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Abstract

Gene Ontology is used extensively in scientific knowledgebases and repositories to orga-

nize a wealth of biological information. However, interpreting annotations derived from dif-

ferential gene lists is often difficult without manually sorting into higher-order categories. To

address these issues, we present GOcats, a novel tool that organizes the Gene Ontology

(GO) into subgraphs representing user-defined concepts, while ensuring that all appropriate

relations are congruent with respect to scoping semantics. We tested GOcats performance

using subcellular location categories to mine annotations from GO-utilizing knowledgebases

and evaluated their accuracy against immunohistochemistry datasets in the Human Protein

Atlas (HPA). In comparison to term categorizations generated from UniProt’s controlled

vocabulary and from GO slims via OWLTools’ Map2Slim, GOcats outperformed these

methods in its ability to mimic human-categorized GO term sets. Unlike the other methods,

GOcats relies only on an input of basic keywords from the user (e.g. biologist), not a manu-

ally compiled or static set of top-level GO terms. Additionally, by identifying and properly

defining relations with respect to semantic scope, GOcats can utilize the traditionally prob-

lematic relation, has_part, without encountering erroneous term mapping. We applied

GOcats in the comparison of HPA-sourced knowledgebase annotations to experimentally-

derived annotations provided by HPA directly. During the comparison, GOcats improved

correspondence between the annotation sources by adjusting semantic granularity. GOcats

enables the creation of custom, GO slim-like filters to map fine-grained gene annotations

from gene annotation files to general subcellular compartments without needing to hand-

select a set of GO terms for categorization. Moreover, GOcats can customize the level of

semantic specificity for annotation categories. Furthermore, GOcats enables a safe and

more comprehensive semantic scoping utilization of go-core, allowing for a more complete

utilization of information available in GO. Together, these improvements can impact a vari-

ety of GO knowledgebase data mining use-cases as well as knowledgebase curation and

quality control.
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Introduction

Gene Ontology (GO)

The Gene Ontology (GO) [1] is the most common biology-focused controlled vocabulary

(CV) used to represent information and knowledge distilled from most biological and biomed-

ical research data generated today, from classic wet-bench experiments to high-throughput

analytical platforms, especially omics technologies. Each CV term in GO is assigned a unique

alphanumeric code and is used to annotate genes and gene products in many other databases,

including UniProt [2] and Ensembl [3]. GO is divided into three sub-ontologies: Cellular

Component, Molecular Function, and Biological Process. A graph represents each sub-ontol-

ogy, where individual GO terms are nodes connected by directional edges (i.e. relation). For

example, the term “lobed nucleus” (GO:0098537) is connected by a directional is_a relation

edge to the term “nucleus” (GO:0005634). In this graph context, the is_a relation defines the

term “nucleus” as a parent of the term “lobed nucleus”. There are eleven types of relations used

in the core version of GO; however, is_a is the most ubiquitous. The three GO sub-ontologies

are “is_a disjoint” meaning that there are no is_a relations connecting any node among the

three sub-ontologies.

There are also three versions of the GO database: go-basic which is filtered to only include

is_a and part_of relations; go or go-core contains additional relations, that may span sub-ontol-

ogies and which point both toward and away from the top of the ontology; and go-plus con-

tains cross-references to entries in external databases and ontologies.

Growth and evolution of biological controlled vocabularies

GO and other CVs like the Unified Medical Language System [4,5] saw an explosion in devel-

opment in the mid-1990s and early 2000s, coinciding with the increase in high-throughput

experimentation and “big data” projects like the Human Genome Project. Their intended pur-

pose is to standardize the functional descriptions of biological entities so that these functions

can be referenced via annotations across large databases unambiguously, consistently, and

with increased automation. However, ontology annotations are also utilized alongside auto-

mated pipelines that analyze protein-protein interaction networks and form predictions of

unknown protein function based on these networks [6,7], for gene annotation enrichment

analyses, and are now being leveraged for the creation of predictive disease models in the

scope of systems biochemistry [8].

Difficulty in representing biological concepts derived from omics-level

research

Differential abundance analyses for a range of omics-level technologies, especially transcrip-

tomics technologies can yield large lists of differential genes, gene-products, or gene variants.

Many different GO annotation terms may be associated with these differential gene lists, mak-

ing it difficult to interpret without manually sorting into appropriate descriptive categories [9].

It is similarly non-trivial to give a broad overview of a gene set or make queries for genes with

annotations for a specific biological concept. For example, a recent effort to create a protein-

protein interaction network analysis database resorted to manually building a hierarchical

localization tree from GO cellular compartment terms due to the “incongruity in the resolu-

tion of localization data” in various source databases and the fact that no published method

existed at that time for the automated organization of such terms [6]. If a subgraph of GO

could be programmatically extracted to represent a specific biological concept, a category-
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Python Package Index (PyPI) at https://pypi.

python.org/pypi/GOcats. Documentation can be

found at http://gocats.readthedocs.io/en/latest/.

The exact version of GOcats used in this study,

along with all scripts used to generate results can

be found in the Figshare repository at https://doi.

org/10.6084/m9.figshare.7064516 and at https://

doi.org/10.6084/m9.figshare.7064549. The version

of GO used to generate these results is go-core

(go.obo) data-version: releases/2016-01-12. The

UniProt Controlled Vocabulary file can be found at

https://www.uniprot.org/docs/subcell.txt.

Associated GO terms are indicated in by the GO

identifier in each stanza. Map2slim is available on

GitHub (https://github.com/owlcollab/owltools/

wiki/Map2Slim) and requires OWL Tools, also

available via GitHub (https://github.com/owlcollab/

owltools/wiki/Install-OWLTools#building-from-

source). Subcellular location data was obtained

from version 15 of the Human Protein Atlas and

can be downloaded at http://v15.proteinatlas.org/

download/subcellular_location.csv.zip.
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defining general term could be easily associated with all its ontological child terms within the

subgraph.

Meanwhile, high-throughput transcriptomic and proteomic characterization efforts like

those carried out by the Human Protein Atlas (HPA) now provide sophisticated pipelines for

resolving expression profiles at organ, tissue, cellular and subcellular levels by integrating

quantitative transcriptomics with microarray-based immunohistochemistry [10]. Such efforts

create a huge amount of omics-level experimental data that is cross-validated and distilled into

systems-level annotations linking genes, proteins, biochemical pathways, and disease pheno-

types across our knowledgebases. However, annotations provided by such efforts may vary in

terms of granularity, annotation sets used, or ontologies used. Therefore, (semi-)automated

(i.e. at least partially automated) and unbiased methods for categorizing semantically-similar

and biologically-related annotations are needed for integrating information from heteroge-

neous sources—even if the annotation terms themselves are standardized—to facilitate effec-

tive downstream systems-level analyses and integrated network-based modeling.

Term categorization approaches

Issues of term organization and term filtering have led to the development of GO slims—man-

ually trimmed versions of the gene ontology containing only generalized terms [11], which

represent concepts within GO. Other software, like Categorizer [9], can organize the rest of

GO into representative categories using semantic similarity measurements between GO terms.

GO slims may be used in conjunction with mapping tools, such as OWLTools’ (https://github.

com/owlcollab/owltools) Map2Slim (M2S) or GOATools (https://zenodo.org/record/31628),

to map fine-grained annotations within Gene Annotation Files (GAFs) to the appropriate gen-

eralized term(s) within the GO slim or within a list of GO terms of interest. While web-based

tools such as QuickGO exist to help compile lists of GO terms [12], using M2S either relies

completely on the structure of existing GO slims or requires input or selection of individual

GO identifiers for added customization, and necessitates the use of other tools for mapping.

UniProt has also developed a manually-created mapping of GO to a hierarchy of biologically-

relevant concepts [13]. However, it is smaller and less maintained than GO slims, and is

intended for use only within UniProt’s native data structure.

