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Abstract

Objective: To investigate whether apolipoprotein A (apoA)-I glycation and paraoxonase (PON) activities are
associated with the severity of coronary artery disease (CAD) in patients with type 2 diabetes mellitus (T2DM).

Methods: Relative intensity of apoA-I glycation and activities of high-density lipoprotein (HDL)-associated PON1
and PON3 were determined in 205 consecutive T2DM patients with stable angina with (n = 144) or without (n = 61)
significant CAD (luminal diameter stenosis ≥ 70 %). The severity of CAD was expressed by number of diseased
coronary arteries, extent index, and cumulative coronary stenosis score (CCSS).

Results: The relative intensity of apoA-I glycation was higher but the activities of HDL-associated PON1 and PON3
were lower in diabetic patients with significant CAD than in those without. The relative intensity of apoA-I glycation
increased but the activities of HDL-associated PON1 and PON3 decreased stepwise from 1 - to 3 - vessel disease
patients (P for trend < 0.001). After adjusting for possible confounding variables, the relative intensity of apoA-I
glycation correlated positively, while the activities of HDL-associated PON1 and PON3 negatively, with extent index
and CCSS, respectively. At high level of apoA-I glycation (8.70 ~ 12.50 %), low tertile of HDL-associated PON1
(7.03 ~ 38.97U/mL) and PON3 activities (7.11 ~ 22.30U/mL) was associated with a 1.97− and 2.49− fold increase of
extent index and 1.73− and 2.68− fold increase of CCSS compared with high tertile of HDL-associated PON1
(57.85 ~ 154.82U/mL) and PON3 activities (39.63 ~ 124.10U/mL), respectively (all P < 0.01).

Conclusions: Elevated apoA-I glycation and decreased activities of HDL-associated PON1 and PON3, and their
interaction are associated with the presence and severity of CAD in patients with T2DM.
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Introduction
It is well recognized that high-density lipoprotein
(HDL) exerts a protective effect on cardiovascular
system, and serum HDL-cholesterol (HDL-C) levels are
negatively associated with the risk of coronary artery
disease (CAD), metabolic syndrome and insulinresis-
tance [1,2]. The anti-atherogenic properties of HDL are
mainly related to reverse cholesterol transport,
stabilization of atherosclerotic plaque, and anti-inflam-
matory and anti-oxidant effects [1, 3]. Apolipoprotein
A-I (apoA-I) accounts for approximately 70% of the
total protein mass of HDL, and the remaining protein
components mainly include apoA-II, apoC, apoA-IV,
and paraoxonase (PON) [4]. The PON family comprises
three members: PON1, PON2 and PON3, among which
PON1 and PON3 are almost exclusively associated with
HDL [5]. Both PON 1 and PON 3 prevent low-density
lipoprotein cholesterol (LDL-C) from peroxidation,
conferring antagonistic effects against atherosclerosis
[6, 7]. Normal apolipoproteins in HDL, mainly apoA-I,
contribute to enzyme activity, stability, and function of
PON [8, 9]. Animal experiments of apoA-I deficient
mice have shown that an accelerated atherosclerotic
process is mechanistically attributed to impaired re-
verse cholesterol transport, reduced PON activity, and
augmented inflammation [10], whereas peritoneal injec-
tion of apoA-I mimetic peptide effectively prevents
early atherogenesis, accompanied with increment of
PON activity [11].
In type 2 diabetes mellitus (T2DM), vascular com-

