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Fernando Córdova-Lepe1☯, Katia Vogt-GeisseID
2☯*
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Abstract

The classical SEIR model, being an autonomous system of differential equations, has

important limitations when representing a pandemic situation. Particularly, the geometric

unimodal shape of the epidemic curve is not what is generally observed. This work intro-

duces the βSEIR model, which adds to the classical SEIR model a differential law to model

the variation in the transmission rate. It considers two opposite thrives generally found in a

population: first, reaction to disease presence that may be linked to mitigation strategies,

which tends to decrease transmission, and second, the urge to return to normal conditions

that pulls to restore the initial value of the transmission rate. Our results open a wide spec-

trum of dynamic variabilities in the curve of new infected, which are justified by reaction and

restoration thrives that affect disease transmission over time. Some of these dynamics have

been observed in the existing COVID-19 disease data. In particular and to further exemplify

the potential of the model proposed in this article, we show its capability of capturing the evo-

lution of the number of new confirmed cases of Chile and Italy for several months after epi-

demic onset, while incorporating a reaction to disease presence with decreasing adherence

to mitigation strategies, as well as a seasonal effect on the restoration of the initial transmis-

sibility conditions.

Introduction

A novel Coronavirus (SARS-CoV-2) emerged from the city Wuhan in China in December

2019 and has caused a devastating public health impact across the world [1]. As of June 28,

2021, COVID-19 has caused over 180 million confirmed cases and over 3.5 million deaths

worldwide [2]. The curves for daily confirmed new cases of COVID-19 in different countries

present a high variability in their geometric forms. Every such curve shows a sequence of out-

breaks and valleys when observed over time, while the sharpness of the outbreaks and the

length of the valleys can vary [3].

In fact, in [3] we can find figures that show the daily number of confirmed new cases (7 day

moving average), in particular from March, 2020, to January, 2021, for different countries.

Most of them have experienced a second wave and others show even a third. Some European
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countries show a sharp first outbreak followed by a plateau of low height (that lasted several

months) before the second wave, whose peak out-measures the peak of the first outbreak by at

least three-fold. On the contrary, several South American countries presented an initial expo-

nential phase of several months, soon after which a second wave of similar peak height as the

first occurred. Finally, there are countries in which the curve of new cases of COVID-19 has

shown extreme behaviors in some part of its evolution as compared to European and South

American countries. For instance, Czech Republic has experienced a very weak first outbreak

followed by a low plateau lasting for months; Iran did have a more pronounced first outbreak,

but it was followed by a plateau of important height; and Indonesia experienced an almost

unnoticeable first outbreak that is part of an exponential growth phase when zoomed out,

which lasts several months.

Classical compartmental models based on the classical Kermack & McKendrick SIR model

[4] with constant parameters often used to model epidemics do not reflect the behavior over

several months described above. Neither the (β, γ)SEIR model for a population of size N–

which is compartmentalized into susceptible (S), exposed (E), infectious (I) and removed (R)–

given by

S0 ¼ � bSðI=NÞ; E0 ¼ bSðI=NÞ � eE; I0 ¼ eE � gI and R0 ¼ gI; ð1Þ

nor extensions of it have been efficient in adjusting the data well beyond the first epidemic out-

break when considering the transmission rate β and the removal rate γ constant. This is due to

the unimodality of the active-infected-curve those models provide, i.e. one bell-shaped infec-

tion curve and an epidemic growth limited by the proportion of susceptible individuals [5, 6].

In general, the epidemiological data series do not reflect that the percentage variation of

susceptibles per proportion of active cases, i.e. |S0/S|/(I/N), is approximately constant, as is

assumed in the aforementioned classical epidemiological models. In fact, there exists literature

that evidences the changing temporal behavior of disease transmission in epidemic or pan-

demic situations [7–15]. In particular, there are studies using mathematical models– some

aiming to understand COVID-19 transmission– that include the decrease in the transmission

rate [7, 9, 16–20], and some incorporating human behavioral factors as part of the cause for a

temporal change in transmission. For instance, in [7] the behavior of the transmission rate–

providing exponential saturation for a large number of infectives– for three consecutive

months is shown for four geographical settings: worldwide, United States, Russia and Canada.

For each setting, the trend is a decrease in the transmission rate for then stabilizing at a value

several times lower than initially. They as well include a parameter representing mask wearing

within their transmission rate. Finally, this study also shows that the recovery rate R0/I is for

each setting much more stable than the transmission rate. Supporting the idea that the lack of

efficiency for the classical compartmental models to adjust well to data is due to that the trans-

mission rate β is assumed constant over time.

In this article we attempt to break the unimodality of the active-infected-curve of the classi-

cal epidemiological models. We introduce a novel way to model the behavior of the transmis-

sion rate β, considering a balance equation between a reaction rate and a restoration rate; and

including the resulting dynamic law for the transmission rate into the classical SEIR model.

The paper is structured in the following way: In the next section The Transmission Rate we

provide some understanding about the transmission rate of infectious diseases. In the section

The βSEIR Mathematical Model we introduce and describe a new basic model, which we call

βSEIR model, by adding to the classical SEIR the aforementioned dynamic law for the trans-

mission rate, and show some mathematical analysis. In the section Numerial Results we pro-

vide simulation results; and finally, the last section contains the discussion and conclusions.
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The transmission rate

There exist at least two groups of epidemic control measures. The first, aims to reduce the pop-

ulation that is being hit by the disease, i.e., the susceptible population. Such measures are, for

example, vaccination or limiting the mobility of individuals. The second, intents to reduce the

force of infection that is defined as the product of three quantities: number of close contacts per

unit of time of a susceptible individual (pC), probability that a close contact is with an infec-

tious individual (pI) and probability of transmission given a close contact with an infectious

(pT). Reducing pI results in that per unit of time, there exist fewer active cases in the popula-

tion, which is accomplished by eradication, i.e., removal from the system (e.g., slaughtering of

sick animals which is widely used in animal epidemics, or banishing infectious individuals as

was done aforetime), or by applying actions for a rapid recovery. Notice that the product of pC
and pT is called the transmission rate and is usually denoted by β (see e.g. Eq (1)). Hence, the

objective of most mitigation strategies that aim to reduce the force of infection, aim to reduce

the transmission rate (lower β) by either increasing physical distance and hence reducing the

number of close contacts (lower pC) or blocking the transfer of pathogens to a new host (lower

pT). There are secondary measures such as for example reducing population movement

(which is not reducing physical distancing nor blocking transmission), which make close

encounters less likely.