Semantic similarity in the context of broad term categorization

In addition to utilizing the inherent hierarchical organization of GO to categorize terms, other

metrics may be used for categorization. For instance, semantic similarity can be combined

along with the GO structure to calculate a statistical value indicating whether a term should

belong to a predefined group or category of [9,14–17]. One rationale for this type of approach

is that the topological distance between two terms in the ontology graph is not necessarily pro-

portional to the semantic closeness in meaning between those terms, and semantic similarity

reconciles potential inconsistencies between semantic closeness and graph distance. Addition-

ally, some nodes have multiple parents, where one parent is more closely related to the child

than the others [9]. Semantic similarity can help determine which parent is semantically more

closely related to the term in question. While these issues are valid, we maintain that in the

context of aggregating fine-grained terms into general categories, these considerations are not

necessary. First, fluctuations in semantic distances between individual terms are not an issue

once terms are binned into categories: all binned terms will be reduced to a single step away

from the category-defining node. Second, the problem of choosing the most appropriate par-

ent term for a GO term only causes problems when selecting a representative node for a cate-

gory; however, since most paths eventually converge onto a common ancestor, any
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significantly diverging paths would have its meaning captured by rooting multiple categories

to a single term, cleanly sidestepping the issue.

Maintenance of ontologies

Despite maintenance and standard policies for adding terms, ontological organization is still

subject to human error and disagreement, necessitating quality assurance and revising, espe-

cially as ontologies evolve or merge. A recent review of current methods for biomedical ontol-

ogy mapping highlights the importance in developing semi-automatic methods [18,19] to aid

in ontology evolution efforts and reiterates the aforementioned concept of semantic corre-

spondence in terms of scoping between terms [20]. Methods incorporating such correspon-

dences have been published elsewhere, but these deal with issues of ontology evolution and

merging, and not with categorizing terms into user-defined subsets [21,22]. Ontology merging

also continues to be an active area of development for integrating functional, locational, and

phenotypic information. To aid in this, another recent review points out the importance of

integrating phenotypic information across various levels of organismal complexity, from the

cellular level to the organ system level [8]. Thus, organizing location-relevant ontology terms

into discrete categories is an important step toward this end.

GO Categorization Suite (GOcats)

For the reasons indicated above, we have developed a tool called the GO Categorization Suite

(GOcats), which serves to streamline the process of slicing the ontology into subgraphs repre-

senting specific biological concepts. Unlike previously developed tools, GOcats works with a

list of user-provided keywords and/or GO terms, along with the structure of GO and aug-

mented relation properties. Based on this input, GOcats automatically extracts a subgraph of

related GO terms, identifies a representative category-defining GO term for the subgraph, and

maps all subgraph child GO terms to this representative GO term. In essence, GOcats auto-

matically generates a concept-specific GOslim with only keywords and GO terms provided by

a user, typically a biologist. Furthermore, GOcats allows the user to choose between the strict

axiomatic interpretation or a looser semantic scoping interpretation of part-whole (mereologi-

cal) relation edges within GO. Specifically, we consider scoping relations to be comprised of

is_a, part_of, and has_part, and mereological relations to be comprised of part_of and has_-

part. In the next section, we evaluate GOcats ability to generate category-specific subgraphs

and to utilize these subgraphs to compare knowledgebase annotations to their experimental

source (i.e. the HPA). Due to the nature of the experimentally verified properties available

from the HPA, our analysis in this paper focuses on cellular locations, especially subcellular

locations. Also, this paper provides an in-depth description of GOcats’s methods and their

implementation. In a prior publication, we demonstrated GOcats’s ability to improve gene-

annotation enrichment analyses, involving all GO sub-ontologies [23].

Results

GOcats compactly organizes GO subcellular localization terms into user-

specified categories

As an initial proof-of-concept, we evaluated the automatic extraction and categorization of 25

subcellular locations, using GOcats’ “comprehensive” method of subgraph extension (See

Methods and the go-core graph, data-version: releases/2016-01-12). Starting with common bio-

logical subcellular concepts like “nucleus”, “cytoplasm”, and “mitochondrion”, we recursively

used terms not being categorized to identify additional subcellular concepts and associated
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keywords represented within the GO Cellular Component sub-ontology. Due to the eventual

application to the HPA datasets, three unusual categories, “bacterial”, “viral”, and “other organ-

ism”, were included to prevent categorization of terms that would complicate a eukaryotic

interpretation of the other 22 subcellular locations, within the context of a greedy subgraph

extension algorithm. For these resulting 25 categories, 22 contained a designated GO term

root-node that exactly matched the concept intended at the creation of the keyword list

(Table 1).

These subgraphs account for approximately 89% of GO’s Cellular Component sub-ontol-

ogy. While keyword querying of GO provided an initial seeding of the growing subgraph,

Table 1 highlights the necessity of re-analyzing the GO graph, both to remove terms errone-

ously added by the keyword search and to add appropriate subgraph terms not captured by the

keyword search. For example, the “cytoplasm” subgraph grew from its initial seeding of 296

nodes to 1197 nodes after extension. Conversely, 136 nodes were seeded by keyword for the

“bacterial” subgraph, but only 16 were rooted to the representative node.

To assess the relative size and structure of subgraphs within GO, we visualized the category

subgraphs as a network using Cytoscape 3.0 [24]. GOcats outputs a dictionary of individual GO

term keys with a list of category-defining root-node values as part of its normal functionality.

Of note, 2102 of the 3877 terms in Cellular Component could be rooted to a single concept:

“macromolecular complex.” Despite cytosol being defined as “the part of the cytoplasm that

does not contain organelles, but which does contain other particulate matter, such as protein

complexes”, less than half of the terms rooted to macromolecular complex also rooted to cyto-

sol or cytoplasm. Surprisingly, approximately 25% of the terms rooted to macromolecular

complex are rooted to this category alone (Fig 1A). In this visualization, intracellular organelles

tend to be clustered about cytoplasm, except for nucleus which the GO consortium does not

consider as part of the cytoplasm. The visualization of the subgraph contents confirmed the

uniqueness of the macromolecular complex category and showed the relative sizes of groups

of GO terms shared between two or more categories. But the macromolecular complex cate-

gory somewhat complicates the visualization of category organization within GO, due to this

category’s size and interconnectedness within the ontology.

To better reflect what might be a biologist’s expectation for a cell’s overall organization, we

produced another visualization with the macromolecular complex category omitted (Fig 1B).

Despite the idiosyncrasies with the macromolecular complex subgraph, compartments that

typically contain a large range of protein complexes, such as the nucleus, plasma membrane,

and cytoplasm appear to be appropriately populated. Furthermore, concepts such as endo-

membrane trafficking can be gleaned from the network connectedness of representative

nodes, such as lysosome, Golgi apparatus, vesicle, secretory granule, and cytoplasm. Overall,

the patterns of connectedness in this network make more sense biologically, within the con-

straints of GO’s internal organization. In other words, it is easier to see the expected biological

relationships between cellular locations in Fig 1B versus Fig 1A.

GOcats-derived category subgraphs compare well with similar subgraphs

derived by other methods

We compared GOcats’ category subgraphs taken from the go-core database, data-version:

releases/2016-01-12 to subgraphs of the manually-curated UniProt subcellular localization

controlled vocabulary (CV) [13] (see Fig 2 and Methods) and to subgraphs created by M2S

(see Methods). Differences in the sets of GO terms contained within these subgraphs can be

attributed to differences in the number of edges between nodes—as is the case between GOcats

and M2S since M2S does not traverse across has_part edges—and the number of overall nodes
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Table 1. Summary of 25 example subcellular locations extracted by GOcats.