plications are mainly due to prolonged exposure to
hyperglycemia clustering with other diseases such as
hypertension and dyslipidemia and other risk factors
including retinol-binding protein-4 and hypoxia-induced
factor 1α [12–14]. Besides, the formation of advanced
glycation end products (AGEs) has been implicated in
coronary atherogenesis [15–17]. Glycation of apoA-I
significantly impairs anti-inflammatory and anti-athero-
genic properties of HDL [18], and is associated with
coronary plaque progression [19]. In contrast, inhib-
ition of such glycation rescues HDL function [20],
and infusion of reconstituted HDL increases choles-
terol efflux and reduces atherosclerotic plaque vol-
ume [21, 22]. To the best of our knowledge, PON activity,
especially the activity of HDL-associated PON, and the
interactive effect of apoA-I glycation and HDL-associated
PON activity on coronary atherosclerosis in T2DM
remain unknown. In this study, we measured apoA-
I glycation level and serum and HDL-associated ac-
tivities of PON1 and PON3, to test the hypothesis
that elevated apoA-I glycation and reduced PON1
and PON3 activities and their interaction were related
to the presence and severity of CAD in patients with
T2DM.
Methods
The research protocol was approved by the Institutional
Review Board of Rui Jin Hospital, Shanghai Jiaotong
University School of Medicine, and was registered
(NCT02089360). Informed consent was obtained in
written form from all patients, and clinical investiga-
tion was conducted according to the principle of the
Declaration of Helsinki.

Study population
A total of 317 consecutive patients with T2DM and
chest pain on exertion referred for diagnostic coronary
angiography between July 2012 and November 2013
were enrolled. Baseline demographics, risk factors for
CAD, and medications were recorded. The diagnosis of
T2DM was made according to the criteria of the American
Diabetes Association [23], including a fasting blood glu-
cose (FBG) level of ≥7.0 mmol/L or 2-h postprandial
plasma glucose (2 h-PG) readings ≥11.1 mmol/L by
multiple determinations or currently receiving insulin
or oral hypoglycemic agents. Hypertension and dyslipid-
emia were diagnosed according to seventh report of the
Joint National Committee on prevention, detection,
evaluation, and treatment of high blood pressure (JNC 7)
and guideline of the National Cholesterol Education
Program (ATP III), respectively [24, 25].
For the purpose of research, patients with acute coronary

syndrome (n = 41) or a history of coronary revascularization
(coronary artery bypass grafting: n = 6; percutaneous
coronary intervention: n = 21) were excluded. We also
excluded patients with renal failure requiring hemodialysis
(n = 2) and those who had chronic heart failure, pul-
monary heart disease, malignant tumor or immune
system disorders (n = 37). Patients with type 1 diabetes
were excluded by measurement of C-peptide (n = 5).
The remaining 205 eligible patients were included in
the final analysis of this study.

Coronary angiography and analysis
Coronary angiography was performed through radial
or femoral approach. Significant CAD was diagnosed
if luminal diameter narrowing was estimated visually
as ≥ 70 % in a major epicardial coronary artery [26].
Left main coronary artery stenosis ≥ 50 % was considered
as 2 - vessel disease. Quantitative coronary angiography
(QCA) was performed using the Cardiovascular Measure-
ment System version 3.0 software (Terra, GE, USA) by
two interventional cardiologists who were blinded to the
study protocol. The extent index and cumulative coronary
stenosis score (CCSS) were used as indices of the ana-
tomic extension and severity of CAD. The extent index
was calculated as the longitudinal percentage of coronary
segments involved with a stenosis (∑ [stenosis lengths]/∑
[segment lengths]) [15]. The CCSS was calculated as
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previously reported by adding all percent diameter
stenosis in stenosis index units (50 % = 0.50) [27].

Biochemical measurements
Blood samples were obtained after an overnight fasting
in all participants. Serum levels of glucose, blood urea
nitrogen, creatinine, uric acid, total cholesterol, HDL
cholesterol, LDL-C, lipoprotein (a), apoproteinA, apo-
protein B, and triglycerides were measured with stand-
ard laboratory techniques on a Hitachi 912 Analyzer
(Roche Diagnostics, Germany). Blood concentration of
glycosylated hemoglobin (HbA1c) was assayed using
ion-exchange high performance liquid chromatography
with a Bio-Rad Variant Hemoglobin Testing System
(Bio-Rad Laboratories, Hercules, CA, USA). Serum
levels of PON1 and PON3 were determined using com-
mercially available ELISA kit (MyBioSource, Canada).
High-sensitivity C-reactive protein (hsCRP) level was
assessed by ELISA (Biocheck Laboratories, Toledo,
OH, USA).

