
T
h
e 

Jo
u
rn

al
 o

f 
E
xp

er
im

en
ta

l 
M

ed
ic

in
e

ARTICLE

JEM © The Rockefeller University Press $15.00

Vol. 204, No. 4, April 16, 2007 951–961 www.jem.org/cgi/doi/10.1084/jem.20061805

951

The prolonged lifespan of memory T cells 
combined with their ability to rapidly acquire 
eff ector function provides long-term protec-
tive immunity against repeated exposure to 
pathogens (1). The mechanisms governing the 
homeostasis of memory T cells have been an 
area of intense investigation. Unlike naive T 
cells, which survive largely in interphase, mem-
ory T cells persist under normal conditions 
with a slow but constant turnover, defi ned as 
basal homeostatic proliferation, presumably re-
fl ecting an elevated state of cell activation (1, 2). 
As with naive T cells, memory T cells are also 
capable of undergoing more rapid cell division 
under lymphopenic conditions, known as acute 
homeostatic proliferation (2). There is now a 
general consensus that two members of the 
common γ chain cytokine family, namely IL-7 
and IL-15, control the homeostasis of CD8+ 
memory cells (1, 3–5). However, the factors 
that govern the homeostasis of CD4+ memory 
cells have yet to be fully defi ned.

To date, two types of memory T cells have 
been used interchangeably to study memory cell 
homeostasis: memory phenotype (MP) T cells 
that arise spontaneously in normal mice and anti-
gen (Ag)-specifi c memory T cells that are gener-
ated by deliberate Ag adminis tration (1, 3–6). For 
CD8+ cells, both types of memory cells require 
IL-7 and IL-15 for their homeostasis, although 
they display minor  diff erences in their relative de-
pendence on the two cytokines (1, 3). MP CD8+ 
cells are exquisitely dependent on IL-15 for their 
generation, survival, and basal homeostatic pro-
liferation; hence, MP CD8+ cells are drastically 
depleted in mice defi cient in either IL-15 or IL-
15Rα, the latter being required for presentation 
of IL-15 (2, 7–11). Ag-specifi c memory CD8+ 
cells, on the other hand, are less dependent on 
IL-15, relying more on IL-7, but still require 
IL-15 for basal homeostatic proliferation and 
long-term maintenance (2, 8, 12–15). Thus, Ag-
specifi c memory CD8+ cells were effi  ciently 
generated in IL-15– or IL-15Rα––defi cient mice, 
but these cells  remained in  interphase and gradu-
ally disappeared over several months (12–14).
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The discrepancy in the homeostatic requirements for 
Ag-specifi c memory versus MP cells appears even greater for 
CD4+ than CD8+ cells. For instance, although the two types 
of memory CD8+ cells undergo similar rates of homeostatic 
proliferation, MP CD4+ cells as a population undergo a 
 considerably faster rate of homeostatic proliferation than Ag-
specifi c memory CD4+ cells (2, 9, 15–17). Moreover, the 
homeostasis of MP CD4+ cells seems to be governed more 
by TCR signaling than by cytokines. Thus, the basal homeo-
static proliferation rate of MP CD4+ cells declined dramati-
cally after the forced down-regulation of TCR expression, 
and acute homeostatic proliferation of MP CD4+ cells in 
lymphopenic hosts occurred in the absence of IL-7 and/or 
IL-15 (9, 18, 19). In contrast, the homeostasis of Ag-specifi c 
CD4+ memory cells appears to be solely controlled by cyto-
kines as these cells can survive and undergo acute homeo-
static expansion in lymphopenic hosts in the absence of 
MHC II molecules (17, 20). Consistent with this notion, 
 recent studies have shown that IL-7 is essential for the sur-
vival and basal homeostatic turnover of Ag-specifi c CD4+ 
memory cells (15, 21).

In addition to IL-7, IL-15 treatment is known to pro-
mote the proliferation of human memory CD4+ T cells in 
vitro and mouse Ag-specifi c CD4+ memory T cells in vivo 
(15, 22). Nonetheless, IL-15 is generally considered to be 
irrelevant for the homeostasis memory CD4+ cells (1, 3–6), 
especially because normal numbers of MP CD4+ cells are 
present in IL-15–defi cient mice (8). Likewise, IL-15 is reported 
to have only a minimal role in the homeostasis of Ag- specifi c 
CD4+ memory cells (15). Here, however, the Ag-specifi c 
CD4+ memory cells were generated de novo in IL-15–
 defi cient mice, a situation where T cells can become perma-
nently conditioned to cope with IL-15 defi ciency (23). In 
light of this caveat, we have reexamined the role of IL-15 
in the homeostasis of CD4+ Ag-specifi c memory cells using 
lymphocytic choriomeningitis virus (LCMV)-specifi c TCR 
transgenic memory CD4+ T cells, as well as polyclonal LCMV-
specifi c CD4+ memory cells, generated in normal C57BL/6 
(B6) mice. We report for the fi rst time that Ag- specifi c CD4+ 
memory cells are dependent on IL-15 for their basal homeo-
static proliferation and long-term survival.

RESULTS

Sources of memory CD4+ T cells

Two types of memory CD4+ cells were used for this study: 
spontaneously arising MP cells and Ag-specifi c memory cells. 
MP cells were obtained by FACS purifying CD44hi CD25– 
NK1.1– CD4+ cells from 6–10-mo-old normal B6.PLThy1a/Cy 
Thy-1.1+ (B6.PL) spleens. Ag-specifi c memory cells were 
generated using a line of CD4+ TCR transgenic mice on a 
B6.PL background, designated Smarta, specifi c for LCMV 
glycoprotein (GP) 61-81–H2-Ab complexes (24). As de-
scribed previously, small numbers of naive Thy-1.1+ Smarta 
cells were transferred into Thy-1.2+ B6 mice and immunized 
1 d later with LCMV. Memory cells were purifi ed from 
spleens after 5–7 wk (25).