Subgraph name User-input keywords Predicted representative

term (ID)

Nodes seeded from

keyword search

Nodes added during

graph extension

Seeded nodes not

in subgraph

Total

nodes

Aggresome aggresome, aggresomal,

aggresomes

aggresome (GO:0016235) 1 0 0 1

Bacterial bacterial, bacteria, bacterial-

type

bacterial-type flagellum

(GO:0009288)

136 1 121 16

Cell Junction junction Cell junction (GO:0030054) 68 16 34 50

Chromosome chromosome, chromosomal,

chromosomes

chromosome (GO:0005694) 120 122 31 211

Cytoplasm cytoplasm, cytoplasmic Cytoplasm (GO:0005737) 296 1061 160 1197

Cytoplasmic Granule granule, granules secretory granule

(GO:0030141)

81 16 50 47

Cytoskeleton cytoskeleton, cytoskeletal cytoskeleton (GO:0005856) 78 194 47 225

Cytosol cytosol, cytosolic cytosol (GO:0005829) 56 51 28 79

Endoplasmic

Reticulum

endoplasmic, sarcoplasmic,

reticulum

endoplasmic reticulum

(GO:0005783)

113 39 51 101

Endosome endosome, endosomes,

endosomal

endosome (GO:0005768) 67 15 24 58

Extracellular extracellular, secreted extracellular region

(GO:0005576)

142 123 85 180

Golgi Apparatus golgi golgi apparatus

(GO:0005794)

67 12 25 54

Lysosome lysosome, lysosomal,

lysosomes

lysosome (GO:0005764) 42 7 16 33

Macromolecular

Complex

protein, macromolecular macromolecular complex

(GO:0032991)

1317 969 184 2102

Microbody microbody, microbodies microbody (GO:0042579) 4 20 0 24

Mitochondrion mitochondria, mitochondrial,

mitochondrion

mitochondrion

(GO:0005739)

134 2 44 92

Neuron Part neuron, neuronal, neurons,

synapse

neuron part (GO:0097458) 90 94 35 149

Nucleolus nucleolus, nucleolar nucleolus (GO:0005730) 25 11 12 24

Nucleus nucleus, nuclei, nuclear nucleus (GO:0005634) 288 340 118 510

Other Organism other, host, organism other organism

(GO:0044215)

369 12 259 122

Plasma Membrane plasma plasma membrane

(GO:0005886)

308 302 164 446

Plastid plastid, chloroplast plastid (GO:0009536) 95 48 8 135

Thylakoid thylakoid, thylakoids thylakoid (GO:0009579) 52 22 11 63

Vesicle vesicle, vesicles vesicle (GO:0031982) 198 90 85 203

Viral virion, virus, viral viral occlusion body

(GO:0039679)

93 1 26 68

Expected representative

Unexpected representative

aNodes seeded from keyword search.
bNodes added through subgraph extension.
cSeeded nodes removed due to subgraph omission.
dBecause subgraph nodes may root to more than one representative root node, the totals in this table do not add up to the total number of GO terms in Cellular

Component.

https://doi.org/10.1371/journal.pone.0233311.t001
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being evaluated—as is the case when comparing M2S and GOcats term sets to the UniProt CV

terms sets since the UniProt CV contains considerably fewer GO terms. For the most part,

GOcats category subgraphs are large supersets of UniProt CV subgraphs, as demonstrated by

the high inclusion indices and low Jaccard indices in Table 2. In the comparison of GOcats

and M2S subgraphs, the mappings for most categories are in very close agreement, as evi-

denced by both high inclusion and Jaccard indices in Table 3 and further highlighted in Fig 3A

Fig 1. A. Network of 25 categories whose subgraphs account for 89% of the GO cellular component sub-ontology. B. Network of all categories from A except for

Macromolecular Complex. C. Network of 20 categories used in the Human Protein Atlas subcellular localization immunohistochemistry raw data.

https://doi.org/10.1371/journal.pone.0233311.g001
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and 3B and S1 Data A-V [25]. Overall, GOcats robustly categorizes GO terms into category

subgraphs with high similarity to existing GO-utilizing categorization methods while includ-

ing information gleaned from has_part edges.

However, in some categories, M2S and GOcats disagree as illustrated in Fig 3C and S1(E)

Data. The most striking example of this is in the plasma membrane category, where M2S’s sub-

graph contained over 300 terms that were not mapped by GOcats. We manually examined the-

ses discrepancies in the plasma membrane category and noted that many of the terms

uniquely mapped by M2S did not appear to be properly rooted to “plasma membrane” (S2

Data). M2S mapped terms such as “nuclear envelope,” “endomembrane system,” “cell projec-

tion cytoplasm”, and “synaptic vesicle, resting pool” to the plasma membrane category, while

such questionable associations were not made using GOcats. Even though most terms

Fig 2. Flowchart of the UniProt subcellular location CV subgraph creation method and inclusion index equation.

https://doi.org/10.1371/journal.pone.0233311.g002
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Table 2. Agreement summary between corresponding GOcats and UniProt CV subgraphs.

Location Category Term ID Inclusion Index Jaccard Index GOcats subgraph size UniProt CV subgraph size

Bacterial-type Flagellum GO:0009288 1 0.0625 16 1

Cell Junction GO:0030054 0.47619 0.163934 50 21

Chromosome GO:0005694 1 0.0189573 211 4

Cytoplasm GO:0005737 0.809524 0.0141549 1197 21

Endoplasmic Reticulum GO:0005783 0.818182 0.0873786 101 11

Endosome GO:0005783 1 0.241379 58 14

Extracellular Region GO:0005576 0.5625 0.0481283 180 16

Golgi Apparatus GO:0005794 0.8 0.142857 54 10

Lysosome GO:0005764 1 0.0909091 33 3

Mitochondrion GO:0005739 1 0.0978261 92 9

Nucleus GO:0005634 1 0.0294118 510 15

Plastid GO:0009536 0.846154 0.307692 135 52

https://doi.org/10.1371/journal.pone.0233311.t002

Table 3. Agreement summary between corresponding GOcats and Map2Slim subgraphs.

Location Category Term ID Inclusion Index‡ Jaccard Index GOcats subgraph size Map2Slim subgraph size "Has_part" relationships

Aggresome GO:0016235 1 1 1 1 0

Bacterial-type Flagellum GO:0009288 1 1 16 16 8

Cell Junction GO:0030054 0.980392 0.980392 50 51 4

Chromosome GO:0005694 0.984375 0.883178 211 192 40

Cytoplasm GO:0005737 0.927273 0.452055 1197 605 38

Cytoskeleton GO:0005856 0.812274 0.812274 225 277 10

Cytosol GO:0005829 0.963415 0.963415 79 82 8

Endoplasmic Reticulum GO:0005783 1 0.990099 101 100 4

Endosome GO:0005768 1 1 58 58 0

Extracellular Region GO:0005576 1 0.927778 180 167 2

Golgi Apparatus GO:0005794 1 1 54 54 0

Lysosome GO:0005764 1 1 33 33 0

Macromolecular Complex GO:0032991 0.947274 0.947274 2102 2219 232

Microbody GO:0042579 1 1 2 24 0

Mitochondrion GO:0005739 0.978723 0.978723 92 94 8

Neuron Part GO:0097458 1 0.993289 149 148 22

Nucleolus GO:0005730 0.857143 0.857143 24 28 0

Nucleus GO:0005634 0.991684 0.928016 510 481 168

Other Organism GO:0044215 1 1 122 122 8

Plasma Membrane GO:0005886 0.563081 0.547097 446 753 20

Plastid GO:0009536 0.992647 0.992647 135 136 0

Secretory Granule GO:0030141 1 1 47 47 0

Thylakoid GO:0009579 1 1 63 63 0

Vesicle GO:0031982 0.981132 0.757282 203 159 12

Viral Occlusion Body GO:0039679 1 0.0147059 68 1 4

‡ Inclusion index quantifies the extent to which the smaller subgraph is included in the larger subgraph

https://doi.org/10.1371/journal.pone.0233311.t003
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Fig 3. Visualizing the degree of overlap between the category subgraphs created by GOcats, Map2Slim, and the

UniProt CV. Plots were created using the R package UpSetR [25], as a visual alternative to a Venn diagram. The

amount of overlap between category-specific subgraphs are indicated by the vertical bar graph with the connected dots

identifying which specific mapping method (UniProt, GOcats, and Map2Slim) is included in the overlap. A)

Macromolecular Complex; B) Nucleus; C) Plasma Membrane. Plots for all categories can be found in S1(A-Y) Data.

https://doi.org/10.1371/journal.pone.0233311.g003

PLOS ONE GOcats

PLOS ONE | https://doi.org/10.1371/journal.pone.0233311 June 11, 2020 10 / 29

https://doi.org/10.1371/journal.pone.0233311.g003
https://doi.org/10.1371/journal.pone.0233311


included by M2S but excluded by GOcats exist beyond the scope of or are largely unrelated to

the concept of “plasma membrane,” a few terms in the set did seem appropriate, such as

“intrinsic component of external side of cell outer membrane.” However, of these examples,

no logical semantic path could be traced between the term and “plasma membrane” in GO,

indicating that these associations are not present in the ontology itself. These differences in

mapping are due to our reevaluation of the has_part edges with respect to scope. As shown

in Table 3 the categories with the greatest agreement between the two methods were those

with no instances of has_part relations, which is the only relation in Cellular Component that

is natively incongruent with respect to scope. However, there is no apparent correlation

between the frequency of this relation and the extent of disagreement.