Isolation of HDL fraction and SDS-polyacrylaminde gel
electrophoresis
Human serum HDL (1.063 < d <1.21 g/L) was isolated
from fresh plasma by ultracentrifugation using potas-
sium bromide method as described previously [28].
Then, HDL fraction was dialyzed and separated by
SDS-polyacrylamide gel electrophoresis. ApoA-I pro-
tein could be visualized after silver nitrate staining.

Western blot analysis of apoA-I glycation
HDL fraction separated by SDS-polyacrylamide gel elec-
trophoresis was transferred to polyvinylidene fluoride
membrane. After blocking with 5 % milk, the membrane
was incubated overnight at 4 °C with anti-apoA-I (Santa
cruz biotechnology) oranti-Nε-(carboxyethyl)-lysine
(CEL) antibody (Cosmo Bio Co., Tokyo, Japan). Then,
ECL reagent (GE Healthcare, UK) was used for detec-
tion. Films were examined using an HP Scanjet Pro
flatbed scanner, and images were analyzed and quan-
tified with Adobe Photoshop CS2 software. Absolute
intensity was assessed via multiplying the mean dens-
ity value by pixel for each band, and relative intensity
of apoA-I glycation was calculated as absolute inten-
sity of apoA-I glycation divided by that of apoA-I
protein.

Measurement of serum and HDL-associated PON1, 3
activities
PON1 arylesterase activity was analyzed in serum and in
HDL with phenyl acetate as a synthetic substrate [29].
The assay mixture contained 100 μl of 10 mmol/L
substrate solution, 5 μL serum and 1 mmol/L CaCl2 in
50 mmol/L Tris buffer. Production of phenol was
determined spectrophotometrically after 2 min at
270 nm. PON1 arylesterase activity was monitored in
triplicate and the results are presented as μmoL/min
per mL (U/mL). Serum and HDL-associated PON3
statinase activity (the hydrolysis of lovastatin lactones)
was determined by HPLC. In a final volume of 1 mL,
100 μL of enzyme and 10 μL of substrate solution in
methanol (0.5 mg/mL) were incubated at 25 °C in
25 mM Tris/HCl, 1 mM CaCl2. Aliquots (100 μL) were
removed at specific times and added to cold aceto-
nitrile (100 μL), mixed and the supernatants were sub-
jected to HPLC analysis at wavelength 238 nm.
Samples were eluted at a flow rate of 1.0 mL/min with
a mobile phase consisting of the following: A = acetic
acid/acetonitrile/water (2:249:249, v/v/v) and B =
acetonitrile, in A/B ratios of 35/65. PON3 statinase ac-
tivity was repeated in triplicate and the results are pre-
sented as pmol lovastatin hydrolyzed per min per mL
(U/mL).

Statistical analyses
Data are expressed as mean ± standard deviation for
continuous variables, and frequencies and percentages
for categorical ones. For continuous variables, the exist-
ence of a normal distribution was ascertained by the
Kolmogorov–Smirnov test. For multiple comparisons
between groups, one way analysis of variance (ANOVA)
was used followed by the Bonferoni’s method. Propor-
tions were compared byΧ2test or Fisher’s exact test
when appropriate. Pearson’s and Spearman’s correlation
tests were used to assess the relation between variables.
Receiver-operating characteristic (ROC) analyses were
used to determine the power of the relative intensity
apoA-I glycation and activities of PON for detecting
significant CAD, and the areas under the curve were
compared using the DeLong method. Multivariable
linear regression analyses were performed to assess
the independent determinants of extent index and
CCSS after adjusting for possible confounding factors
including gender, age, body mass index (BMI), trad-
itional risk factor for CAD, HbA1c, total/HDL choles-
terol ratio, estimated glomerular filtration rate (eGFR),
hsCRP, and use of statins. SPSS 20.0 software (SPSS
Inc, Chicago, Illinois, USA) was used for all statistical
testing. A 2-tailed < 0.05 was considered statistically
significant.