For the initial characterization of Smarta memory cells, 
two diff erent doses of naive cells were transferred into B6 
hosts: a high dose (105 cells/mouse) and a lower physiologi-
cally relevant dose (103 cells/mouse; reference 26). Smarta 
cells at either precursor frequency (104 or 102, assuming 
10% engraftment of injected cells) displayed kinetics of  virus-
 induced expansion, contraction, and maintenance phases com-
parable to those described for polyclonal CD4+ T cells (Fig. 1 A; 
reference 27). However, the high precursor  frequency of 
 naive Smarta cells led to the generation of 10-fold more 

Figure 1. Generation and characterization of Smarta memory 

cells. (A) The responses of naive Smarta CD4+ cells transferred into B6 

hosts at a high or low precursor frequency. B6 mice were injected with 

105 or 103 naive Thy-1.1+ Smarta cells and infected with LCMV Armstrong 

1 d later. The recovery of Smarta cells in host spleen was analyzed at the 

indicated time points by staining for Thy-1.1 and CD4. (B) Characteriza-

tion of Smarta naive, effector, and memory cells generated from 105 in-

jected precursors. Histograms indicate expression of activation markers 

and cytokine receptors on Smarta cells before and after LCMV infection, 

shown in comparison with total polyclonal B6 CD4+ cells. Numbers inside 

histograms indicate mean fl uorescence intensity. Dot plots show the ex-

pression of intracellular IL-2 and IFN-γ by Smarta cells after a 5-h in vitro 

stimulation with agonist GP61-80 peptide. Data are representative of four 

separate experiments, with at least three mice per time point. (C) Basal 

homeostatic proliferation rate of Smarta memory and CD4+ MP cells. 

B6 mice harboring a high or low precursor frequency of Smarta memory 

cells (at 72 d after LCMV infection) were given BrdU in the drinking water for 

5 d, and the incorporation of BrdU on memory CD4+ cells was detected 

as described in Materials and methods. Similar results were obtained in 

two other experiments.
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memory cells with a slightly longer half-life (72 vs. 64 d) than 
the low precursor frequency (Fig. 1 A). Smarta memory cells 
generated from either precursor frequency were virtually 
identical in terms of their ability to synthesize cytokines and 
their expression of activation markers and cytokine receptors 
(Fig. 1 B and Fig. S1, which is available at http://www.jem
.org/cgi/content/full/jem.20061805/DC1). Smarta cells at 
memory time points (>40 d after virus infection) displayed 
a CD25– CD44hi CD62Llo phenotype and increased expression 
of CD122, a shared component of the IL-15 (and IL-2) 
 receptor (28), as well as CD127 (IL-7Rα) relative to naive 
Smarta cells (Fig. 1 B). A small population of CD62Lhi Smarta 
memory cells arose at later time points, but the implication of 
this is not clear. Additionally, �50% of Smarta memory cells 
synthesized IFN-γ and/or IL-2 upon in vitro stimulation 
with cognate peptide (Fig. 1 B).

To visualize the basal homeostatic proliferation of Smarta 
memory cells, mice containing long-term primed (72 d) 
Smarta memory cells were given drinking water containing 
the nucleotide analogue BrdU, which is incorporated into 
the DNA of proliferating cells. After 5 d, similar proportions 
of high and low precursor frequency Smarta memory cells 
incorporated BrdU, indicating that they underwent compa-
rable rates of basal homeostatic proliferation (Fig. 1 C). No-
tably, the basal homeostatic proliferation rate of Smarta CD4+ 
memory cells was less than half the rate displayed by MP 
CD4+ cells, consistent with previous results obtained with 
polyclonal Ag-specifi c memory CD4+ cells (15, 16). Overall, 
Smarta memory cells generated from low or high precursor 
frequencies displayed comparable phenotype, functionality, 
and basal rates of turnover to those previously observed 
for polyclonal Ag-specifi c CD4+ memory cells (15, 27, 29). 
Consequently, Smarta memory cells derived from high 
 precursor frequencies were used to study the homeostatic 
 requirements of Ag-specifi c CD4+ memory cells.

MP CD4+ cells are a heterogeneous population of cells

MP CD4+ cells have been used as surrogates for Ag-specifi c 
memory CD4+ cells in studies of T cell homeostasis with the 
assumption that the two types of cells are interchangeable 
(9, 19). To test the validity of this supposition, we directly 
compared the acute homeostatic turnover of both types of 
cells in irradiated B6 hosts for 1 wk (Fig. 2 A).  Lymphopenia-
induced homeostatic proliferation in irradiated hosts provides 
a convenient and sensitive model to compare the homeo-
static requirements of various T cell subsets. Smarta memory 
cells underwent a homogeneous, slow rate of acute homeo-
static proliferation. In contrast, MP CD4+ cells comprised 
two  distinct populations of cells that underwent either an 
 extremely rapid or a slow rate of cell division (Fig. 2 A). 
 Because the rapidly dividing MP CD4+ cells resembled cells 
undergoing proliferation driven by foreign Ags, we tested 
whether MP CD4+ cells would undergo an even greater 
 expansion in RAG-1– hosts. This rationale is based on our 
recent fi nding that the density of foreign Ags recognized 
by T cells is much higher in congenitally T-defi cient hosts 

Figure 2. MP CD4+ cells are comprised of heterogeneous popula-

tions of cells in terms of their homeostatic characteristics. (A) Com-

parison of acute homeostatic proliferation between Smarta memory and 

MP CD4+ cells. A mixture of CFSE-labeled Thy-1.1+ Smarta memory cells 

(4 × 105) and CD45.1+ MP CD4+ cells (2 × 105) was injected into irradi-

ated B6 and Rag-1− mice, and the donor cells in the host spleen and LNs 

were analyzed 1 wk later by staining for Thy-1.1, CD45.1, and CD4. Histo-

grams show CFSE profi les of the two donor cell types in the host spleen, 

and the bar graphs show mean donor cell recovery from pooled host 

spleen and LNs. Data are representative of two separate experiments, with 

two mice per host type analyzed individually. (B) MP CD4+ cells recognize 

a hybrid MHC II molecule in Aβ− mice. Small numbers (3 × 105) of CFSE-

labeled purifi ed Thy-1.1+ CD4+ MP cells were injected into irradiated and 

CD8/NK-depleted B6, Aβ−, IL-7−, and Aβ−IL-7− mice and were analyzed 

1 wk later by staining splenocytes for CD4 and Thy-1.1. Aβ− B6 mice lack 

the H2-A β chain. CFSE dilution and recovery from one of two experiments, 

with two mice per treatment are shown. (C) The role of MHC II and IL-7 in 

expansion of MP CD4+ cells in lymphopenic hosts. A small dose (3 × 105) 

of purifi ed MP CD4+ cells was injected into irradiated and CD8/NK cell–

depleted B6, MHC-II∆/∆, IL-7–, and MHC-II∆/∆ IL-7– mice. Donor cells from 

the host spleen were analyzed 1 wk later by staining for Thy-1.1 and CD4. 