Custom-tailoring of GO slim-like categories with GOcats allows for robust

knowledgebase gene annotation mining

The ability to query knowledgebases for genes and gene products related to a set of general

concepts-of-interest is an important method for biologists and bioinformaticians alike. We

hypothesized that grouping annotations into categories using GOcats and relevant keywords

would more closely match the annotations categorized manually by the HPA consortium than

either M2S or UniProt’s CV. Using the set of GO terms annotated in the HPA’s immunohis-

tochemistry localization raw data as “concepts” (Table 4), we derived mappings to annotation

categories generated from GOcats, M2S, and UniProt’s CV based on UniProt- and Ensembl-

sourced annotations from the European Molecular Biology Laboratories-European Bioinfor-

matics Institute (EMBL-EBI) QuickGO knowledgebase resource [12] (See Methods). In this

context, the term “raw data” refers to processed, curated experimental data that is annotated as

a contrast to the GO annotations derived from a knowledgebase.

Next, we evaluated how these derived annotation categories matched raw HPA data GO

annotations (See Fig 4 and Methods). GOcats slightly outperformed M2S and significantly

outperformed UniProt’s CV in the ability to query and extract genes and gene products from

the knowledgebase that exactly matched the annotations provided by the HPA (Fig 5A). Simi-

lar relative results are seen for partially matched knowledgebase annotations. Genes in the

“partial agreement,” “partial agreement is superset,” or “no agreement” groups may have

annotations from other sources that place the gene in a location not tested by the HPA immu-

nohistochemistry experiments or may be due to non-HPA annotations being at a higher

semantic scoping than what the HPA provided. Also, novel localization provided by the HPA

could explain genes in the “partial agreement” and “no agreement” groups. In this context,

“partial agreement” refers to genes with at least one matching subcellular location, “partial

agreement is superset” refers to genes where knowledgebase subcellular locations are a super-

set of the HPA dataset (these are mutually exclusive to the “partial agreement” category), "no

agreement" refers to genes with no subcellular locations in common, and “no annotations”

refers to genes in the experimental dataset that were not found in the knowledgebase.

Furthermore, GOcats performed the categorization of HPA’s subcellular locations dataset

in an average of 10.574 seconds after 50 test runs (standard deviation of 0.074 seconds), while

M2S performed its mapping on the same data in an average of 14.837 seconds after 50 test

runs (standard deviation of 0.300 seconds) (see Methods for hardware configuration details).

These results are rather surprising since GOcats is implemented in Python [26], an interpreted

language, versus M2S which is implemented in Java and compiled to Java byte code. However,

through the use of Python decorators, GOcats recursively creates and stores ancestor and

descendent node sets in a manner analogous to lazy evaluation, allowing the implementation

of efficient subgraph-centric algorithms that only precomputes the ancestor and descendent
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sets that are needed. Based on these results, GOcats should offer appreciable computational

improvement on significantly larger datasets. This is demonstrated in GOcats’s application in

annotation enrichment analysis involving all three GO sub-ontologies, which executes in just a

few seconds [23].

One key feature of GOcats is the ability to easily customize category subgraphs of interest.

To improve agreement and rectify potential differences in term granularity, we used GOcats to

Table 4. Summary of 20 subcellular locations used in the HPA raw experimental data extracted by GOcats.

Subgraph name User-input keywords Predicted representative term

(ID)

Nodes seeded from

keyword search

Nodes added

during graph

extension

Seeded nodes not

in subgrapha
Total

nodesb

Actin cytoskeleton actin cytoskeleton actin cytoskeleton

(GO:0015629)

117 22 77 62

Aggresome aggresome, aggresomal,

aggresomes

aggresome (GO:0016235) 1 0 0 1

Cell Junction junction cell junction (GO:0030054) 68 16 34 50

Centrosome centrosome centrosome (GO:0005813) 10 2 5 7

Cytoplasm cytoplasm, cytoplasmic cytoplasm (GO:0005737) 296 1061 160 1197

Endoplasmic Reticulum endoplasmic,

sarcoplasmic, reticulum

endoplasmic reticulum

(GO:0005783)

113 39 51 101

Focal adhesion focal adhesion focal adhesion (GO:0005925) 29 0 28 1

Golgi Apparatus golgi golgi apparatus (GO:0005794) 67 12 25 54

Intercellular bridge intercellular bridge intercellular bridge

(GO:0045171)

24 2 19 7

Intermediate filament

cytoskeleton

intermediate filament

cytoskeleton

intermediate filament

cytoskeleton (GO:0045111)

126 0 118 8

Intracellular membrane-

bounded organelle (vesiclec)

intracellular membrane-

bounded organelle

Intracellular membrane-

bounded organelle

(GO:0043231)

229 1116 118 1227

Microtubule cytoskeleton microtubule cytoskeleton microtubule cytoskeleton

(GO:0015630)

112 55 68 109

Microtubule end microtubule end microtubule end

(GO:1990752)

138 0 133 5

Microtubule organizing

center

microtubule organizing

center

microtubule organizing center

(GO:0005815)

110 34 95 49

Mitochondrion mitochondria,

mitochondrial,

mitochondrion

mitochondrion (GO:0005739) 134 2 44 92

Nuclear membrane nuclear membrane nuclear membrane

(GO:0031965)

1151 0 1139 12

Nucleolus nucleolus, nucleolar nucleolus (GO:0005730) 25 11 12 24

Nucleoplasm nucleoplasm nucleoplasm (GO:0005654) 10 125 4 131

Nucleus nucleus, nuclei, nuclear nucleus (GO:0005634) 288 340 118 510

Plasma Membrane plasma plasma membrane

(GO:0005886)

308 302 164 446

Expected representative

Unexpected representative

aSeeded nodes removed due to subgraph omission.
bBecause subgraph nodes may root to more than one representative root node, the totals in this table do not add up to the total number of GO terms in Cellular

Component.
cHPA conservatively annotates "vesicles" as intracellular membrane-bounded organelle.

https://doi.org/10.1371/journal.pone.0233311.t004
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Fig 4. Methods overview of knowledgebase gene annotation mapping and comparison to human protein database subcellular localization raw

data.

https://doi.org/10.1371/journal.pone.0233311.g004
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Fig 5. Comparison of UniProt-Ensembl knowledgebase annotation data mining extraction performance by GOcats, Map2Slim, and UniProt CV.

“Complete agreement” refers to genes where all subcellular locations derived from the knowledgebase and the HPA dataset matched, “partial agreement” refers

to genes with at least one matching subcellular location, “partial agreement is superset” refers to genes where knowledgebase subcellular locations are a superset

of the HPA dataset (these are mutually exclusive to the “partial agreement” category), "no agreement" refers to genes with no subcellular locations in common,

and “no annotations” refers to genes in the experimental dataset that were not found in the knowledgebase. The more-generic categories used in panel B can be

found in Table 3. A) Number of genes of the given agreement type when comparing mapped gene product annotations assigned by UniProt and Ensembl in the
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organize HPA’s raw data annotation along with the knowledgebase data into slightly more

generic categories (Table 5).