When a highly transmissible disease with high mortality or morbidity invades a population

of mostly susceptible individuals, and a vaccine is not in sight in the short term (as was initially

the case for COVID-19), health authorities’ only way for reducing morbidity and mortality is

mitigation, while the general population’s duty is to comply to the new norms and desired

behavior. In other words, the efforts are put into reducing the transmission rate β. In this

sense, β is a time-spacial dependent variable, i.e. it changes according to time and location.

Also less controllable physical-environmental aspects in relation with the bio-chemical charac-

teristics of the pathogen may influence it (but we consider those factors constants in this

study). It is also worth mentioning that in general populations, individuals may live and partic-

ipate in several cultural regions, which may also determine the variability of the transmission

rate. We will assume in this study that the population stays within its territory during the time

horizon studied, behaving homogeneously in this respect. We suppose that the disease studied

will have a base line transmission rate β0, that we will call natural transmission rate, measured

for a population that is initially free from the disease and does not consider any mitigation

strategies or personal protective measures.

One of the characteristics of COVID-19 was that it has had a large media coverage since the

first confirmed cases appeared in December 2019. This provoked sentiments of fear in the gen-

eral population and played an educational role for pandemic preparedness (e.g. global media

emphasizing on washing hands and physical distancing) before the imminent arrival of

COVID-19 in many countries. It shaped how countries would confront COVID-19 right from

the appearance of their first confirmed case and even before. The reproduction numbers corre-

sponding to different geographical locations was most likely to be between 2 and 5 [21, 22],

and was shown to rapidly decrease during the first weeks of the pandemic [12–14], however

reaching values above one that nevertheless allowed COVID-19 expansion.

To consider this decreasing effect, many authors assume an exponential decay of the trans-

mission rate for a certain amount of time, for example, in [9, 18] they assumed in their contin-

uous time model β(t) = β0exp(−b0 t), t� 0, or in in [19, 20] they defined βk = β0 ak, 0< a< 1,

k� 0, where k is a day-counting integer in their discrete time model. In order to extend the

horizon of validity of their model some authors consider an exponential decrease from β0 to a

minimum positive bound [15, 23]. To understand the rate of decrease from that baseline
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natural β0 and identify a time varying β(t) transmission rate, some researchers use mathemati-

cal expressions and the data on active cases I(t) and removed cases R(t) in a population of con-

stant size N; for instance, one can use β(t) = −NS0/(SI) as in [7], which can be obtained from a

SIR model and approximating the derivatives using the finite differences on one week running

averages; or one could use β(t) = γ + I0/I at the beginning of an outbreak, assuming S* N in

the SIR model.

More time-varying transmission rates have been considered within mathematical models.

For instance, the authors in [9] capture the early decreasing trend of COVID-19 in Malaysia

using a time varying exponential decay log function β(t) = zβ(1 − p)t for the transmission rate

in an SIR model, that uses a fractional term z to measure the effectiveness of interventions and

a proportion p to account for depletion. In the literature there are studies that, in order to cap-

ture realistic disease transmission, assume non-linear functions of S and I governing the force

of transmission, as for instance in [16], where the force of transmission they use in an SIR-type

model depends on the product of fractional powers of S and I. They use the model to fit

COVID-19 data of Italy, Germany, France and Spain.

In [24] the authors include in an SIR model time-varying transmission rate, assuming that

the probability of transmission of a susceptible is βλt(It/N), where λt(�) is a random variable,

they refer to this model as a Spatial-SIR model. In [25] the authors assume a contagion rate as

a sum of a base-line transmission rate and a component that satisfies a first order linear differ-

ential equation to represent the effect of non-pharmaceutical interventions (NPIs).

Behavioral factors represented in the transmission rate are also considered by more authors

in order to represent the changing dynamics of the transmission rate. For instance in [26] the

authors study a model that incorporates a non-constant transmission rate β(M) that depends

not only on the current number of infectious individuals but onM, representing an informa-

tion index that summarizes the current and past history of disease prevalence. Part of their

results discuss that social behavioral change may trigger oscillations. The study in [27] extends

an SIR type model defining a transmission rate that captures the impact of school and work-

place closure through a function of time. The changing behavior of this function is based on

Imitation Dynamics [28] and describes population-level support dynamics for closure. The

article in [29] also uses Imitation Dynamics and studies a population in which individuals

develop and learn a behavior of mutual protection.

The novelty of this article is that, at each moment in time we consider the variation of the

transmission rate to be given according to a balance equation between two opposite thrives: a

reaction rate and a restoration rate.
In what follows we are going to justify the functional forms of the reaction and restoration

rates, as well as present the βSEIR model that incorporates the dynamic law for β. Further, we

are going to analyze its effect on the shape of the main epidemiological curves.

The βSEIR mathematical model

In this section we present the dynamic law of the transmission rate β in order to introduce the

βSEIR model and some mathematical analysis.

Transmission rate β
In this subsection we derive the form of the transmission rate at which susceptible individuals

become exposed upon contacts with infectious. The only infectious class of the model is the I
class. We model the case of an infectious disease transmitted directly from person to person,

and assume that at the beginning of an outbreak, the appearance of first cases do not provide a

reason for alarm and panic. Hence, initially the disease propagation is due to a high natural-
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transmission rate intrinsic to the population while no interventions to mitigate disease spread

are in place. We call this natural-transmission rate β0. In general, β0 makes the disease expand

rapidly, producing a fast initial increase in new cases.

We present a new form for the transmission rate, which is represented by a dynamic, time-

dependent quantity that is governed by a balance equation between a reaction rate, g[t, I], and

a restoration rate, f[t, β], i.e. the proportion by which the transmission rate decreases and

increases per day, respectively, represented by

b 0 ¼ � g½t; I�bþ f ½t; b�b; with bð0Þ ¼ b0: ð2Þ

Next we justify the introduction of a reaction rate and a restoration rate and propose a func-

tional form for each.