MHC-II∆/∆ B6 mice lack all H2-A and E chains. Histograms and a log scale 

scatter-plot show proliferation and recovery of donor cells in the spleen. 

Data are representative of two separate experiments, with two mice per 

host type analyzed individually.



954 CD4+ MEMORY CELLS REQUIRE IL-15 | Purton et al.

than in irradiated normal hosts (30). Indeed, the magnitude 
of the fast- dividing MP CD4+ cells was greatly increased in 
RAG-1– hosts,  leading to an �10-fold increase in donor cell 
recovery when compared with irradiated B6 hosts (Fig. 2 A). 
For Smarta memory cells, in contrast, the homeostatic pro-
liferation rate and the recovery in RAG-1– hosts were vir-
tually identical to those in irradiated B6 hosts (Fig. 2 A). 
These  results demonstrate that MP CD4+ cells are a hetero-
geneous population of cells. Although the majority of the 
cells display homeostatic characteristics similar to Ag-specifi c 
cells and undergo slow homeostatic proliferation, a fraction 
of cells  divide very rapidly, possibly driven by nonhomeo-
static mechanisms, e.g., through contact with foreign Ags. 
In partial support of this idea, the rapidly dividing donor 
MP CD4+ cells recovered from irradiated B6 hosts displayed 
some properties of eff ector cells (31). Thus, these cells were 
CD43hiCD62Llo, a fraction down-regulated CD127, but re-
mained CD122lo CD69– CD25– PD-1–, and they did not 
readily produce IFN-γ or IL-2 after anti-CD3 stimulation 
(Fig. S2, available at http://www.jem.org/cgi/content/full/
jem.20061805/DC1, and not depicted).

One possibility is that MP CD4+ cells in lymphopenic 
hosts are driven by TCR signaling rather than by the in-
creased levels of homeostatic cytokines. According to this 
idea, the population of rapid-dividing cells would not be 
 apparent if CFSE-labeled MP CD4+ cells were transferred 
into irradiated syngeneic hosts defi cient in the expression of 
MHC II molecules. However, when irradiated H2-Aβ– mice 
were used as hosts, the fast-dividing MP CD4+ cells emerged 
after 1 wk just as readily as in control irradiated B6 hosts 
(Fig. 2 B). Unexpectedly, for these studies we had to use 
H2-Aβ– mice that were depleted of CD8+ and NK cells, as 
unmanipulated H2-Aβ– hosts promptly rejected donor MP 
CD4+ cells despite the irradiation. The mechanism involved 
in the rejection of wild-type B6 MP CD4+ cells by H2-Aβ– 
hosts is not known, but one possible cause is a genetic dif-
ference at the nonclassical MHC region between B6 and 
H2-Aβ– mice, which are derived from 129 stem cells (17). 
The rejection was not  observed when H2-Aβ– hosts were 
depleted of CD8+ and NK cells, and hence, adoptive transfer 
into MHC II–defi cient hosts was performed after such a lym-
phocyte depletion.

Because H2-Aβ– mice are reported to express low levels 
of chimeric H2-AαEβ molecules that can be recognized by 
mature T cells (32), the above experiment was repeated using 
MHC II locus-defi cient (MHC-II∆/∆) mice that lack all chains 
of the H2-A and E molecules (33). Again, MHC-II∆/∆ mice 
were depleted of CD8+ and NK cells to prevent the rejection 
of donor MP CD4+ memory cells. Strikingly,  in MHC-II∆/∆ 
hosts, the fast-dividing population of donor MP CD4+ cells 
was virtually absent, even though the slow-dividing cells were 
largely unaff ected; in control B6 hosts, both fast- and slow-
dividing populations were observed (Fig. 2 C).

To determine whether IL-7 plays a role in the homeostasis 
of fast-dividing MP CD4+ cells, IL-7– and MHC-II∆/∆ IL-7– 
mice were also included as hosts in the above experiment. 

Signifi cantly, a population of fast-dividing cells was promi-
nent in IL-7– hosts but was almost undetectable in MHC-
II∆/∆ IL-7– hosts, indicating that IL-7 is not required for the 
fraction of MP CD4+ cells that undergoes rapid proliferation 
(Fig. 2 C). Nonetheless, the recovery of donor cells declined 
severely in IL-7– hosts (Fig. 2 C), suggesting that IL-7 can 
augment the survival of fast-dividing cells. It should also be 
noted that the majority of the slow-dividing cells did not 
proliferate or survive in the absence of IL-7, thus severely re-
ducing the recovery of donor cells in MHC-II∆/∆ IL-7– hosts 
as compared with MHC-II∆/∆ hosts and causing the propor-
tion of fast-dividing cells to increase in IL-7– hosts (Fig. 2 C). 
Collectively, these fi ndings indicate that although both fast- 
and slow-dividing MP CD4+ cells are dependent on IL-7 for 
their survival, the former cells do not require IL-7 for fast 
proliferation, whereas the latter cells are dependent on IL-7 
for their slow homeostatic proliferation. Moreover, slow-
 dividing cells do not require contact with MHC II for their 
homeostatic proliferation, but the fast-dividing cells do require 
contact with MHC II, possibly loaded with foreign peptides, 
and are largely responsible for the high basal turnover rate 
of MP CD4+ cells as a population. Attempts to remove the 
fast-dividing population among MP CD4+ cells on the basis 
of cell surface phenotype have thus far failed (not depicted), 
so it is not currently possible to specifi cally remove these 
cells. All the above fi ndings indicate that MP CD4+ cells 
are  comprised of distinct subsets of MHC II–dependent and 
– independent cells. Hence, MP CD4+ cells cannot be used as 
a surrogate for characterizing the homeostatic requirements 
of Ag-specifi c memory CD4+ cells.