In doing so, GOcats can query over twice as many knowledgebase-derived gene annotations

with complete agreement with the more-generic HPA annotations, while also increasing the

number of genes in the categories of “partial” and “partial agreement is superset” agreement

types and decreasing the number of genes in the “no agreement” category (Fig 5B).

We then compared the methods’ mapping of knowledgebase gene annotations derived

from HPA to the HPA experimental dataset to demonstrate how researchers could use the

GOcats suite to evaluate how well their own experimental data is represented in public knowl-

edgebases. Because the set of gene annotations used in the HPA experimental dataset and in

the HPA-derived knowledgebase annotations are identical, no term mapping occurred during

the agreement evaluation and so the assignment agreement was identical between GOcats and

M2S. As expected, the complete agreement category was high, although there was a surprising

number of partial agreement and even some genes that had no annotations in agreement

(Fig 5). We next broke down which locations were involved in each agreement type and noted

that the “nucleus,” “nucleolus,” and “nucleoplasm” had the highest disagreement relative to

their sizes, but these disagreements were present across nearly all categories (Table 6).

Both M2S and GOcats avoid superset category term mapping; neither map a category-rep-

resentative GO term to another category-representative GO term if one supersedes another

(although GOcats has the option to enable this functionality). Therefore, discrepancies in

EMBL-EBI knowledgebase to those taken from The Human Protein Atlas’ raw data. Knowledgebase annotations were mapped by GOcats, Map2Slim, and the

UniProt CV to the set of GO annotations used by the HPA in their experimental data. B) Shift in agreement following GOcats’ mapping of the same

knowledgebase gene annotations and the set of annotations used in the raw experimental data using a more-generic set of location terms meant to rectify

potential discrepancies in annotation granularity.

https://doi.org/10.1371/journal.pone.0233311.g005

Table 5. Generic location categories used to resolve potential scoping inconsistencies in HPA raw data.

HPA annotation category GOcats-customized general HPA category

Actin cytoskeleton Cytoskeleton

Centrosome

Intermediate filament cytoskeleton

Microtubule cytoskeleton

Microtubule end

Microtubule organizing center

Aggresome Aggresome

Cell junction Cell junction

Cytoplasm Cytoplasm

Endoplasmic reticulum Endoplasmic reticulum

Focal adhesion Focal adhesion

Golgi apparatus Golgi apparatus

Intercellular bridge intercellular bridge

intracellular membrane-bounded organelle intracellular membrane-bounded organelle

Mitochondrion Mitochondrion

Nucleus Nucleus

Nucleoplasm

Nuclear membrane

Nucleolus Nucleolus

Plasma membrane Plasma membrane

https://doi.org/10.1371/journal.pone.0233311.t005
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annotation should not arise by term mapping methods. Nevertheless, we hypothesized that

some granularity-level discrepancies exist between the HPA experimental raw data and the

HPA-assigned gene annotations in the knowledgebase. We performed the same custom cate-

gory generic mapping as we did for the previous test and discovered that some disagreements

were indeed accounted for by granularity-level discrepancies, as seen in the decrease in “par-

tial” and “no agreement” categories and increase in “complete” agreement category following

generic mapping (Fig 6, blue bars). For example, 26S proteasome non-ATPase regulatory sub-

unit 3 (PSMD3) was annotated to the nucleus (GO:0005634) and cytoplasm (GO:0005737) in

the experimental data but was annotated to the nucleoplasm (GO:0005654) and cytoplasm in

the knowledgebase. By matching the common ancestor mapping term “nucleus”, GOcats can

group the two annotations in the same category. In total, 132 terms were a result of semantic

scoping discrepancies. Worth noting is the fact that categories could be grouped to common

categories to further improve agreement, for example “nucleolus” within “nucleus.”

Interestingly, among the remaining disagreeing assignments were some with fundamentally

different annotations. Many of these are cases in which either the experimental data, or knowl-

edgebase data have one or more additional locations distinct from the other. For example,

NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6 (NDUB6) was localized

only to the mitochondria (GO:0005739) in the experimental data yet has annotations to the

mitochondria and the nucleoplasm (GO:0005654) in the knowledgebase. Why such discrepan-

cies exist between experimental data and the knowledgebase is not clear.

Table 6. Summary of gene location category agreement between manually-curated HPA raw data and GOcats/Map2Slim categorized HPA-derived annotations.

Agreement�

Location Complete Partial Superset‡ None Not in Knowledgebase

Actin cytoskeleton 51 0 7 0 37

Aggresome 2 0 0 3 4

Cell Junction 36 0 17 0 51

Centrosome 58 3 17 0 49

Cytoplasm 1037 55 162 5 643

Endoplasmic Reticulum 66 1 7 0 39

Focal adhesion 27 5 9 0 17

Golgi Apparatus 159 5 43 0 137

Intercellular bridge 14 0 4 0 19

Intermediate filament cytoskeleton 18 1 4 0 23

Intracellular membrane-bounded organelle 283 6 50 1 212

Microtubule cytoskeleton 35 2 9 0 27

Microtubule end 2 0 0 0 0

Microtubule organizing center 32 0 5 0 14

Mitochondrion 263 4 55 0 154

Nuclear membrane 47 6 17 0 39

Nucleolus 266 10 69 6 163

Nucleoplasm 989 26 230 23 534

Nucleus 437 14 217 23 373

Plasma Membrane 265 12 55 0 225

‡Knowledgebase genes mapped to a set of categories that is a superset of those manually assigned by the HPA in raw data

�Numbers reflect how many times a location was involved in a particular agreement type; sums of all locations for an agreement category do not indicate the total

number of genes for an agreement type.

https://doi.org/10.1371/journal.pone.0233311.t006
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We were also surprised by the high number of genes with “supportive” annotations in the

HPA raw data that were not found in the EMBL-EBI knowledgebase when filtered to those

annotated by HPA. As Fig 6 shows, roughly one-third of the annotations from the raw data

were missing altogether from the knowledgebase; the gene was not present in the knowledge-

base whatsoever. This was surprising because “supportive” was the highest confidence score

for subcellular localization annotation.

Discussion

Discrepancies in the semantic granularity of gene annotations in knowledgebases represent a

significant hurdle to overcome for researchers interested in mining genes based on a set of anno-

tations used in experimental data. To demonstrate the potential GOcats has in resolving these

discrepancies, we categorized annotations from HPA-sourced gene annotations using GOcats,

M2S, and the UniProt subcellular localization CV. The HPA source was chosen because primary

data from high-throughput immunofluorescence-based gene product localization experiments

exist in publicly-accessible repositories and have been inspected by experts and given a confi-

dence score [10]. As we show, utilizing only the set of specific annotations used in the HPA’s

experimental data, M2S’s mapping matches only 366 identical sets of gene annotations from the

knowledgebase with GOcats matching slightly more (Fig 5A). GOcats alleviates this problem by

allowing researchers to define categories at a custom level of granularity so that categories may

be specific enough to retain biological significance, but generic enough to encapsulate a larger

set of knowledgebase-derived annotations. When we reevaluated the agreement between the

Fig 6. Comparison of HPA knowledgebase derived annotations to HPA experimental data. Number of genes in the given agreement type when comparing gene

product annotations assigned by HPA in the EMBL-EBI knowledgebase to those in The Human Protein Atlas’ raw experimental data. “Complete agreement” refers

to genes where all subcellular locations derived from the knowledgebase and the HPA dataset matched, “partial agreement” refers to genes with at least one

matching subcellular location, “partial agreement is superset” refers to genes where knowledgebase subcellular locations are a superset of the HPA dataset (these are

mutually exclusive to the “partial agreement” category), "no agreement" refers to genes with no subcellular locations in common, and “no annotations” refers to

genes in the experimental dataset that were not found in the knowledgebase. The more-generic categories used in panel B can be found in Table 3.

https://doi.org/10.1371/journal.pone.0233311.g006
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raw data and knowledgebase annotations using custom GOcats categories for “cytoskeleton”

and “nucleus”, the number of identical gene annotations increased to 776 (Fig 5B).

