were aligned to the reassembled cucumber gen-
ome by spaln [27], followed by manual checking of the dif-
ferences between the alignment results and gene
predictions in annotVer 1.0 and annotVer 2.0.

Additional material

Additional file 1: Supplemental Tables and Figures. Table S1.
Summary of the additional sequencing data from Cucumis sativus var.
hardwickii and domestic Cucumis sativus var. sativus to reassembled the
genome of Cucumis sativus var. sativus. Table S2. Statistics of cucumber
genome ressembly. Table S3. Mapping RNA-seq reads onto the
reassembled cucumber genome. Table S4. Prediction of non-coding
RNAs in the two annotations. Table S5. Prediction and classification of
transposable elements in the two annotations. Figure S1. Genes in
annotVer 1.0 mapped to the same locus of the reassembly of cucumber
genome. Figure S2. Two genes in annotVer 1.0 merged into one gene in
annotVer 2.0. Figure S3. Genes in annotVer 1.0 and annotVer 2.0 mapped
to the same locus but with different structures.
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