The homeostasis of Ag-specifi c memory CD4+ cells 

is cytokine dependent

To determine whether Ag-specifi c memory CD4+ cells require 
contact with MHC II for their homeostasis, CFSE-labeled 
Smarta memory cells were transferred to irradiated CD8+/
NK-depleted B6 and MHC-II∆/∆ hosts and analyzed 1 wk 
later. The proliferation and recovery of Smarta memory cells 
in either host were nearly identical, indicating that Ag-specifi c 
memory CD4+ cells do not require MHC II contact to un-
dergo acute homeostatic proliferation or survival (Fig. 3 A). 
Furthermore, MHC II contact did not aff ect the turnover 
of Smarta memory cells in partially lymphopenic CD8+/NK-
depleted hosts or increase the survival of these cells in the 
absence of IL-7 and IL-15 cytokine signaling (Fig. S3, available 
at http://www.jem.org/cgi/content/full/jem.20061805/DC1). 
Smarta memory cells thus resemble the slow-proliferating 
MP CD4+ cells (Fig. 2 C) and probably require only cytokines 
for their homeostasis.

To defi ne the cytokines that support the acute homeo-
static turnover of Ag-specifi c CD4+ memory cells, CFSE-
 labeled Smarta memory cells were transferred into irradiated 
B6, IL-7–, IL-15–, and IL-7–15– mice, and their proliferation 
and recovery were determined 2 wk later. Similar numbers of 
Smarta memory cells were found to initially engraft in the 
various hosts (not depicted). Slow proliferation of Smarta 
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memory cells in irradiated B6 hosts seems to be driven largely 
by IL-7 because proliferation was much reduced in IL-7– hosts 
but maintained in IL-15– hosts (Fig. 3 B). Nevertheless, a 
fraction of Smarta memory cells did undergo one to two cell 
divisions in IL-7– hosts, and this proliferation was completely 
abolished in IL-7–15– hosts, indicating that IL-15 does have 
a signifi cant though minor role in driving the acute homeo-
static proliferation of Smarta memory cells (Fig. 3 B). The re-
covery of donor Smarta memory cells in B6 and IL-15– hosts 
was comparable but �20-fold lower in IL-7– and IL-7–15– 
hosts. Even when normalized to account for diff erences in 
proliferation, the recovery of donor cells was consistently 
5–10-fold lower in IL-7– and IL-7–15– hosts. These fi ndings 
are consistent with the idea that the homeostasis of memory 
CD4+ cells is primarily controlled by IL-7 (15, 19, 21, 34).

IL-15 drives the basal homeostatic proliferation 

of Ag-specifi c memory CD4+ cells in nonlymphopenic hosts

The low rate of proliferation of Smarta memory cells in irradi-
ated IL-7– hosts (Fig. 3 B) resembled the basal homeostatic 

proliferation of Smarta memory cells in intact nonirradiated 
hosts (Fig. 1 C). This fi nding suggests that IL-15 may play a 
signifi cant role in supporting basal turnover of memory CD4+ 
cells under normal T cell–suffi  cient conditions. In this regard, 
previous studies have reported that exogenous IL-15 is not 
 mitogenic for MP CD4+ cells but is stimulatory for Ag-specifi c 
memory CD4+ cells under in vivo conditions (14, 15, 35).

To directly compare the in vivo eff ects of IL-15 for 
memory cell subsets, whole splenocytes from LCMV-primed 
B6 mice containing Thy-1.1+ Smarta memory cells were 
CFSE labeled and transferred into nonirradiated CD45.1 
congenic B6 hosts. The host mice were then injected with 
1.5 μg IL-15 or PBS, and the proliferation of donor Smarta 
memory, MP CD4+, and MP CD8+ cells (all three distin-
guishable by CD45 and Thy-1 alleles) was measured 5 d later. 
As expected, IL-15 injection caused a marked increase in the 
proliferation of donor MP CD8+ cells but did not seem to 
infl uence MP CD4+ cells, which displayed a prominent pop-
ulation of fast-dividing cells (Fig. 4 A). In contrast to MP 
CD4+ cells, a fraction of Smarta memory cells clearly prolif-
erated in response to IL-15 treatment, although not as strongly 
as MP CD8+ cells (Fig. 4 A). This fi nding confi rms that MP 
CD4+ cells, as a population, are indiff erent to IL-15, but 
shows that Smarta memory cells, like polyclonal Ag-specifi c 
memory CD4+ cells (15), are capable of responding to IL-15 
under in vivo conditions.

To determine the role of IL-15 in supporting basal ho-
meostatic proliferation of Ag-specifi c CD4+ memory cells 
under normal physiological conditions, CFSE-labeled Smarta 
memory cells were transferred into nonirradiated IL-15– mice 
and analyzed 51 d later. B6, IL-7–, and IL-7–15– mice were 
included as controls (Fig. 4 B). Consistent with their low 
basal homeostatic proliferation rate (Fig. 1 C), 70–80% of 
Smarta memory cells underwent one to three cell divisions in 
B6 hosts during the 51-d period. Strikingly, in IL-15– hosts, 
proliferation of Smarta memory cells was severely curtailed as 
only a small fraction of cells underwent one cell division. The 
residual cell division in IL-15– hosts was driven by IL-7 as 
complete abrogation of proliferation was observed in IL-7–

15– hosts. A severe reduction in the proliferation of Smarta 
memory cells was also observed in IL-7– hosts. These fi ndings 
indicate that IL-7 and IL-15 play codominant roles in sup-
porting effi  cient basal homeostatic proliferation of Smarta 
memory cells. However, in terms of cell survival, IL-7 plays 
a more prominent role than IL-15 (Fig. 4 B). Thus, the 
 recovery of Smarta memory cells in IL-7– and IL-7–15– hosts 
was approximately fi vefold less than that obtained from B6 
hosts, whereas the recovery of Smarta memory cells in IL-15– 
hosts was two- to threefold lower than that found in B6 hosts. 
Notably, Smarta memory cells continued to decline slowly 
as a population after transfer to B6 hosts at the same rate 
observed in LCMV-infected B6 hosts (Fig. 1 A); thus, only 
60% of the original engrafted population was recovered on 
day 51 (unpublished data).

To determine whether a requirement for IL-15 during 
basal homeostatic turnover and survival is generally applicable 

Figure 3. IL-7, but not MHC II, is essential for acute homeostatic 

proliferation of Smarta memory cells. (A) Contact with MHC II is not 

required for acute homeostatic proliferation of Smarta memory cells. 