Results
Baseline characteristics
Clinical features and biochemical measurements are
listed in Table 1. Male, hypertension and smoking were
higher in proportion, and serum levels of creatinine,
fasting blood glucose, HbA1c, and hsCRP were more
elevated, but HDL-C level was lower in T2DM patients



Table 1 Baseline characteristics and biochemical assessments in type 2 diabetic patients

Variables CAD (+) CAD (−) P value

(n = 144) (n = 61)

Male, n (%) 108 (75.0) 37 (60.7) 0.039

Age, years 64.8 ± 10.3 65.3 ± 9.1 0.728

Body mass index, Kg/m2 25.5 ± 3.4 24.9 ± 3.1 0.262

Smoking, n (%) 50 (34.7) 11 (18.0) 0.017

Hypertension (%) 110 (76.4) 37 (60.7) 0.022

Systolic blood pressure, mmHg 140 ± 19 139 ± 20 0.572

Diastolic blood pressure,mmHg 81 ± 12 81 ± 11 0.603

Dyslipidemia history, n (%) 57 (39.6) 23 (37.7) 0.801

Triglycerides, mmol/L 1.82 ± 1.09 1.75 ± 0.96 0.671

Total cholesterol, mmol/L 4.3 ± 1.2 4.4 ± 1.0 0.753

HDL cholesterol, mmol/L 1.01 ± 0.24 1.13 ± 0.22 0.001

LDL cholesterol, mmol/L 2.63 ± 0.93 2.56 ± 0.76 0.616

Lipoprotein (a), g/L 0.27 ± 0.25 0.28 ± 0.26 0.666

Apoprotein A, g/L 1.20 ± 0.19 1.23 ± 0.20 0.310

Apoprotein B, g/L 0.91 ± 0.26 0.88 ± 0.20 0.460

Serum creatinine, μmol/L 81 ± 17 75 ± 14 0.011

eGFR, mL/min/1.73 m2 92.3 ± 24.4 96.8 ± 23.6 0.228

Uric acid, μmol/L 342 ± 89 325 ± 83 0.199

Fasting blood glucose, mmol/L 6.79 ± 2.00 6.02 ± 1.33 0.001

HbA1c, % 7.81 ± 1.07 6.89 ± 0.75 <0.001

hsCRP, mg/L 6.20 ± 3.24 5.21 ± 2.42 0.040

Extent index 0.48 ± 0.13 0.27 ± 0.08 <0.001

Cumulative coronary stenosis score 2.17 ± 0.71 0.92 ± 0.42 <0.001

Relative intensity of apoA-I glycation, % 8.27 ± 2.09 5.69 ± 1.42 <0.001

Activities of paraoxonase, U/mL

Serum PON1 activity 78.46 ± 16.94 86.01 ± 17.36 0.004

HDL-associated PON1 activity 41.43 ± 14.64 92.19 ± 33.42 <0.001

Serum PON3 activity 32.15 ± 5.33 39.2 ± 6.62 <0.001

HDL-associated PON3 activity 26.06 ± 12.66 64.58 ± 22.44 <0.001

Medical treatments, n (%)

Insulins 51 (35.4) 11 (18.0) 0.013

Metformin 70 (48.6) 31 (50.8) 0.772

Sulphonylurea 41 (28.5) 25 (41.0) 0.080

α-Glucosidase 40 (27.8) 18 (29.5) 0.801

Statin 107 (74.3) 43 (70.5) 0.573

ACE inhibitor/ARB 88 (61.1) 37 (60.7) 0.951

β-blocker 82 (56.9) 34 (55.7) 0.873

Calcium channel blocker 73 (50.7) 39 (63.9) 0.082

Antiplatelet 107 (74.3) 36 (59.0) 0.029

Data are mean ± SD and number (%)
ACE, angiotensin-converting enzyme; apoA-I, apolipoprotein A-I; ARB, angiotensin receptor blocker; CAD, coronary artery disease; eGFR, estimated glomerular filtration
rate; HbA1c, glycated hemoglobinA1c; HDL, high-density lipoprotein; hsCRP, high-sentivity C-reactive protein; LDL, low densitylipoprotein, PON, paraoxonase
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with significant CAD than in those without (for all
comparisons, P < 0.05). Medications were comparable
between the two groups except that more patients with
significant CAD received insulin therapy.