Reaction rate. During severe epidemic outbreaks that attract huge public attention and

media coverage due to for instance a high morbidity and/or mortality in the population, a

steady increase in the implementation of measures that aim to reduce the transmission rate

can be observed. As long as there is no licensed vaccine or treatment, these measures are

mainly based on non-pharmaceutical interventions. Here we are interested in those directed

to diminish the factors pC and pT, whose product defines β, such as social distancing measures

(that reduce the number of close contacts between people: large-scale or home quarantines,

workplace non-attendance, travel restrictions, prohibition of social gatherings, school closures,

etc.) that reduce pC, or blocking measures (that, given e contact, reduce the pass of the patho-

gen: hand-washing, respiratory etiquette, face-masks usage, etc.) that reduce pT, see [30, 31].

When fear governs the population, people react, complying with mandatory measures or

adopting self-protecting measures to avoid infection [32]; we note that risk communication is

also a factor to support the general public response [33]. It is to expect that the higher the

severity of the disease is, the more effort is put into mitigation. In this sense, individuals’ reac-

tions produce a decrease in the transmission rate from its initial natural-transmission rate
value, β0. Hence, we define a reaction rate that we denote g[t, I], which is non-negative and

positively correlated with the number of active cases I(t), in a way that it increases when I(t)
does. It may also depend on other circumstantial conditions of the moment relative to the pop-

ulation. These we will discuss further later in the text.

We assume in this article, that the reaction rate, follows the Michaelis-Menten model [34]

describing the reaction to the presence of the infectious (active cases) I(t) at any moment in

time, i.e. we define

g½t; I�≔mðtÞ �
I

I þ Im
; ð3Þ

where we call μ(t) the reaction coefficient, which is a non-negative function that represents the

daily maximum possible reduction at time t, and Im> 0 is the half-saturation constant, i.e. is

the number of active cases, where the reduction is half-maximal. Notice that the parameter Im
characterizes the population, i.e. it determines its sensibility to react to active cases.

Restoration rate. It is important to observe that upon the appearance of a reaction rate

there exist socio-environmental factors that tend to restore the transmission rate to the level

observed at the beginning of the pandemic, i.e. to β0 [27, 35]. When in a certain location the

health authorities cease to impose protective measures, e.g. the use of face masks, and individu-

als lost their initial fear, then the transmission rate that had been reduced due to these mea-

sures no longer stays low and returns to its natural level. Therefore, we introduce a restoration
rate that at each instant t, t> 0, is responsible for an increase in the transmission rate. The res-
toration rate that we denote by f[t, β], is a non-negative function that correlates directly with
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the distance between β(t) and its natural value β0, as presented in the following equation:

f ½t; b� ¼ nðtÞ
jbðtÞ � b0j

b0

� �a

; ð4Þ

where a 2 R is a positive exponent. We call ν(t) the restoration coefficient, which is a non-neg-

ative function that regulates the daily form of the restoration rate. Also, f is an increasing func-

tion of |β(t) − β0|, and f[t, β0] = 0, which means that if the transmission rate β(t) reaches at a

certain time point t its natural value, then there is no deviation to restore.

The βSEIR model: Formulation and analysis

We incorporate the differential Eq (2) to the classical SEIR model (1) obtaining the βSEIR

model, given by the following system of equations

b
0
¼ ff ½t; b� � g½t; I�gb

S0 ¼ � bSI=N

E0 ¼ bSI=N � eE

I0 ¼ þeE � gI

R0 ¼ þgI;

8
>>>>>>>>>><

>>>>>>>>>>:

ð5Þ

with some non-negative initial conditions β(0) = β0, S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0,

and f[t, β], g[t, I] as in Eqs (4) and (3) respectively. Table 1 describes the variables and parame-

ters of the model.

In the following we show that 0� β(t)� β0, for all t� 0 and β0 > 0. Observe that β0 � − μ
(t)β, and hence due to Grönwall’s inequality (see [36]) we can conclude that

bðtÞ � b0e
�

R t
0
mðsÞ ds

. Therefore, β(t) is non-negative for any non-negative initial condition β0.

We also observe that β(t)� β0 is an equilibrium solution of the first equation in system (5) as

long as I(t)� 0. In case I(0)>0, i.e. disease is present in the population, β 0 (0) < 0 and hence β

Table 1. Description of variables and parameters from the model in system (5).

Variable/

Parameter

Description

β(t) Transmission rate at time t.
S(t) Susceptible individuals at time t.
E(t) Latent individuals at time t.
I(t) Infectious individuals at time t.
R(t) Removed individuals at time t.
N Total constant population size.

e Transition rate from the latent to the infectious class.

γ Transition rate from the infectious to the removed class.

β0 Natural transmission rate.

Im Half-saturation constant of infectious individuals, where the rate of reduction coefficient is

half maximal.

α Multiplicity of the deviation of the transmission rate.

ν(t) Restoration rate coefficient.

μ(t) Reaction rate coefficient.

https://doi.org/10.1371/journal.pone.0269843.t001
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(t) decreases initially. Since β0 � ν(t){|β − β0|/β0}α β, using Grönwall’s inequality and the fact

that the solutions to the differential equation β0 = ν(t){|β − β0|/β0}α β that pass through points

ðt; ~bÞ with 0 < ~b < b0 are increasing and bounded by β0, we obtain that β(t)�β0 for all t� 0

and β0 > 0, I0 > 0.