A small dose (3 × 105) of CFSE-labeled Thy-1.1+ Smarta memory cells was 

injected into irradiated, thymectomized, and CD8/NK cell–depleted B6 and 

MHC-II∆/∆ mice, and the donor cells in the host spleen and LNs were ana-

lyzed 1 wk later by staining for Thy-1.1 and CD4. The CFSE profi les and 

recoveries of donor Smarta cells are shown. Data are representative of 

two separate experiments, with three to four mice per host type analyzed 

individually. (B) Acute homeostatic proliferation of Smarta memory cells 

is chiefl y driven by IL-7. A small dose (5 × 105) of CFSE-labeled Thy-1.1+ 

Smarta memory cells was injected into irradiated B6, IL-7–, IL-15–, and 

IL-7–15– mice, and host spleens were analyzed 2 wk later by staining for 

Thy-1.1 and CD4. The CFSE profi les and recoveries of donor Smarta cells 

are shown. Data are representative of three experiments, with two to 

three mice per host type analyzed individually.
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to all Ag-specifi c memory CD4+ cells, the above experiment 
was repeated with polyclonal Ag-specifi c memory CD4+ 
cells. Thus, splenic CD4+ cells were purifi ed from B6.PL 
mice that were previously immunized with LCMV, CFSE 
labeled, and then transferred into nonirradiated B6, IL-7–, 
IL-15–, and IL-7–15– mice. These hosts displayed comparable 
engraftment of donor cells. The fate of LCMV-specifi c poly-
clonal donor cells was analyzed 51 d later by staining for 
 donor Thy-1.1+ cells that synthesized IFN-γ upon in vitro 
stimulation with LCMV GP61-81 peptide. An advantage of 
this system is that the LCMV-specifi c CD4+ memory cells 
are generated from physiological numbers of precursors, as 
recent results have indicated that precursor numbers can im-
pact the homeostasis of the resultant memory cells (36, 37). 
Signifi cantly, polyclonal Ag-specifi c memory CD4+ cells 
 behaved similarly to Smarta memory cells, both in their basal 
rate of turnover and their dependence on IL-15 (Fig. 4 C). 
Thus, although polyclonal memory CD4+ memory cells 

 underwent considerable basal homeostatic proliferation in B6 
hosts, their proliferation in IL-15– and IL-7– hosts was equally 
severely reduced and virtually abolished in IL-7–15– hosts. 
Moreover, the recovery of polyclonal CD4+ memory cells in 
IL-15– hosts was signifi cantly lower as compared with control 
B6 hosts and was even further reduced in IL-7– and IL-7–15– 
hosts (Fig. 4, C and D). Collectively, these fi ndings indicate 
that Ag-specifi c memory CD4+ cells depend on both IL-7 
and IL-15 for their basal homeostatic proliferation and 
prolonged survival.

Ag-specifi c CD4+ memory cells compete with CD8+ MP 

and NK cells for IL-15

In contrast to memory CD8+ cells, whose basal homeostatic 
proliferation is primarily driven by IL-15 (2, 12, 13), the above 
fi ndings indicate that the basal turnover of Ag-specifi c memory 
CD4+ cells is equally dependent on both IL-15 and IL-7. One 
likely explanation for this diff erence in cytokine requirements 

Figure 4. Ag-specifi c memory CD4+ cells require IL-15 to 

 undergo homeostatic proliferation and to survive under normal non-

irradiated conditions. (A) Exogenous IL-15 can induce slow proliferation 

of Smarta memory cells. A dose of 5 × 106 splenocytes from LCMV-

primed B6 mice containing Thy-1.1+ Smarta memory cells was CFSE 

labeled and transferred to nonirradiated CD45.1+ B6 mice. Recipients 

were then injected with 1.5 μg of recombinant murine IL-15 or PBS on 

days 0 and 2, and the donor cells in the host spleen were analyzed on 

day 5 by staining for Thy-1.1, CD45.2, CD44, CD4, and CD8. The CFSE 

profi les of donor MP CD8+, MP CD4+, and Smarta memory cells are 

shown. Data are representative of two experiments using two recipients 

per treatment analyzed individually. (B) IL-15 is essential for basal ho-

meostatic proliferation and survival of Smarta memory cells. A small 

dose (8 × 105) of CFSE-labeled Thy-1.1+ Smarta memory cells was in-

jected into nonirradiated B6, IL-7–, IL-15–, and IL-7–IL-15– mice. Approxi-

mately 20% of the donor cells could be recovered from the spleen on 

day 1 in all hosts. Spleens were analyzed 51 d later by staining for Thy-1.1 

and CD4, and the CFSE profi les and recovery of donor cells are shown. 

Data are representative of three experiments using two to four recipients 

per host type analyzed individually. *, P < 0.01; **, P < 0.05 by one-way 

ANOVA, Bonferroni’s multiple comparison test. (C) Polyclonal-derived 

Ag-specifi c CD4+ secondary memory cells require IL-15 for their basal 

turnover. A dose of 2 × 107 purifi ed CFSE-labeled CD4+ cells from Thy-1.1+ 

B6 mice previously immunized and boosted with LCMV (comprising �1.5 × 

105 LCMV-specifi c polyclonal secondary memory CD4+ cells as detected 

by IFN-γ production) were injected into nonirradiated B6, IL-7–, IL-15–, 

and IL-7–IL-15– mice. The LCMV-specifi c polyclonal donor CD4+ memory 

cells were detected 51 d later by staining for Thy-1.1, CD4, and IFN-γ 

after a 5-h in vitro stimulation with agonist GP61-80 peptide. Data 

are representative of three experiments using two to four recipients 

per host type analyzed individually. (D) IL-15 sustains polyclonal-derived 

Ag-specifi c CD4+ memory cells. Experiments were performed as in C, 

except twofold higher numbers (3 × 105) of primary LCMV-specifi c poly-

clonal memory CD4+ cells were transferred into only B6 and IL-15– mice, 

and the recovery of donor cells was analyzed 65 d later. ***, P = 0.0127 

by two-tailed unpaired t test.
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is that memory CD4+ and CD8+ cells express diff erent levels 
of the receptors for IL-15 and IL-7. Indeed, MP CD4+ and 
Smarta memory cells express much lower levels of CD122 
 (approximately fourfold less) than MP CD8+ and NK cells 
(Fig. 5 A). CD127 expression levels on memory CD4+ and 
CD8+ cells are much more comparable, but it is notable that 
MP CD4+ cells express a much wider range of CD127 than 
Smarta memory cells (Fig. 5 A).