Relation of apoA-I glycation and PON activity with CAD in
patients with T2DM
The relative intensity of apoA-I glycation was higher but
the activities of HDL-associated PON1 and PON3 were
lower in diabetic patients with significant CAD than in
those without. Consistently, the relative intensity of
apoA-I glycation increased but the activities of HDL-
associated PON1 and PON3 decreased stepwise from 1-
to 3-vessel disease patients (P for trend < 0.001). After
adjusting for age, gender, BMI, history of hypertension
and dyslipidemia, smoking, HbA1c, estimated glomeru-
lar filtration rate, total/HDL cholesterol ratio, hsCRP
and statin use, relative intensity of apoA-I glycation cor-
related positively, while HDL-associated PON1 and
PON3 activities negatively, with extent index and CCSS,
respectively (all P < 0.001) (Table 2). In addition, the
relative intensity of apoA-I glycation was inversely re-
lated to the activities of HDL-associated PON1 and
PON3 (r = −0.252 and −0.478, all P < 0.001). The relation
Table 2 Correlation of apoA-I glycation and serum and HDL-associa
type 2 diabetes

Variables Relative intensity of
apoA-I glycation (%)

Serum PON1
activity (U/mL)

Diseased vessels

0-vessel disease (n = 61) 5.69 ± 1.43 86.01 ± 17.36

1-vessel disease (n = 41) 5.98 ± 1.08 85.96 ± 17.17

2-vessel disease (n = 53) 8.17 ± 1.26 79.06 ± 16.10

3-vessel disease (n = 50) 10.24 ± 1.32 71.67 ± 15.09

Unadjusted Spearman r 0.800 −0.305

Unadjusted P for trend <0.001 <0.001

*Adjusted Spearman r 0.730 −0.345

*Adjusted P for trend <0.001 <0.001

Extent index

Unadjusted r 0.627 −0.278

Unadjusted P <0.001 <0.001

*Adjusted r 0.546 −0.291

*Adjusted P <0.001 <0.001

Cumulative coronary stenosis score

Unadjusted r 0.709 −0.243

Unadjusted P <0.001 <0.001

*Adjusted r 0.626 −0.267

*Adjusted P <0.001 <0.001

Values are means ± SD or Peason corrlation coefficients unless otherwise indicated
CAD, coronary artery disease; HDL, high-density lipoprotein; PON, paraoxonase
*adjusted for gender, age, body mass index, history of hypertension and dyslipidem
total/HDL cholesterol ratio, high-sentivity C-reactive protein and use of statins
pattern was similar for serum activities of PON1 and
PON3. ROC curve analysis confirmed the value of
relative intensity of apoA-I glycation and serum and
HDL-associated PON1 and PON3 activities in evaluating
the presence and severity of CAD (Table 3). However, the
areas under the curve of HDL-associated PON1 and
PON3 activities were significantly larger than those of
serum PON1 and PON3 activities (Additional file 1:
Figure S1).