Just as for the classical SEIRmodel, we observe that the epidemiological state variables of

the model in system (5) remain positive for positive initial conditions and are bounded by the

total population size N. Also, adding the second, third and fourth equations in system (5)

together we obtain (S + E + I)0 = −γI< 0 whenever I> 0. Hence, S + E + I is a non-negative

smooth decreasing function, and therefore lim
t!1
ðSþ Eþ IÞ exists. On the other hand, the deriv-

ative of any smooth non-negative decreasing function must tend to zero, and hence

0 ¼ lim
t!1
ðSþ Eþ IÞ0 ¼ lim

t!1
� gI, which implies lim

t!1
I ¼ 0. Similarly, by adding the second and

third equation in system (5) together, we can prove that lim
t!1

E ¼ 0. Since the limit of S + E + I

exists when time tends to infinity, we can then conclude that lim
t!1
ðSþ Eþ IÞ ¼ S1. The behav-

ior of R can be obtained from N = S + E + I + R and we obtain lim
t!1

R ¼ N � S1. Hence, the

long term behavior of the model we present holds (i.e. the limit of the epidemiological state

variables exist for infinite time), just as for the classical compartmental epidemic models SIR
or SEIR with constant transmission rate β [37]; in particular we have shown that the disease in

the long term goes extinct.

Finally, as for classical models we can obtain a threshold condition that determines an ini-

tial epidemic outbreak. Given β0 > 0 and considering that β(t)�β0 for all t� 0 as well as that

the state variables are bounded by N, we have that (I + E)0 = γI{(β/γ)(S/N) − 1}�γI{(β0/γ) − 1}.

Hence, we define the basic reproduction number [38, 39] as R0 ≔b0=g. This way, if R0 < 1,

then the curve representing the infectious population is decreasing to zero and there is no epi-

demic outbreak. On the other hand, if R0 ¼ b0=g > 1, then (E + I) increases initially when we

assume S* N and β(0) = β0, and increases as long as (β(t)/γ)S(t)/N> 1 holds. Notice that, in

this case, the curve of infectious individuals may be increasing at several time intervals depend-

ing on the behavior of the function β(t), and not only depending on the ratio of susceptible

individuals in the population that is decreasing according to the second equation in system

(5). In Section 1 we will call the quantity (β(t)/γ)S(t)/N the Effective Reproduction Number,

Re, and its dynamics will determine disease dynamics.

In the context of our study, we consider short-medium term scenarios under an epidemic

situation, i.e. when R0 > 1. We also consider no replacement of susceptibles, due to the time

frames we describe and assuming that: first, infected individuals acquire some kind of protec-

tive immunity for several months after infection [40]; second, we do not consider multiple var-

iants that may provoke new infection. In particular, we will point out the differences

compared to the classical SEIR model with constant β, in which E and I are variables that

describe the known unimodal behavior of one bell-shaped curve.

Our model generalizes an idea presented in [41], where the authors consider an SIR-type

model with variable transmission rate of the form β(D(�)), in which the time dependent func-

tion D(�) represents social distancing that individuals in the population maintain to each

other, governed by the dynamics of D0 = −λ1(D − D�) + λ2 I/N, where λ1 and λ2 are positive

constants, and D� is the culturally dependent natural social distance, to which D(�) converges

in the absence of disease (I = 0).

Notice that if in their model bðDÞ≔ b�½
�D=D�n with positive parameters, we observe that

~bð�Þ ¼ bðDð�ÞÞ satisfies the equation ~b 0 ¼ f~f � ~g ½t; I�g ~b, with ~f ¼ nl1 and
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~g ½t; I� ¼ n l1D�þl2 ½I=N�

D�þe� l1 tfðD0 � D�Þþl2

R t
0
el1s½I=N�dsg

. Observe that regardless of the convergence of

R1
0
el1sIðsÞds, we obtain ~g ! ~f when t!1.

Numerical results

In this section, we present simulations of disease dynamics assuming: first, constant reaction

(μ(t)) and restoration (ν(t)) coefficients; second, we extend our results to consider time-vary-

ing reaction coefficients, representing a diminishing mitigation effect of government

responses; third, an additional seasonal effect on the restoration coefficient and we show that

our model is capable of capturing real COVID-19 disease data. For the simulations we use the

Python programming language [42].

The autonomous βSEIR model: Constant reaction and restoration

coefficients

We consider in this subsection the autonomous βSEIR model from system (5), assuming a

constant reaction coefficient, μ(t) = μ; i.e. we suppose that the reaction to reduce the transmis-

sion rate just depends on point prevalence levels and not on an additional time factor (see Eq

(3)); and also assuming a constant restoration coefficient, ν(t) = ν; i.e. the regulation on the res-

toration rate depends only on the deviation of the transmission rate from its natural value β0

and not on external temporal factors (see Eq (4)). We present qualitative results of our model

through simulations considering an 18 months time span, and present in each of the Figs 1–3

five subplots that represent the dynamics for: restoration f(t, β) and reaction rates g(t, I); the

transmission rate β(t); the effective reproduction number Re; the new confirmed cases eE(t);
and finally we illustrate the cumulative number of cases. The effective reproduction number is

a time-varying threshold quantity– defined by ReðtÞ≔ ðbðtÞ=gÞSðtÞ=N– such that the number

Fig 1. Simulations for a high restoration coefficient ν = 0.8. The first subplot illustrates the restoration rate f(t, β)

(dotted) and the reaction rate g(t, I) (solid). The remaining subplots show: The transmission rate β(t), the effective

reproduction number ReðtÞ, the new confirmed cases eE(t), and the cumulative cases E(t) + I(t) + R(t). The reaction

coefficient in each subplot are chosen to be μ: 0.3 (blue); 0.4 (green); 0.5 (orange) and 0.6 (red), and the remaining

parameter values and initial conditions are as in Table 2.

https://doi.org/10.1371/journal.pone.0269843.g001
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Fig 2. Simulations for a medium restoration coefficient ν = 0.5. The first subplot illustrates the restoration rate f(t, β)

(dotted) and the reaction rate g(t, I) (solid). The remaining subplots show: The transmission rate β(t), the effective

reproduction number ReðtÞ, the new confirmed cases eE(t), and the cumulative cases E(t) + I(t) + R(t). The reaction

coefficient in each subplot are chosen to be μ: 0.3 (blue); 0.4 (green); 0.5 (orange) and 0.6 (red), and the remaining

parameter values and initial conditions are as in Table 2.

https://doi.org/10.1371/journal.pone.0269843.g002

Fig 3. Simulations for a low restoration coefficient ν = 0.2. The first subplot illustrates the restoration rate f(t, β)

(dotted) and the reaction rate g(t, I) (solid). The remaining subplots show: The transmission rate β(t), the effective

reproduction number ReðtÞ, the new confirmed cases eE(t), and the cumulative cases E(t) + I(t) + R(t). The reaction

coefficient in each subplot are chosen to be μ: 0.3 (blue); 0.4 (green); 0.5 (orange) and 0.6 (red), and the remaining

parameter values and initial conditions are as in Table 2.

https://doi.org/10.1371/journal.pone.0269843.g003
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of cases increase while ReðtÞ > 1, reach a peak when ReðtÞ ¼ 1 and decrease when ReðtÞ < 1

[43, 44], and in particular Reð0Þ ¼ R0.