One possible consequence of low CD122 expression on 
Smarta memory cells is that these cells may encounter strong 
competition for IL-15 from CD122hi MP CD8+ and NK 
cells. Accordingly, Smarta memory cells might display in-
creased responsiveness to IL-15 in the absence of CD8+ and 
NK cells. To test this idea, CFSE-labeled Smarta memory 
cells were transferred into nonirradiated B6 mice, and the 
 eff ect of selectively depleting host CD8+ or/and NK cells 
was measured during a 3-wk period. As controls, IL-7– and 
IL-15– hosts were also included. Notably, the basal homeo-
static proliferation rate of Smarta memory cells in normal B6 
hosts was not aff ected by the removal of NK cells, slightly in-
creased by the removal of CD8+ cells, and signifi cantly ele-
vated by the depletion of both CD8+ and NK cells (Fig. 5 B). 
Signifi cantly, these eff ects were even more striking in IL-7– 
hosts (Fig. 5 B). Thus, the severely depressed rate of Smarta 
 memory cell proliferation apparent in untreated IL-7– hosts 
was partially restored with removal of either CD8+ or NK 
cells, and completely restored with the joint removal of both 
CD8+ and NK cells. The reason why the removal of NK 
cells alone had a greater eff ect in IL-7– hosts than in B6 hosts 
could  refl ect the fact that IL-7– mice possess very few CD8+ 
cells to compete for IL-15, but have normal numbers of NK 

cells (38, 39). It is also possible that the available levels of 
IL-15 are higher in IL-7– mice due to the near absence 
of naive CD8+ cells, which are partially IL-15 dependent 
(7, 8). In control IL-15– hosts, the removal of CD8+ and 
NK cells had little eff ect in restoring the reduced prolif-
eration of Smarta memory cells (Fig. 5 B), confi rming that 
the depleted cells competed with Smarta memory cells by 
sequestering IL-15.

As a control, the basal turnover rate of Smarta memory 
cells was compared with the proliferation of CD8+ P14 
memory cells transferred into nonirradiated B6, IL-7–, and 
IL-15– hosts for a similar duration of time (Fig. 5 B). In B6 
hosts, the proliferation rate of P14 memory cells was similar 
to that of Smarta memory cells. However, the proliferation 
of P14 memory cells was not reduced in IL-7– hosts, presum-
ably because CD8+ memory cells are less dependent than 
CD4+ memory cells on IL-7 for undergoing basal homeo-
static proliferation. The slight increase in proliferation of P14 
memory cells in IL-7– hosts probably refl ects the increased 
availability of IL-15 in these mice. As expected, both subsets 
of memory cells did not proliferate in the absence of IL-15. 
The key fi nding in the above experiment is that the restricted 
capacity of memory CD4+ cells to use IL-15 for normal 
 homeostasis presumably refl ects competition for IL-15 by CD8+ 
cells and NK cells. Only in the absence of these cells can 
memory CD4+ cells use IL-15 about as effi  ciently as memory 
CD8+ cells.

DISCUSSION

In this study we have resolved the controversy on the fac-
tors controlling the homeostasis of memory CD4+ cells. By 

Figure 5. Smarta memory cells compete with CD8+ MP and NK 

cells for IL-15. (A) Comparative expression levels of CD122 and CD127 

on various cell types. Representative histograms of CD122 and CD127 

analyzed on CD4+ MP, Smarta memory, CD8+ MP, and NK cells from 

3–4-mo-old B6 mice after staining for CD4, CD8, NK1.1, CD44, CD122, 

or CD127. Numbers indicate mean fl uorescence intensity. (B) Depletion 

of CD8 and/or NK cells increases basal homeostatic proliferation rate of 

Smarta memory cells. A small dose (5 × 105) of CFSE-labeled Thy-1.1+ 

Smarta memory cells was injected into B6, IL-7–, or IL-15– mice that were 

treated with PBS or mAbs to deplete NK and/or CD8 cells. The CFSE pro-

fi les of donor cells analyzed 21 d later by staining for Thy-1.1 and CD4 

are shown. As a comparison, CD8+ P14 memory cells undergoing basal 

homeostatic proliferation for 21 d in indicated hosts are shown. Data are 

representative of two experiments using two recipients per host type 

analyzed individually.
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studying LCMV-specifi c TCR transgenic Smarta memory 
and polyclonal Ag-specifi c memory CD4+ cells, we fi nd that 
the homeostasis of memory CD4+ cells is regulated by two 
cytokines, namely IL-7 and IL-15, and appears to be com-
pletely independent of MHC II molecules. In confi rmation 
of previous work (15, 21, 34), memory CD4+ cells were 
found to be exquisitely dependent on IL-7, both for survival 
and homeostatic proliferation. Nevertheless, we demonstrate 
for the fi rst time that IL-15 plays an essential role in support-
ing memory CD4+ cell homeostasis. Signifi cantly, IL-15 is 
not required under conditions of excess IL-7, such as in lym-
phopenia. However, under normal physiological conditions 
of limiting IL-7 availability, IL-15 is crucial for both survival 
and homeostatic proliferation of memory CD4+ cells. These 
fi ndings demonstrate that, in a normal environment, memory 
CD4+ cells closely resemble memory CD8+ cells in their 
 dependency on both IL-7 and IL-15 for their homeostasis.

Why was the role of IL-15 in memory CD4+ cell homeo-
stasis not found previously? We believe this refl ects the 
 limitations inherent in the three previous approaches used 
to study homeostatic requirements of memory CD4+ cells. 
First, as shown here, using MP CD4+ cells as surrogates 
for Ag-specifi c memory CD4+ cells is problematic because 
MP CD4+ cells are a heterogeneous population and are not 
equivalent to Ag-specifi c memory CD4+ cells in terms of 
their homeostatic requirements (9, 19). Second, the prior 
use of a CD4+ TCR transgenic line that could not undergo 
 homeostatic proliferation precluded revealing a connection 
between IL-15 and homeostatic proliferation (21). Third, 
studying memory CD4+ cells generated in IL-15– mice 
 appears to be inappropriate as these cells seem to have found 
an alternative way to sustain their homeostasis in the absence 
of IL-15 (15).