Multivariable analysis
After adjustment for confounding variables, the associ-
ation between the relative intensity of apoA-I glycation
and the activities of HDL-associated PON1 (model 1) or
PON3 (model 2) with extent index and CCSS (adjusted
R2) was increased if an interaction between the relative
intensity of apoA-I glycation and the activities of HDL-
associated PON1 or PON3 was considered (Table 4).
Meanwhile, the activities of HDL-associated PON1 or
PON3 (P ≥ 0.179 and P ≥ 0.124) were replaced by the
interaction between the relative intensity of apoA-I glyca-
tion and HDL-associated PON1 (P < 0.001 and P = 0.004)
or PON3 activities (P = 0.019 and P < 0.001) for extent
index and CCSS, respectively.
ted PON1, 3 activities with the severity of CAD in patients with

HDL-associated
PON1 activity (U/mL)

Serum PON3
activity (U/mL)

HDL-associated
PON3 activity (U/mL)

92.19 ± 33.43 39.21 ± 6.62 64.58 ± 22.44

48.12 ± 11.34 35.81 ± 5.20 38.76 ± 12.78

42.19 ± 14.37 32.51 ± 5.65 22.07 ± 7.58

35.15 ± 14.94 31.25 ± 5.80 19.88 ± 9.06

−0.659 −0.500 −0.782

<0.001 <0.001 <0.001

−0.562 −0.414 −0.691

<0.001 <0.001 <0.001

−0.588 −0.358 −0.600

<0.001 <0.001 <0.001

−0.508 −0.296 −0.537

<0.001 <0.001 <0.001

−0.572 −0.358 −0.594

<0.001 <0.001 <0.001

−0.453 −0.288 −0.488

<0.001 <0.001 <0.001

ia, smoking, glycated hemoglobin A1c, estimated glomerular filtration rate,



Table 3 Value of apoA-I glycation and serum and HDL-associated PON1, 3 activities in evaluating severity of CAD in type 2 diabetes

Activities of paraoxonase Significant CAD Multi-vessel disease High tertile of extent index High tertile of CCSS

AUC (95 % CI) P value AUC (95 % CI) P value AUC (95 % CI) P value AUC (95 % CI) P value

Relative intensity of apoA-I glycation 0.849 (0.792 ~ 0.906) <0.001 0.952 (0.922 ~ 0.981) <0.001 0.855 (0.806 ~ 0.904) <0.001 0.893 (0.843 ~ 0.943) <0.001

Serum PON1 activity 0.617 (0.533 ~ 0.702) 0.008 0.664 (0.590 ~ 0.737) <0.001 0.598 (0.512 ~ 0.684) 0.022 0.599 (0.518 ~ 0.680) 0.021

HDL-associated PON1 activity 0.908 (0.857 ~ 0.960)* <0.001 0.828 (0.774 ~ 0.883)* <0.001 0.824 (0.760 ~ 0.888)* <0.001 0.823 (0.759 ~ 0.887)* <0.001

Serum PON3 activity 0.765 (0.694 ~ 0.837) <0.001 0.777 (0.712 ~ 0.841) <0.001 0.693 (0.618 ~ 0.769) <0.001 0.743 (0.672 ~ 0.814) <0.001

HDL-associated PON3 activity 0.941 (0.909 ~ 0.973)# <0.001 0.939 (0.908 ~ 0.970)# <0.001 0.866 (0.812 ~ 0.921)# <0.001 0.881 (0.835 ~ 0.927)# <0.001

AUC, area under the curve; CAD, coronary artery disease; CCSS, cumulative coronary stenosis score; CI, conficence interval; HDL, high-density lipoprotein; PON, paraoxonase
*P < 0.001 vs. corresponding AUCs of serum PON1 activity; #P < 0.001 vs. corresponding AUCs of serum PON3 activity
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Table 4 Extent index and cumulative coronary stenosis score in relation to apoA-I glycation and HDL-associated PON1, 3 activities

Extent index Cumulative coronary stenosis score

Adjusted R2 β ± SE P value Adjusted R2 β ± SE P value

Model 1 A Relative intensity of apoA-I glycation 0.589 0.407 ± 0.004 < 0.001 0.636 0.483 ± 0.022 < 0.001

HDL-associated PON1 activity −0.439 ± 0.000 < 0.001 −0.302 ± 0.002 < 0.001

B Relative intensity of apoA-I glycation 0.627 0.760 ± 0.007 < 0.001 0.645 0.666 ± 0.039 < 0.001