Additionally, the constant restoration coefficient ν takes in Figs 1–3 the values 0.8 (high),

0.5 (medium) and 0.2 (low), respectively, representing high, medium and low rates to restore

transmission levels due to the urge to return to the natural transmission rate β0. For each con-

stant restoration coefficient value, we choose within each figure the constant reaction coeffi-

cient μ to take the values 0.3 (low, in blue), 0.4 (medium-low, in green), 0.5 (medium-high, in

orange) and 0.6 (high, in red), representing different constant levels of the daily maximum

reaction to disease that reduces the transmission rate. The remaining parameter values and ini-

tial conditions used in the figures are described in Table 2. Note that the basic reproduction

number obtained from the values β0 = 0.65 and γ = 1/14 from Table 2 is R0 ¼ 9:1 > 1. For

illustration purposes, we use a value significantly larger than one.

Fig 1 considers a high restoration coefficient, ν = 0.8. Observe that for high reaction coeffi-

cients, e.g. μ = 0.6 as well as for small reaction coefficients, e.g. μ = 0.3, the restoration rate f(t,
β) and the reaction rate g(t, I) are very similar to each other. Initially the restoration rate is

slightly smaller than the reaction rate, producing that β0(t)<0 (from the first equation in sys-

tem (5)) and therefore being the reason for the initial decrease of in the transmission rate.

After that drop, the reaction and restoration rates are almost equal, producing a plateau in the

transmission rate due to β0(t)*0, and subsequently, a slightly larger restoration rate than reac-

tion rate produces an increase in the transmission rate, which converges to its original natural

transmission rate value β0. Additionally, observe that for all values of the reaction coefficient μ,

the duration of the plateau in the transmission rate is directly correlated with the value of μ:

the higher the μ value, the longer its duration. Note that, while the transmission rate is at the

plateau– i.e. β(�) behaves similar to constant– when equaling the first equation in our βSEIR

model (system (5)) to zero, we conclude from f(t, β) = g(t, I) when α = 1 that

bðtÞ � b0

lþ Im=I
1þ Im=I

; with l≔ ðn � mÞ=n:

Hence, if Im� I, then β* β0λ. Indeed, notice that the value of β0λ for μ = 0.3, 0.4, 0.5 and

0.6 in Fig 1 are respectively 0.406, 0.325, 0.244 and 0.163, which correspond very closely to the

plateau levels of the respective transmission rates. For all μ cases, the effective reproduction

number shows a decreasing shape, staying above one at least during the first months of a pan-

demic (the horizontal dotted line represents Re = 1 in the figure). While the effective

Table 2. Initial conditions and parameter values and their units, for the simulations in Figs 1–6.

Variable/Parameter Value Units

β0 0.65 (day)−1

S0 N Individuals

E0 50 Individuals

I0 100 Individuals

R0 0 Individuals

N 1006 Individuals

e 1/5 (day)−1

γ 1/14 (day)−1

Im 104 Individuals

α 1 Unitless

https://doi.org/10.1371/journal.pone.0269843.t002
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reproduction number stays above one, one can observe that the number of new confirmed

cases increases, reaching a peak when the effective reproduction number reaches the threshold

value one. The lower the reaction coefficient value is, the larger is the transmission rate

throughout the epidemic, which produces sooner and larger epidemic peaks of new confirmed

cases, as well as a rapid increase in the number of cumulative cases, reaching quickly a number

close to the final number of infected individuals throughout the whole epidemic. This happens

shortly after the effective reproduction number reaches the value of one, and is due to a small

number of susceptibles remaining in the population at that time.

Fig 2 considers a medium restoration coefficient, ν = 0.5. We observe that for a high reac-

tion coefficient μ = 0.6, the restoration (f(t, β)) and reaction (g(t, I)) rates show an initial

oscillation and differ from each other more clearly, being initially the reaction rate larger

than the restoration rate and subsequently both intersecting several times. This produces an

oscillatory behavior in the transmission rate due to the β equation in system (5), attaining

the transmission rate a local maximum or minimum value each time the reaction and resto-

ration rates intersect, i.e. f(t, β) = g(t, I). On the contrary, in the case of a low reaction coeffi-

cient value, e.g. μ = 0.3, we observe very similar restoration and reaction rates (blue curves)

just as in Fig 1. We can also observe from Fig 2 that a high (red) or medium-high (orange)

reaction coefficient μ, drives the effective reproduction number below one much faster than

in was observed in Fig 1 (in the case of a higher restoration coefficient) and way before the

cases for medium-low (green) and low (blue) reaction coefficient values. It is interesting to

see that in the cases of higher reaction coefficients (red and orange), after the initial fast

drop of the effective reproduction number, during the remaining time pictured it oscillates

around one. When comparing the curves of the new confirmed cases and cumulative cases

for these two reaction coefficient values, with the cases of low and medium-low reaction

coefficients, we notice that the number of cases is way higher for the latter. Additionally,

one bell-shaped curve of new confirmed cases is being observed for smaller reaction coeffi-

cient values (blue, green), since the effective reproduction number only manages to cross

the threshold Re ¼ 1 (see dotted line) once due to the small number of susceptibles remain-

ing after that first large peak. On the contrary, an oscillatory behavior is seen for higher μ
values, obtaining small epidemic peaks each time the effective reproduction number reaches

one in a decreasing manner.