As with the CD8+ cell subset, MP CD4+ cells are widely 
used for homeostasis studies with the assumption that these 
cells are equivalent to Ag-specifi c memory CD4+ cells in 
their homeostatic requirements. Hence, we and others had 
previously reported that MP CD4+ cells are able to undergo 
rapid acute homeostatic proliferation in the absence of IL-7 
and/or IL-15 (9, 19). However, it is now becoming increas-
ingly clear that, as a population, MP CD4+ cells display 
 diff erent homeostatic characteristics than Ag-specifi c CD4+ 
cells. In particular, MP CD4+ cells contain a subset of cells 
that undergoes a very fast rate of homeostatic proliferation. 
This rapidly dividing subset depends on contact with MHC II 
for proliferation but does not require IL-7 or IL-15,  although 
IL-7 promotes survival of these cells. The fact that these cells 
proliferate and expand even more rapidly in RAG– hosts 
 suggests that they are responding to foreign Ags, probably 
originating from an enteric source. However, the possibility 
that self-Ags also play a role cannot be ruled out. Thus, pre-
liminary experiments on B6 mice raised under germ-free 
conditions showed that the relative turnover rate of MP CD4+ 
cells in these mice is very similar to that observed with conven-
tionally raised mice (unpublished data). The intriguing ques-
tion of why foreign or self-peptides  induce strong proliferation 

of a subset of MP CD4+ cells is still unclear.  However, until 
the subset of fast-dividing cells can be eff ectively identifi ed 
and removed, which is not currently possible, normal MP 
CD4+ cells cannot be used as surrogates for Ag-specifi c mem-
ory CD4+ cells.

With the exception of the fast-dividing cells, the remain-
ing MP CD4+ cells are relatively quiescent as they either 
 remain in interphase or undergo only very slow turnover. 
Their limited turnover rate together with dependence on IL-7 
suggests that most MP CD4+ cells closely resemble Ag-specifi c 
CD4+ cells in their homeostatic requirements. For IL-15, 
defi ning the role of this cytokine on MP CD4+ cells is com-
plicated by the presence of the fast-dividing subset of these 
cells. Nonetheless, because MP CD4+ cells and Smarta mem-
ory cells express similar levels of CD122, and because poly-
clonal Ag-specifi c memory CD4+ cells are dependent on 
IL-15, it is likely that most MP CD4+ cells are also reliant on 
IL-15 for their homeostasis. If so, as for MP CD8+ cells, one 
would expect MP CD4+ cells to be depleted in IL-15– and 
IL-15Rα– mice, but this is not the case (7, 8). This fi nding 
may refl ect that the MP CD4+ cells in these hosts have be-
come conditioned to survive in the absence of IL-15, possi-
bly by being more dependent on IL-7. This idea is currently 
being tested.

The idea that memory CD4+ cells can adapt to the ab-
sence of IL-15 by using a compensatory mechanism could 
explain the previous report of Lenz et al. (15) that IL-15 is 
largely dispensable for basal homeostatic turnover of Ag-
 specifi c memory CD4+ cells. Thus, this latter study analyzed 
polyclonal memory CD4+ cells that were produced de novo 
in IL-15– mice rather than in normal mice. The notion that 
memory T cells adjust to IL-15 defi ciency is also supported 
by the fi nding that memory CD8+ cells produced de novo in 
IL-15– mice are considerably less dependent on IL-15 for 
 homeostatic proliferation than analogous cells produced in 
normal mice (13, 15). Another potential complication of 
studying memory T cells generated de novo in IL-15– hosts 
is that naive T cells may be suboptimally activated because of 
a dendritic cell defect in IL-15– mice (40, 41). This is a relevant 
concern as it is becoming increasingly clear that the strength 
of initial stimulation during the priming of naive T cells infl u-
ences the homeostatic requirements for the resultant memory 
T cells (36, 37).

Although we and others have found that LCMV-specifi c 
memory CD4+ cells appear to decline slowly over time, 
signifi cant populations of these cells persist for years in mice, 
and Ag-specifi c memory cells survive for decades in hu-
mans, indicating prolonged persistence of CD4+ T cell im-
munity (6, 27, 42, 43). Thus, IL-7 and IL-15 play signifi cant 
roles in preserving this immunity as we fi nd a rapid loss of 
memory CD4+ cells in the absence of either cytokine. Fur-
thermore, the memory CD4+ cell dependence on IL-7 and 
IL-15 for homeostasis closely resembles the requirements 
for homeostasis of memory CD8+ cells. A minor discrep-
ancy is that under normal physiological conditions, memory 
CD4+ cells require both IL-7 and IL-15 for homeostatic 
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proliferation, whereas homeostatic proliferation of memory 
CD8+ cells is exclusively driven by IL-15 (2, 12, 13, 44). 
This slight diff erence probably refl ects the fact that memory 
CD4+ cells express considerably lower levels of CD122 
than memory CD8+ cells. Hence, CD122lo memory CD4+ 
cells are likely to encounter severe competition for IL-15 
from CD122hi cells, such as memory CD8+ cells and NK 
cells. For this reason, memory CD4+ cells could have evolved 
to use both IL-7 and IL-15 for homeostatic proliferation. 
However, despite their lower level of CD122 expression, 
memory CD4+ cells do not display compensatory higher lev-
els of CD127 (IL-7-Rα) than memory CD8+ cells; indeed, 
CD127 levels on the two subsets of memory cells are very 
similar. Hence, memory CD4+ cells are likely to be at a dis-
advantage relative to memory CD8+ cells for competition for 
IL-15 during normal homeostasis. One signifi cant implica-
tion here is that competition from memory CD8+ cells may 
cause the gradual decline of memory CD4+ cell numbers 
over time (Fig. 1; reference 27), especially in old age where a 
marked increase in MP CD8+ cells presumably increases 
competition for IL-15 (45, 46). In addition, memory CD4+ 
cells may receive competition from the fast-dividing popula-
tion of MP CD4+ cells that presumably consume substantial 
amounts of both IL-7 and IL-15. For these reasons, memory 
CD4+ cells would be expected to survive indefi nitely in the 
absence of competition from memory CD8+ and MP CD4+ 
cells. This prediction is currently under investigation.