HDL-associated PON1 activity 0.207 ± 0.001 0.179 0.033 ± 0.004 0.827

*Interaction −0.603 ± 0.000 < 0.001 −0.312 ± 0.001 0.019

Model 1 A Relative intensity of apoA-I glycation 0.541 0.395 ± 0.005 < 0.001 0.634 0.448 ± 0.023 < 0.001

HDL-associated PON3 activity −0.383 ± 0.000 < 0.001 −0.320 ± 0.002 < 0.001

B Relative intensity of apoA-I glycation 0.558 0.623 ± 0.008 < 0.001 0.658 0.707 ± 0.037 < 0.001

HDL-associated PON3 activity 0.116 ± 0.001 0.523 0.247 ± 0.06 0.124

*Interaction −0.441 ± 0.000 0.004 −0.500 ± 0.001 < 0.001

Values are regression coefficients (β) ± standard error (SE)
The relative intensity of apoA-I glycation in addition with HDL-associated PON1, 3 activity were included (Model 1A and Model 2A). The interactions between the
relative intenstity of apoA-I glycation and HDL-associated PON1, 3 activities were further included (Model 1B andModel 2B). All models were adjusted for gender,
age, body mass index, history of hypertension and dyslipidemia, smoking, glycatedhemoglobin A1c, estimated glomerular filtration rate, total/HDL cholesterol
ratio, high-sentivity C-reactive protein and use of statins. apoA-I, apolipoprotein A-I; HDL, high-density lipoprotein; PON, paraoxonase
*Interaction denote the interaction between relative intenstity of apoA-I glycation and HDL-associated paraoxonase activities. Extent indexCumulative coronary
stenosis scoreModel 1
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Patients were then reclassified according to tertile
distribution of apoA-I glycation and the activities of
HDL-associated PON1 and PON3. At high level of
apoA-I glycation (8.70 ~ 12.50 %), patients with low
tertile of HDL-associated PON1 (7.03 ~ 38.97 U/mL)
and PON3 activities (7.11 ~ 22.30 U/mL) had 1.97−
and 2.49− fold increase of extent index and 1.73− and
2.68− fold increase of CCSS compared with those with
high tertile of HDL-associated PON1 and PON3 activ-
ities, respectively (all P < 0.01). Similar pattern was ob-
served in patients with intermediate (6.10 ~ 8.60 %) but
not low tertile of apoA-I glycation (2.88 ~ 6.00 %)
(Fig. 1 and Additional file 2: Table S1). However, there
was no interaction between relative intensity of apoA-I
glycation and serum activities of PON1 and PON3 on
the severity of CAD (Additional file 2: Tables S1 and
Additional file 3: Tables S2).

Discussion
The present study has demonstrated that glycation of
apoA-I was associated with decreased activities of serum
and HDL-associated PON1 and PON3. Elevated apoA-I
glycation and reduced HDL-associated PON1 and PON3
activities, and the interaction of these two elements were
related to the presence and severity of CAD in patients
with T2DM.
HDL is an organized complex of proteins (apo and

enzyme) and lipids (cholesterol, cholesteryl ester, trigly-
ceride, and phospholipid), and possesses several functions
with potential to protect against coronary atherosclerosis,
by promoting efflux of cholesterol from macrophages in
the arterial wall, inhibiting oxidative modification of low
density lipoprotein, decreasing vascular inflammation,
enhancing endothelial repair, and improving diabetic con-
trol [1, 2]. The structural and functional integrity of apoA-I
is crucial for the activation and stability of lecithin:choles-
terol acyl transferase (LCAT) and PON [10, 11]. Mutation,
glycation and oxidative modification of apoA-I markedly
impair the ability of apoA-1 to act as substrates for LCAT
and promote pathogenesis [30–32]. Both PON1 and PON3
are almost exclusively associated with HDL, and reduced
function of PON cripples their protection of lipoproteins
against oxidative modifications [33]. Previous studies have
consistently reported that PON1 is a marker of cardiovas-
cular risk in youth with type 1 diabetes and that Q192R
polymorphism of PON 1 gene is associated with insulin re-
sistance [34, 35].
The main finding of this study is that relative intensity