Because GOcats relies on user-input keywords to define categories, we understand that

there is a risk of adding user bias when applying this method to organizing results of various

analyses. While we have taken care to avoid bias in the comparisons made in this report, for

example citing the exact category defining GO term for each category compared between

methods (Fig 3, Tables 2 and 3) and reporting the exact common-sense categorizations applied

when grouping location categories from HPA (Table 5), we strongly caution users to exercise

similar care in their use as well. For instance, when categorizing results from annotation

enrichment analyses it may be tempting to filter results to those categories defined by the user,

which might conveniently eliminate unexpected (unwanted) highly-enriched terms. We do

not condone the use of GOcats in this way. But because GOcats will always produce the same

subgraph categorizations for the same set of keywords used with the same version of GO, we

argue that our categorization is more reproducible and less prone to bias than manually group-

ing GO terms into categories or otherwise manually identifying major concepts represented

from omics-level analyses. Furthermore, the set of keywords can be provided along with the

version of GOcats, GO, and the dataset to enable reproducibility of analyses by others.

As GO continues to grow, automated methods to evaluate the structural organization of

data will become necessary for curation and quality control. Because GOcats allows versatile

interpretation of the GO directed acyclic graph (DAG) structure, it has many potential cura-

tion and quality control uses, especially for evaluating the high-level ontological organization

of GO terms. For example, GOcats can facilitate the integrity checking of annotations that are

added to public repositories by streamlining the process of extracting categories of annotations

from knowledgebases and comparing them to the original annotations in the raw data. Inter-

estingly, about one-third of the genes annotated with high-confidence in the HPA raw data

were missing altogether from the EMBL-EBI knowledgebase when filtered to the HPA-sourced

annotations. While this surprised us, the reason appears to be due to HPA’s use of two separate

criteria for “supportive” annotation reliability scores and for knowledge-based annotations.

For “supportive” reliability, one of several conditions must be met: i) two independent anti-

bodies yielding similar or partly similar staining patterns, ii) two independent antibodies yield-

ing dissimilar staining patterns, both supported by experimental gene/protein characterization

data, iii) one antibody yielding a staining pattern supported by experimental gene/protein

characterization data, iv) one antibody yielding a staining pattern with no available experimen-

tal gene/protein characterization data, but supported by other assay within the HPA, and v)

one or more independent antibodies yielding staining patterns not consistent with experimen-

tal gene/protein characterization data, but supported by siRNA assay [10]. Meanwhile knowl-

edge-based annotations are dependent on the number of cell lines annotated; specifically, the

documentation states, “Knowledge-based annotation of subcellular location aims to provide

an interpretation of the subcellular localization of a specific protein in at least three human cell

lines. The conflation of immunofluorescence data from two or more antibody sources directed

towards the same protein and a review of available protein/gene characterization data, allows

for a knowledge-based interpretation of the subcellular location” (Uhlen et al., 2015). Unfortu-

nately, we were unable to explore these differences further, since the experimental data-based

subcellular localization annotations appeared aggregated across multiple cell lines, without

specifying which cell lines were positive for each location. Meanwhile, tissue- and cell-line spe-

cific data, which contained expression level information, did not also contain subcellular local-

izations. Therefore, we would suggest that HPA and other major experimental data

repositories always provide a specific annotation reliability category in their distilled experi-

mental datasets that matches the criteria used for deposition of derived annotations in the
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knowledgebases. Such information will be invaluable for performing knowledgebase-level

evaluation of large curated sets of annotations. One step better would involve providing a com-

plete experimental and support data audit trail for each derived annotation curated for a

knowledgebase, but this may be prohibitively difficult and time-consuming to do.

Looking towards the future, the work demonstrated here is a critical first step towards a

goal of automatically enumerating all representable concepts within GO. Such an enumeration

would provide scientists with the usable set of GO-representable concept subgraphs for a large

variety of analyses unbiased by human selection. GOcats can derive subgraphs representing a

specific concept by utilizing keywords and key terms, which would be a major component for

an overall method to enumerate all representable concepts. We expect two other major com-

ponents will be required, first is a way to derive possible key words and key terms and the

last is a way to evaluate the quality of the concept subgraphs that are generated. We expect the

latter evaluation to involve the development of various graph-based metrics for this purpose.

Conclusions

In this study, we: i) demonstrated an improvement in retrievable ontological information con-

tent by the reevaluation of GO’s has_part relation ii) applied our new method GOcats toward

the categorization and utilization of the GO Cellular Component sub-ontology, and iii) evalu-

ated the ability of GOcats and other mapping tools to relate HPA experimental to HPA knowl-

edgebase GO Cellular Component annotation sources. GOcats outperforms the UniProt CV

with respect to accurately deriving gene-product subcellular location from the UniProt and

Ensembl database with the HPA raw dataset of gene localization annotations treated as the

gold standard (Fig 5A). Moreover, the comparison of GOcats to M2S demonstrates similar

mapping performance between the two methods, but with GOcats providing important

improvements in mapping, computational speed, ease of use, and flexibility of use. In a previ-

ous publication, we demonstrated an improvement in the statistical power of gene-annotation

enrichment analyses using GOcats along with all GO sub-ontologies [23].

In conclusion, GOcats enables the user to create custom, GO slim-like filters to map fine-

grained gene annotations from GAFs to general subcellular compartments without needing to

hand-select a set GO terms for categorization. Moreover, users can use GOcats to quickly cus-

tomize the level of semantic specificity for annotation categories. Furthermore, GOcats was

designed for scientists who are less familiar with GO; however, the package has advanced fea-

tures for users with more bioinformatics expertise. GOcats enables a safe and more compre-

hensive semantic scoping utilization of go-core, preventing mistakes that can easily arise from

using go-core instead of go-basic. Together, these improvements can impact a variety of GO

knowledgebase data mining use-cases as well as knowledgebase curation and quality control.

Looking towards the future, GOcats provides a critical categorization method for a future

automatic enumeration of all representable concepts within GO.

Methods

Methodological overview and design rationale

We designed GOcats with a biologist user in mind, who may not be aware of the dangers asso-

ciated with using different versions of GO for organizing terms with tools like M2S or how to

circumvent potential pitfalls. For instance, although the M2S documentation (https://github.

com/owlcollab/owltools/wiki/Map2Slim) states, "We recommend the go-basic version of the

ontology be used, which contains: subClassOf (is a), part of, regulates (+ positively and nega-

tively regulates)" and, "You can also use the full version of GO and filter those relationships

you do not want to consider,” a non-bioinformatician may not be aware of how to filter out
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relationships from GO in a way that is safe to use the tool—or, more pertinently—the user

may wish to use a fuller extent of the information contained in the ontology when organizing

their terms. Currently, GOcats version 1.1.4 can handle go-core’s is_a, part_of, and has_part

relations, with the has_part reinterpreted to retain proper scoping semantics, as detailed below

and elsewhere [23]. As the development of GOcats progresses, we plan on handling the organi-

zation of terms connected by additional relations such as negatively/positively_regulates.

GOcats uses the go-core version of the GO database, which contains relations that connect

the separate ontologies and may point away from the root of the ontology. GOcats can either

exclude non-scoping relations or invert has_part directionality into a part_of_some interpreta-

tion, maintaining the acyclicity of the graph. Therefore, it can represent go-core as a DAG.

GOcats is a Python package written in major version 3 of the Python program language

[26] and available on GitHub and the Python Package Index. It uses a Visitor design pattern

implementation [27] to parse the go-core Ontology database file [4]. Searching with user-spec-

ified sets of keywords for each category, GOcats extracts subgraphs of the GO DAG and identi-

fies a representative node for each category in question and whose child nodes are detailed

features of the components. Fig 7 illustrates this approach, and details follow in pseudocode.