In other words, the unimodality of the behavior for new confirmed cases observed when μ
is low (blue) or medium-low (green) is broken for high (red) and medium-high (orange) μ val-

ues, which was not seen in Fig 1. One can also observe that for higher μ values (red and

orange), the increase in the cumulative cases is close to linear in the time-frame pictured, as

opposed to the rapid increase in cumulative cases for smaller reaction coefficient values (blue,

green).

Fig 3 shows the case of a low restoration coefficient ν = 0.2. We observe oscillatory behavior

in the restoration and reaction rates, producing an oscillatory behavior in the transmission

rate, and hence also in the effective reproduction number and in the number of new confirmed

cases. We observe that for high reaction coefficient values, e.g. μ = 0.6, the absolute difference

between the reaction and restoration rates are larger and their intersections occur sooner, and

hence the oscillations in the transmission rate have a higher amplitude and their local maxima

occur sooner, than in the case of lower reaction coefficient values, e.g. μ = 0.3. Also, transmis-

sion rates with higher amplitudes produce less pronounced peaks in the oscillatory behavior of

the number of new confirmed cases. Additionally, sooner starting oscillations correspond to

higher values of the reaction coefficient μ. The cumulative cases show a near to linear increase,

where smaller slopes correspond to higher reaction coefficient values.
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A non-autonomous βSEIR model: Time-varying reaction coefficient

representing a diminishing mitigation effect

It is to expect that, when a disease enters a population, the reaction coefficient μ(t) right after

the onset increases quickly, reaches a maximum value μ0, and then decreases due to many fac-

tors. This can be deduced (at least) from two sources: (a) The data and information provided

by the Oxford COVID-19 Government Response Tracker (OxCGRT) and the time curves

defined by the Stringency Index [45, 46]. This index records the intensity of several govern-

ment responses combined, such as containment and closure policies by country. In general,

we observe that, first, the time curves representing the stringency index rise, but then follow a

decreasing behavior due to local socioeconomic reasons [47–52]. (b) Studies in behavioral sci-

ence explain the public fall of adherence to mitigation (distancing) measures, as a daily average

compliance curve in times of COVID-19 shown for instance in [53] or discussed in the conclu-

sions in [54]. Additionally, it is known that information-based interventions positively impact

compliance with mitigation restrictions, such as keeping a certain social distance, decreasing

the number of times individuals go out and their time spent outside. Nevertheless, if individu-

als have been restricted for a prolonged period of time, compliance with such mitigation strate-

gies decreases [55]. In this manuscript we refer to a time period right after disease onset, where

there is no vaccination yet available.

We can include such a behavior– representing a diminishing mitigation effect of restrictive

measures– through a time-varying reaction coefficient μ(t), for instance, given by the following

Eq (6),

mðtÞ ¼ m0 � hðtÞ; with hðtÞ ¼
ðaþ 2bÞt
t2 þ at þ b2

; t � 0; ð6Þ

with 0< μ0 < 1.

Notice that h(�) is a non-negative, unimodal function such that h0(b) = 0 and h(b) = 1, i.e. it

achieves its maximum value at t = b and then decreases at a rate that depends on the parameter

a.

In each of the Figs 4–6 we show for high, medium and low constant restoration coefficients

ν, respectively, the curves for the restoration (f(t, β)) and reaction (g(t, I)) rates, the transmis-

sion rate β(t), the effective reproduction number, the new confirmed cases and the cumulative

cases, for a forgetting curve h(t) of the form given in Eq 6, with a = 40, b = 90, such that the

maximum occurs at t = 90 days. Within each plot we present curves for different maximum

values μ0 of the now variable reaction coefficient μ(t) = μ0 h(t). The other parameters used for

these figures are given in Table 2.

We present in Fig 4 the case of a high constant restoration coefficient ν = 0.8. We observe

that the restoration and reaction rates are very similar regardless of the μ0 value. Despite their

similarity, initially, up to day 90, a slightly higher reaction than restoration rate produces a

sharp decrease in the transmission rate. The decreasing shape of the forgetting curve starting

on day 90, immediately reduces the reaction rate to slightly below the restoration rate, produc-

ing an increase in the transmission rate, eliminating the plateau observed in Fig 1, in which the

reaction coefficient was assumed constant. Due to the incorporation of a forgetting-curve in

the reaction coefficient we can also observe higher and earlier occurring epidemic peaks in the

curves of new confirmed cases as compared to the constant reaction coefficient case (see

Fig 1), especially for large μ0 values.

Fig 5 depicts the dynamics for a medium restoration coefficient ν = 0.5. Here we can

observe– especially for a large maximum value μ0 of the reaction coefficient μ(t) = μ0 h(t)– that

the restoration rate f(t, β) and the reaction rate g(t, I) differ more from each other, as compared
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Fig 4. Simulations for a high restoration coefficient ν = 0.8. The first subplot depicts the shape of the compliance

curve h(t) = (a + 2b)t/(t2 + at + b2), with b = 90, a = 40, and the second plot in the first row illustrates the restoration

rate f(t, β) (dotted) and the reaction rate g(t, I) (solid). The remaining subplots show: The transmission rate β(t), the

effective reproduction number ReðtÞ, the new confirmed cases eE(t), and the cumulative cases E(t) + I(t) + R(t). The

maximum value μ0 of the reaction coefficient (μ(t) = μ0 h(t)) used in each subplot is: μ0: 0.3 (blue); 0.4 (green); 0.5

(orange) and 0.6 (red), and the remaining parameter values and initial conditions are as in Table 2.

https://doi.org/10.1371/journal.pone.0269843.g004

Fig 5. Simulations for a medium restoration coefficient ν = 0.5. The first subplot depicts the shape of the compliance

curve h(t) = (a + 2b)t/(t2 + at + b2), with b = 90, a = 40, and the second plot in the first row illustrates the restoration

rate f(t, β) (dotted) and the reaction rate g(t, I) (solid). The remaining subplots show: The transmission rate β(t), the

effective reproduction number ReðtÞ, the new confirmed cases eE(t), and the cumulative cases E(t) + I(t) + R(t). The

maximum value μ0 of the reaction coefficient (μ(t) = μ0 h(t)) used in each subplot is: μ0: 0.3 (blue); 0.4 (green); 0.5

(orange) and 0.6 (red), and the remaining parameter values and initial conditions are as in Table 2.

https://doi.org/10.1371/journal.pone.0269843.g005
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to the case depicted in Fig 4. If we observe the curves for μ0 = 0.6 we see that initially, up to day

90, the reaction rate is clearly higher than the restoration rate, which again produces a sharp

decrease in the transmission rate. Every time the restoration and reaction rate curves intersect,

we can observe a local maximum/minimum in the transmission rate, which eventually

increases and converges back to its natural value β0. The changing human behavior reflected

in the restoration and reaction rates, observed for μ0 = 0.6, produces a late occurring but large

epidemic peak, preceded by one small peak. This dynamics can also be explained by observing

the shape of the effective reproduction number, which crosses the threshold Re ¼ 1 three

times (red curve).