of apoA-I glycation was elevated but serum and HDL-
associated PON1 and PON3 activities were reduced in
T2DM patients with significant CAD. This is consistent
with previous reports that advanced glycation of apoA-I
impairs its anti-atherogenic properties [18], and is asso-
ciated with decreased LCAT activity and coronary
atherosclerotic plaque progression in patients with
T2DM [19]. Furthermore, we found that relative inten-
sity of apoA-I glycation correlated positively, while
HDL-associated PON1 and PON3 activities inversely,
with the severity of coronary disease assessed by number
of diseased coronary arteries, extent index, and CCSS
even after adjusting for possible confounding factors.
Interestingly, when an interaction between relative in-
tensity of apoA-I glycation and HDL-associated PON1
and PON3 activities was introduced into the multivari-
able regression models, adjusted R2 was significantly
increased for both extent index and CCSS. At middle



Figure 1 Extent index and cumulative coronary stenosis score in relation to apoA-I glycation and HDL-associated activities of PON1 and PON3.
Tertiles of HDL-associated activities of PON1 (●low [7.03 ~ 38.97 U/mL], ■middle [40.37 ~ 57.17 U/mL], ♦high [57.85 ~ 154.82 U/ml]) and PON3
(○low [7.11 ~ 22.30 U/mL], □middle [23.12 ~ 39.57 U/mL], ◊high [39.63 ~ 124.10 U/mL]).*P < 0.05, **P < 0.01, ***P < 0.001 vs. low tertile of activities
of PON1 or PON3; #P < 0.05, ##P < 0.01 vs. middle tertile of activities of PON1 or PON3
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and particularly high tertile of apoA-I glycation, patients
with low levels of HDL-associated activities of PON1
and PON3 had approximately 2 to 2.5 fold increased risk
for severe coronary atherosclerosis. However, such a re-
lation between PON activities and severity of CAD was
not observed at the low tertile of apoA-1 glycation.
These results support a notion that severely impaired
HDL function caused by moderate or high degree of
major apolipoprotein glycation in HDL (e.g., apoA-I),
together with reduced PON activities possibly due to
apolipoprotein glycation, are important in accelerating
the process of coronary atherosclerosis in T2DM.
Study limitations
We recognize limitations in our findings. The most
relevant one is that the study presented here is cross-
sectional, thereby allowing us to detect associations,
but not to infer causality or to formulate predictions.
Larger-scale, long-term prospective studies are needed
to confirm our results and to assess the prognostic
significance of possible medications that inhibit apo A-
I glycation and increase PON activities. Finally, the
classification of significant CAD based on visual
estimation of angiographic stenosis of coronary artery
lesions at ≥70 % is admittedly arbitrary. However,
within the range of angiographically significant CAD,
including lesions of ≥70 % stenosis, this criterion of se-
verity correlates well with physiological standards and
is widely accepted clinical practice [26].
Conclusions
This study indicates that elevated apoA-I glycation and
reduced serum and HDL-associated PON activities, and
their interaction are associated with the presence and se-
verity of stable CAD in patients with T2DM.
Additional files

Additional file 1: Figure S1. Receiver operating characteristic curves
of serum (dash lines) and high-density lipoprotein associated (solid
lines) activity of paraoxonase1 (grey lines) and 3 (black lines) for
evaluating presence and severity of coronary artery disease (CAD),
including significant CAD (A) and multi-vessel disease (B) and high
tertile of extent index (C) and cumulative coronary stenosis score
(D), in type 2 diabetes mellitus. HDL, high-density lipoprotein; PON,
paraoxonase.
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stenosis score in relation to apoA-I glycation and serum activities ofPON1
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