MATERIALS AND METHODS
Mice. B6, B6.PL, and CD45.1 congenic mice were purchased from 

the breeding colony at The Scripps Research Institute (TSRI). Aβ– mice 

were provided by T. Laufer (University of Pennsylvania, Philadelphia, 

PA;  reference 47). MHC-II∆/∆ mice were purchased from The Jackson 

Laboratory. IL-7– (38) and IL-15– (8) mice were gifts from DNAX, Immunex 

Corporation. The Smarta mice (Smarta2), transgenic for an MHC II–restricted 

TCR recognizing LCMV GP61-81–H2-Ab complexes on the B6 back-

ground (24), were provided by H. Hengartner (University Hospital, Zurich, 

Switzerland) and bred to a B6.Thy-1.1+ background. IL-7–IL-15– and IL-7–

IL-15– MHC-II∆/∆ mice were bred at TSRI. All recipient mice were back-

crossed at least 10 times to the B6 background and housed under  specifi c 

pathogen-free conditions. Recipient mice were either irradiated with 600 

cGy or left untreated. Donor cells were transferred to hosts by i.v. injection 

1 d later. Where the depletion of CD8+ T cells and NK cells was necessary, 

recipient mice were injected i.p. with depleting antibodies specifi c for CD8 

(YTS-169) and NK1.1 (PK136) on days –7, −3, 0, and 3 relative to CD4+ 

memory T cell transfer, and then once a week there after. PBS dialyzed asci-

tes fl uid containing at least 0.1 mg of each depleting antibody was used for 

each depletion injection. Where stated, depleted mice were also thymecto-

mized a week before the transfer of donor cells. All experiments were ap-

proved by the TSRI Institutional Animal Care and Use Committee.

Virus treatment and adoptive transfer of CD4+ memory T cells. 

A treatment of 2 × 105 PFUs of the Armstrong strain of LCMV, clone 

53b, was used for all experiments. Memory CD4+ T cells were generated 

as follows: 105 naive Smarta cells (resulting in 104 precursors) were trans-

ferred i.v. into B6 mice at 8–12 wk of age that were injected 1 d later with 

LCMV i.p. At memory time points (>50 d after virus), mice were killed 

and spleen cell suspensions were prepared in DMEM supplemented with 

2% FCS and Hepes. Purifi ed cells were labeled with the intracellular 

 fl uorescent dye CFSE (Invitrogen) as described previously (48). Smarta 

memory cells were isolated to >95% purity at memory time points by 

 positive selection using anti–Thy-1.1 biotin (HIS51; grown and conju-

gated in house), streptavidin particles, and an IMag magnet as per the 

manufacturer’s instructions (BD Biosciences). Polyclonal memory CD4+ 

cells were generated by treating B6.PL mice with LCMV and allowing the 

mice to rest for at least 50 d. Spleen suspensions were stained with anti-

CD4 (RM4-5) biotin (eBioscience), followed by anti-biotin tetramers and 

magnetic colloid as per the manufacturer’s instructions (Stem Cell Tech-

nologies Inc.). Cells were passed through MACS LS separation columns 

(Milteyni Biotec) to collect bound CD4+ cells. The 2 × 107 transferred, 

CFSE-labeled CD4+ cells contained �2 × 105 polyclonal memory CD4+ 

cells. For some experiments, polyclonal secondary memory cells were 

isolated from mice that had been boosted with 106 PFUs LCMV i.v. 50 d 

earlier with similar results. Thy1.1+P14 CD8+ memory cells were gener-

ated from 105 injected naive precursors and were also isolated using the 

IMag protocol described above.

Flow cytometry and cytokines. Spleen cells were prepared and stained 

for donor cells as described previously (48). The following antibodies were 

used for fl ow cytometry: CD4 PE-CY7 (RM4-5; eBioscience), NK1.1 

FITC and PE (PK136), CD25 PE (PC61), CD44 FITC (IM7), CD45.1 PE 

(A20), CD42.5 PE-Cy5.5 (104), CD90.1 PE (HIS51), CD127 PE (A7R34), 

CD122 PE (5H4), rat IgG2a isotype-PE (eBR2a; BD Biosciences), CD3 

PerCP-CY5.5 (145-2C11) MHC II biotin (M5/114.15.2), rat IgG2b 

isotype biotin (KLH/G2b1-2), and CD90.1 CY5 (HIS51 was grown and 

conjugated in house). Samples were run on an LSR II (Becton Dickinson), 

and data were analyzed with FlowJo software (TreeStar). Cell sorting was 

performed using a Becton Dickinson FACSAria. Murine IL-15 was pur-

chased from eBioscience.

BrdU treatment. Mice were injected with 0.8 mg BrdU (Acros) i.p., and 

then supplied with daily prepared drinking water containing 0.8 mg/ml 

BrdU. Detection of BrdU incorporation was performed as described 

previously (16).

Intracellular cytokine staining. 106 splenocytes were incubated in 

96-well fl at-bottomed plates with 1 μl/ml Golgistop (BD Biosciences) in the 

presence or absence of 0.1 μg/ml GP61-81. After a 5-h incubation at 37°C, 

cells were washed in FACS buff er (0.5% FCS, 0.2% sodium azide in PBS) 

and stained for CD4 and Thy1.1 to identify donor cells. Cells were washed 

twice in FACS buff er, and then fi xed and permeabilized using Cytofi x/ 

Cytoperm (BD Biosciences) according to the manufacturer’s instructions. 

Cells were then stained for intracellular cytokines using IFN-γ APC (clone 

XMG1.2) and IL-2 PE (clone JES6-5H4), and acquired as described above. 

Intracellular cytokine staining was used to identify donor Thy-1.1+ poly-

clonal memory CD4+ T cells transferred to diff erent nonirradiated hosts. In 

this instance, 3 × 107 splenocytes were incubated in six-well plates, and then 

prepared and analyzed as described above.

Statistics. All statistical tests listed were performed using Prism soft-

ware (GraphPad).

Online supplemental material. Fig. S1 shows the characterization of 

Smarta eff ector and memory cells generated from 103 injected precursors. 

The expression of activation markers and cytokine receptors on Smarta cells 

were examined before and after LCMV infection. Fig. S2 shows the expres-

sion levels of various activation markers that were examined on CFSE-

 labeled MP CD4+ cells 10 d after their transfer to irradiated mice. Fig. S3 

shows that MHC II does not enhance the homeostatic turnover or survival 

of Ag-specifi c CD4+ memory cells. Figs. S1–S3 are available at http://www

.jem.org/cgi/content/full/jem.20061805/DC1.
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