To overcome issues regarding scoping ambiguity among mereological relations, we

assigned properties indicating which term was broader in scope and which term was narrower

in scope to each edge object created from each of the scope-relevant relations in GO. For

example, in the node pair connected by a part_of or is_a edge (e.g. node 1 is_a node 2), node 1

is narrower in scope than node 2. Conversely, node 1 is broader in scope than node 2 when

connected by a has_part edge (e.g. node 1 has_part node 2). This edge is therefore reinter-

preted by GOcats as part_of_some. This reinterpretation is not meant to imply exclusivity

in composition between the meronym and the holonym. It simply stands as a distinction

between “part of all” which is what the current “part_of” relationship implies, and “part

of some,” or to be more verbose “instance a is part of instance b in at least one known bio-

logical example.” We have described additional explanations and rationale for this re-inter-

pretation elsewhere and demonstrate improvement in annotation enrichment analyses across

GO Cellular Component, Molecular Function, and Biological Process sub-ontologies, when

this re-interpretation is used [23].

While the default scoping relations in GOcats are is_a, part_of, and has_part, the user has

the option to define the scoping relation set. For instance, one can create go-basic-like sub-

graphs from a go-core version ontology by limiting to only those relations contained in go-

basic. For convenience, we have added a command line option, “go-basic-scoping,” which

allows only nodes with is_a and part_of relations to be extracted from the graph. Detailed API

documentation and user-friendly tutorials are available online (https://gocats.readthedocs.io/

en/latest/).

For mapping purposes, Python dictionaries are created which map GO terms to their corre-

sponding category or categories. For inter-subgraph analysis, another Python dictionary is cre-

ated which maps each category to a list of all its graph members. By default, fine-grained terms

do not map to category root-nodes that define a subgraph that is a superset of a category with

a root-node nearer to the term. For example, a member of the “nucleolus” subgraph would

map only to “nucleolus,” and not to both “nucleolus” and “nucleus”. However, the user also

has the option to override this functionality if desired with a simple “—map-supersets” com-

mand line option. Furthermore, we’ve included the option for users to directly input GO

terms as category representatives, should they not wish to use keywords to define subgraph

categories. This is helpful for users who have already compiled lists of GO terms by hand for

use with other tools.
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Implementation overview

As illustrated in the UML diagram in Fig 8A, the GOcats package is implemented using several

modules that have clear dependencies starting from a command line interface (CLI) in gocats.

py which depend on most of the other modules including ontologyparser.py, godag.py, sub-

dag.py and tools.py. GOcats uses 10 classes implemented across ontologyparser.py, godag.py,

subdag.py, and dag.py to extract and internally represent the GO database. GoParser, which

inherits from the base OboParser class (Fig 8B), utilizes a visitor design pattern and regular

expressions to parse the flat GO database obo file and instantiate the objects necessary to

Fig 7. Flowchart of the GOcats’ subgraph creation method.

https://doi.org/10.1371/journal.pone.0233311.g007
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represent the GO DAG structure. These instantiated objects include (Fig 8C): 1) the GoGraph

container object for the parts of the graph, which inherits from a more generic OboGraph con-

taining functions for adding, removing, and modifying nodes and edges; 2) GoGraphNode

objects for representing each term parsed from the ontology, which inherits from Abstract-

Node; 3) AbstractEdge objects for representing each instance of a relation parsed from the

ontology; and 4) DirectionalRelationship objects, which inherit from the more generic

AbstractRelationship object for representing each type of directional relation encountered in

the ontology (for GO, all relations are directional, and this distinction is made only in anticipa-

tion for future extensions to handle other ontologies).

AbstractEdge objects and AbstractNode objects contain references to one another, which

simplifies the process of iterating through ancestor and descendant nodes and allows for func-

tions such as AbstractEdge.connect_nodes, which requires that the edge object update the

node object’s child_node_set and parent_node_set. In this context, AbstractNode is a true

abstract base class, while AbstractEdge started out as an abstract base class but eventually

Fig 8. UML diagrams describing the GOcats implementation. A) UML module dependency diagram. B) UML class diagram of GO database parsing classes. C)

UML class diagram of the GO graph representation.

https://doi.org/10.1371/journal.pone.0233311.g008
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became a concrete class during development. However, we see the possibility of AbstractEdge

becoming a base class in the future.

Ancestors and descendants of a node are implemented as sets, which are lazily created

through the use of a Python property decorator (i.e. Python’s preferred “getter” syntax). At the

first access of these sets through the ancestor or descendent property, the set is calculated with

a recursive algorithm, stored for future use, and returned for immediate access. Subsequent

accesses simply return the stored set. If the set of edges within a node change, the ancestor and

descendent node sets will be recalculated on their next access. This implementation prevents

pre-calculation of these sets when they are not used, while enabling their reuse within efficient

graph analysis methods.

AbstractEdge also contains a reference to a DirectionalRelationship object, which is critical

for graph traversal. This is because DirectionalRelationship contains the true directionality of

the mereological correspondence between the categorization relevant relations (is_a, part_of,

and has_part). In other words, it is within this class that we define in which direction the edge

should be traversed when categorizing terms. Currently these rules are hard-coded within

GoParser’s relationship_mapping dictionary.

The gocats.py module (Fig 8A) implements the command line interface and is responsible

for handling the command line arguments, using the provided keywords and specified argu-

ments like namespace filters (e.g. Cellular Component, Molecular Function, and Biological

Process) to instantiate a GoParser object, a GoGraph object and a SubGraph object for each set

of provided keywords. After creation of the GoGraph internal representation, each category

subgraph is created by first instantiating the SubGraph object and calling the from_filtered_-

graph function, which filters to those nodes from the GoGraph containing the keywords in

their names and definition. Note that the SubGraph object and GoGraph object both inherit

from OboGraph, and that the SubGraph object contains a reference to GoGraph object (super-

graph data member) of which it is a subgraph. This design was implemented to avoid acciden-

tal alterations of the GoGraph object when altering the contents of the subgraph, and to allow

for specialization of functions within SubGraph without needing to use unique names e.g.

add_node(). GoGraphNode objects within the subgraph are wrapped by SubGraphNode

objects, which are directly used by the SubGraph object, but retain all original properties such

as name, definition, and sets of edge object references, otherwise insidious changes could

occur to the GoGraph object when updating the SubGraph object. The SubGraph object also

contains a CategoryNode object, which wraps the category representative GoGraphNode

object(s) for the subgraph category.

Specific implementation details

User-provided keyword sets are used by GOcats to query GO terms’ name and definition fields

to create an initial seeding of the subgraph with terms that contain at least one keyword. This

seeding is a list of nodes from the whole go-core graph (supergraph) that pass the query. Node

synonyms were not used, due to there being four types of synonyms in GO: exact, narrow,

broad, and related. Also, many nodes within GO do not have synonyms, which may create an

unequal utilization of nodes if synonyms were queried. However, in the future, synonym utili-

zation for seeding purposes may be revisited.

FOR node in supergraph.nodes
IF keyword from keyword_list in node.name or node.definition
subgraph.seeding_list.append(node)

Using the graph structure of GO, edges between these seed nodes are faithfully recreated

except where edges link to a node that does not exist in the set of newly seeded GO terms.
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During this process, edges of appropriate scoping relations are used to create children and par-

ent node sets for each node.

FOR edge in supergraph.edges
IF edge.parent_node in subgraph.nodes AND edge.child_node

in subgraph.nodes AND /
edge.relation is TYPE: SCOPING
subgraph.edges.append(edge)

ELSE
PASS

FOR subnode in subgraph.nodes
subnode.child_node_set = /
{child_node for child_node in supergraph.id_index[sub-

node.id].child_node_set /
if child_node.id in subgraph.id_index}

subnode.parent_node_set = /
{parent_node for parent_node in supergraph.id_index[sub-

node.id].parent_node_set /
if parent_node.id in subgraph.id_index}

GOcats then selects a category representative node to represent the subgraph. To do this, a

list of candidate representative nodes is compiled from non-leaf nodes, i.e. root-nodes in the

subgraph which have at least one keyword in the term name. A single category representative

root-node is selected by recursively counting the number of children each candidate term has

(i.e. creating the node.descendents) and choosing the term with the most children.