Fig 6 shows the dynamics for a low constant restoration coefficient ν = 0.2. Here we observe

initial oscillatory dynamics for the restoration and reaction rates, which explain the oscillatory

dynamics in the transmission rate and also in the effective reproduction number, which

crosses the threshold Re ¼ 1 (see dotted line) several times, producing small oscillations in the

new confirmed cases, followed by a large epidemic peak.

A non-autonomous βSEIR model and the example of COVID-19 in Chile

and Italy: Time-varying reaction and restoration coefficients

Although it has not been proven that the virus SARS-CoV-2 is seasonal in nature, seasonality

of transmission may be an important factor to consider since social behavior is environmen-

tally driven [56]. The main hypothesis regarding seasonality indicates that the higher the tem-

perature the fewer infections occur [57, 58].

Therefore, additional to a time-varying reaction rate, the restoration rate could depend,

among other, on environmental factors such as for instance temperature. For example, in

Fig 6. Simulations for a low restoration coefficient ν = 0.2. The first subplot depicts the shape of the compliance

curve h(t) = (a + 2b)t/(t2 + at + b2), with b = 90, a = 40, and the second plot in the first row illustrates the restoration

rate f(t, β) (dotted) and the reaction rate g(t, I) (solid). The remaining subplots show: The transmission rate β(t), the

effective reproduction number ReðtÞ, the new confirmed cases eE(t), and the cumulative cases E(t) + I(t) + R(t). The

maximum value μ0 of the reaction coefficient (μ(t) = μ0 h(t)) used in each subplot is: μ0: 0.3 (blue); 0.4 (green); 0.5

(orange) and 0.6 (red), and the remaining parameter values and initial conditions are as in Table 2.

https://doi.org/10.1371/journal.pone.0269843.g006
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regions with predominantly Mediterranean climate, an annual oscillation of the daily mean

temperature can be observed [59], as is the case in a large part of Italy or central Chile. The sea-

sonality could also represent peoples’ behavior during winter months vs summer months, or

during vacation periods and special holidays. These factors affect the tendency of the popula-

tion to return to its natural transmission rate β0, while making it seasonal in nature.

Hence, to capture seasonal factors we consider an annual periodic restoration coefficient of

the form

nðtÞ ¼ n0 þ ssin
2p

365
ðt � tmaxÞ þ

p

2

� �

; ð7Þ

where ν0 is the average restoration coefficient value, σ the amplitude of the oscillation and tmax
the moment in time, where the restoration coefficient is maximum. In general, social studies

would be needed to determine the nature of the seasonality depending on peoples’ behavior

and habits in specific cultural and geographical contexts, independent of disease presence.

This could help determine the parameters present in the seasonal part of the restoration coeffi-

cient. For instance, tmax could happen during winter (where individuals meet inside), with a

larger amplitude σ if a holiday coincides with cold weather and thus people tend to gather and

restore normal conditions. Also, σ* 0 implies ν(t)*ν0 constant, and hence there would be no

seasonal variation in the restoration coefficient.

Considering this non-constant seasonal behavior for the restoration coefficient ν(t) as given

in Eq (7), as well as a time-varying reaction coefficient as described in Eq (6), we illustrate

through Figs 7 and 8 the applicability of our model during the first months of the pandemic,

fitting the model to COVID-19 data of new confirmed cases of Chile and Italy [60, 61]– mini-

mizing in the least square sense the residuals between the outcome of our model and the data

set– respectively from March 16th, 2020, to February 16th, 2021, and from February 24th,

2020, to October 31st, 2020. Table 3 shows the respective fixed and fitted parameter values

used in each figure. Chile and Italy served as examples of countries located at different hemi-

spheres that experienced COVID-19 in distinct ways, due to cultural differences, distinct levels

of initial knowledge of the virus, seasons, etc., and this way permitted us to show that our

model can capture different COVID-19 dynamics and partially describe them through reac-

tion and restoration thrives of the population.

We can observe how the restoration rate and reaction rate differ among countries: In the

case of Chile (see Fig 7), they are very similar, expecting a population whose reaction to disease

Fig 7. Simulation fitting COVID-19 data from Chile. The first subplot depicts the restoration rate f(t, β) (dotted) and

reaction rate g(t, I) (solid); the second plot the transmission rate β(t); and in the third plot the blue dots represent data

of daily confirmed new cases of COVID-19 in Chile, from March 16th, 2020, to February 16th, 2021 [60]. The red

curve represents the least square fit of the model to the data with parameter values as in Table 3 for the population of

Chile, withN = 18 million individuals and initial conditions of the model (5) taken to be E0 = 20, I0 = 81, R0 = 0, S0 = N
−E0 − I0 − R0. The fit produces a root-mean-square error (RMSE) of 792.89.

https://doi.org/10.1371/journal.pone.0269843.g007
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presence and urge to return to their normal behavior (restoration) is similar in nature. Never-

theless, a small difference in those rates produce a large impact on the transmission rate, such

as the steep decrease observed initially.

On the other hand, from Fig 8 one can see that the reaction rate (solid curve) and the resto-

ration rate (dotted curve) differ more than in the case of Chile, having initially a population,

which is reacting to disease presence faster than their urge to restore normal conditions, for

later reversing their behavior three times, producing during that time period a long lasting pla-

teau. Finally, one can see that a larger restoration rate than reaction rate produces the appear-

ance of a large second peak.