FOR subnode in subgraph.nodes
IF subnode.child_node_set ! = None AND ANY keyword in sub-

node.name
candidate_list.append(subnode)

ELSE
PASS

representative_node = MAX(LEN(node.descendants) FOR node in
candidates)

Because it may be possible that highly-specific or uncommon features included in the GO

may not contain a keyword in its name or definition but still may be part of the subgraph in

question by the GO graph structure, GOcats re-traces the supergraph to find various node

paths that reach the representative node. We have implemented two methods for this subgraph

extension: i) comprehensive (greedy) extension, whereby all supergraph descendants of the

representative node are added to the subgraph and ii) conservative extension, whereby the

supergraph is checked for intermediate nodes between subgraph leaf nodes and the subgraph

representative node that may not have seeded in the initial step.

Comprehensive (Greedy) extension:
FOR node in supergraph.nodes
IF ANY (ancestor_node in node.ancestors) in subgraph
subgraph.nodes.append(ancestor_node)

UPDATE subgraph # appropriate edges added and parent/child
nodes assigned
Conservative extension:
FOR leaf_node in subgraph.leaf_nodes # nodes with no children
start_node = leaf_node
end_node = representative_node
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FOR node in super_graph.start_node.ancestors \ supergraph.
end_node.descendents

subgraph.nodes.append(node)
UPDATE subgraph # appropriate edges added and parent/child

nodes assigned
The subgraph is finally constrained to the descendants of the representative node in the

subgraph. This excludes unrelated terms that were seeded by the keyword search due to seren-

dipitous keyword matching.

Creating category mappings from UniProt’s subcellular location controlled

vocabulary

We created mappings from fine-grained to general locations in UniProt’s subcellular location

CV [2] for comparison to GOcats. To accomplish this, we parsed and recreated the graph

structure of UniProt’s subcellular locations CV file [13] in a manner similar to the parsing of

GO (Fig 2). Briefly, the flat-file representation of the CV file is parsed line-by-line and each

term is stored in a dictionary along with information about its graph neighbors as well as its

cross-referenced GO identifier. We assumed that terms without parent nodes in this graph are

category-defining root-nodes and created a dictionary where a root-node key links to a list of

all recursive children of that node in the graph. Only those terms with cross-referenced GO

identifiers were included in the final mapping. The category subgraphs created from UniProt

were compared to those with corresponding category root-nodes made by GOcats. An inclu-

sion index, I, was calculated by considering the two subgraphs’ members as sets and applying

the following equation:

I ¼
jSn \ Sg j
jSnj

ð1Þ

where Sn and Sg are the set of members within the non-GOcats-derived category and GOcats-

derived category, respectively. It is worth noting here that the size of the UniProt set was

always smaller than the GOcats set. This is due to the inherent size differences between Uni-

Prot’s CV and the Cellular Component sub-ontology.

Creating category mappings from Map2Slim

The Java implementation of OWLTools’ M2S does not include the ability to output a mapping

file between fine-grained GO terms and their GO slim mapping target from the GAF that is

mapped. To compare subgraph contents of GOcats categories to a comparable M2S “cate-

gory,” we created a special custom GAF where the gene ID column and GO term annotation

column of each line were each replaced by a different GO term for each GO term in Cellular

Component, data-version: releases/2016-01-12. We then allowed M2S to map this GAF with a

provided GO slim. The resulting mapped GAF was parsed to create a standalone mapping

between the terms from the GO slim and a set of the terms in their subgraphs.

Mapping gene annotations to user-defined categories

To allow users to easily map gene annotations from fine-grained annotations to specified cate-

gories, we added functionality for accepting GAFs as input, mapping annotations within the

GAF and outputting a mapped GAF into a user-specified results directory. The input-output

scheme used by GOcats and M2S are similar, with the exception that GOcats accepts the map-

ping dictionary created from category keywords, as described previously, instead of a GO slim.
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GAFs are parsed as a tab-separated-value file. When a row contains a GO annotation in the

mapping dictionary, the row is rewritten to replace the original fine-grained GO term with the

corresponding category-defining GO term. If the gene annotation is not in the mapping dic-

tionary, the row is not copied to the mapped GAF, and is added to a separate file containing a

list of unmapped genes for review. The mapped GAF and list of unmapped genes are then

saved to the user-specified results directory.

Visualizing and characterizing intersections of category subgraphs

To compare the contents of category subgraphs made by GOcats, UniProt CV, and M2S, we

took the set of subgraph terms for each category in each method, converted them into a Pandas

DataFrame [28] representation, and plotted the intersections using the UpSetR R package

[25]. Inclusion indices were also computed for M2S categories using Eq 1. Jaccard indices

were computed for every subgraph pair to evaluate the similarity between subgraphs of the

same concept, created by different methods.

Assigning generalized subcellular locations to genes from the knowledgebase

and comparing assignments to experimentally-determined locations

We first mapped two GAFs downloaded from the EMBL-EBI QuickGO resource [12] using

GOcats, the UniProt CV, and M2S. We filtered the gene annotations by dataset source and evi-

dence type, resulting in separate GAFs containing annotations from the following sources:

UniProt-Ensembl, and HPA. Both GAFs had the evidence type, inferred from Electronic

Annotation, filtered out because it is generally considered to be the least reliable evidence type

for gene annotation and in the interest of minimizing memory usage. We used this data to

assess the performance of the mapping methods in their ability to assign genes to subcellular

locations based on annotations from knowledgebases by comparing these assignments to

those made experimentally in HPA’s localization dataset (Fig 3A). Comparison results for each

gene were aggregated into 4 types: i) “complete agreement” for genes where all subcellular

locations derived from the knowledgebase and the HPA dataset matched, ii) “partial agree-

ment” for genes with at least one matching subcellular location, iii) “partial superset” for genes

where knowledgebase subcellular locations are a superset of the HPA dataset, iv) "no agree-

ment" for genes with no subcellular locations in common, and v) “no annotations” for genes

in the experimental dataset that were not found in the knowledgebase.

Only gene product localizations from the HPA dataset with a “supportive” confidence score

were used for this analysis (n = 4795). We created a GO slim by looking up the corresponding

GO term for each location in this dataset with the aid of QuickGO term basket and filtering

tools. The resulting GO slim served as input for the creation of mapped GAFs using M2S. To cre-

ate mapped GAFs using GOcats, we entered keywords related to each location in the HPA data-

set (Table 4). We matched the identifier in the “gene name” column of the experimental data

with the identifier in the “database object symbol” column in the GAF to compare gene annota-

tions. Our assessment of comparing the HPA raw data to mapped gene annotations from the

knowledgebase represents the ability to accurately query and mine genes and their annotations

from the knowledgebase into categories of biological significance. Our assessment of comparing

the methods’ mapping output to the HPA raw dataset represents the ability of these methods to

evaluate the representation of HPA’s latest experimental data as it exists in public repositories.

Running time tests

For comparing the runtimes of GOcats and M2S for categorizing HPA’s subcellular location

dataset, each method was run separately on the same machine with the following
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configuration: Intel 1 Core ™ i7-4930K CPU with 6 hyperthreaded cores clocked at 3.40GHzn

and 64 GB of RAM clocked at 1866 MHz. We used the Linux “time” command with no addi-

tional options and reported the real time from its output. The datasets and scripts used can be

found in our FigShare (See Availability of Data and Material). We used the dataset contained

in our ScriptsDirectory/KBData/11-02-2016/hpa-no_IEA.goa for these comparisons. For M2S

we executed a custom script that can be found within ScriptsDirectory/runscripts:

sh owlmultitest.sh
which ran the following command, found in the same subdirectory, 50 times:

time sh owltoolsspeedtest.sh
For GOcats, we executed a custom script that can be found within ScriptsDirectory/

runscripts:

sh gcmultitest.sh
which ran the following command, found in the same subdirectory, 50 times:

time sh GOcatsspeedtest.sh
Both tests were executed using the same version of the go-core used across all other analyses

performed in this work, which is data version: releases/2016-01-12.
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