Discussion and conclusions

In references from 1973 [69] and 1989 [70], strategic models are defined as those that, despite

not having high resolution concerning a specific reality, have the advantage of containing all

the minimum aspects of the referenced system. The main contribution of this work is to

achieve a dynamically richer low-cost model, that is, one that adds only one more differential

law to the classical SEIR model (without introducing new compartments in the population).

Fig 8. Simulation fitting COVID-19 data from Italy. The first subplot depicts the restoration rate f(t, β) (dotted) and

reaction rate g(t, I) (solid); the second plot the transmission rate β(t); and in the third plot the blue dots represent data

of daily confirmed new cases of COVID-19 in Italy, from February 24th, 2020, to October 31st, 2020 [61]. The red

curve represents the least square fit of the model to the data with parameter values as in Table 3 for the population of

Italy, withN = 60.5 million individuals and initial conditions of the model (5) taken to be E0 = 81, I0 = 566, R0 = 0, S0 =

N − E0 − I0 − R0. The fit produces a root-mean-square error (RMSE) of 1083.49.

https://doi.org/10.1371/journal.pone.0269843.g008

Table 3. Parameters for the simulations in Figs 7 and 8 for the case of Chile and Italy respectively.

Fixed parameters Value (Chile) Reference (Chile) Value (Italy) Reference (Italy)

e 1/5 [62, 63] 1/5 [62, 63]

γ 1/14 [64, 65] 1/14 [64, 65]

R0 5.4 [12] 5.8 [66–68]

β0 0.38 Assumed as R0g 0.414 Assumed as R0g

b 110 Adapted from [45, 46] 67 Adapted from [45, 46]

a 500 Adapted from [45, 46] 80 Adapted from [45, 46]

Im 7200 Assumed 12100 Assumed

α 1 Assumed 1 Assumed

σ 0.1 Assumed 0.5 Assumed

tmax 50 Assumed 315 Assumed

Fitted parameters Fitted Value [95% CI] (Chile) Fitted Value [95% CI] (Italy)

μ0 0.82494 [0.77278, 0.88415] 0.77507 [0.76191, 0.79009]

ν0 0.80459 [0.77132, 0.86425] 0.66132 [0.64804, 0.67458]

https://doi.org/10.1371/journal.pone.0269843.t003
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There is evidence in the literature that populations change their behavior when facing dan-

gerous diseases, i.e., reacting to these by managing to modify the transmission rate. Our pro-

posed model, the βSEIR model, is a serious candidate to contain the minimum aspects for

disease transmission of a high impact infectious-contagious disease in populations that, while

living with the urge to restore normal conditions, react to reduce favorable conditions for dis-

ease transmission. Additionally, the latter occurs in a setting where vaccines are not available

(and hence the model just considers one susceptible class), the disease is new to the population,

and there are no multiple variants. Specifically, the novelty of the βSEIR model we present is,

that it incorporates a variation in the transmission rate, which occurs proportional to the

transmission rate itself but also proportional to a tension given by the difference (f − g)
between a) reaction rate (g) to disease presence that may include other behavioral factors, such

as compliance with mitigation strategies, and b) restoration rate (f) that aims to restore a cer-

tain intrinsic value of disease transmission, due to for instance socio-environmental elements.

Our results show an important gain in dynamic possibilities even in the case where Eq (2)

in the βSEIR model given in Eq (5) is autonomous, i.e. f and g do not depend explicitly on

time. Indeed, we can see in Figs 1–3 the appearance of several epidemic peaks and initial oscil-

latory dynamics, explained by the tension between reaction and restoration thrives of a popu-

lation. In particular, we observe that high restoration coefficients ν– affecting the restoration

rate f and representing a higher urge of the population to return to normal conditions– induce

temporary stabilization of the transmission rate after an initial drop, being the duration of this

plateau larger, the larger the reaction coefficients μ (affecting the reaction rate g) are, i.e. the

higher the self-protective reaction is to disease presence. When considering small ν values (a

small urge to return to normality), we observe oscillations in the transmission rate, with higher

amplitudes for higher μ values, i.e. amplitudes are higher if individuals’ reaction to disease

presence is higher. These oscillations in the transmission rate generate oscillations in the effec-

tive reproduction number, which lay around one for a period of time proportional to the value

of the reaction coefficient μ. Regarding the curve of new cases, we show that in general higher

restoration coefficients ν produce unimodal behavior, whereas lower ν values generate the

appearance of a finite number of peaks with decreasing peak size, in a way that for large reac-

tion coefficients μ the timing between peaks is smaller. These results already define interesting

future mathematical challenges.

In general, our results show how the transmission rate is impacted by the reaction rate g
and the restoration rate f. In particular, we observe that a small difference between reaction

and restoration rates may produce a large impact in the transmission rate. This highlights the

importance of individual behavior in a pandemic setting, where even the behavior of a small

number of individuals could change the dynamics of a disease drastically.

Curves of new confirmed cases with two and up to three waves in a one year time frame

have been observed, differing among countries in time and size, with peaks and valleys of dif-

ferent heights, proper to a pandemic still under development in a population without protec-

tive immunity [3]. We notice that the βSEIR model can capture such patterns at the cost of

varying the reaction coefficient μ(t) and for further dynamic richness varying the restoration

coefficient ν(t). We can justify a time-varying reaction coefficient μ(t) that considers two

aspects: first, it follows the shape of the Stringency-Index [45]—that records for each country

government mitigation measures–, second, it reflects the reduced compliance with or adher-

ence to mitigation strategies observed with time. The βSEIR model shows even richer dynam-

ics when introducing such a time-varying reaction coefficient (see Figs 4–6).

Additionally, our model is capable of capturing the time series of new confirmed cases of

Chile and Italy when including– additionally to including a time-varying reaction coefficient–

a time-dependent seasonal variation in the restoration coefficient ν(t), reflecting distinct
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temporal and possibly behavioral characteristics of two countries located at different hemi-

spheres during their first pandemic year. Our results are, at first glance, good indicators for the

richness that a model of such low structural complexity, as the one proposed here, can

provide.
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41. Cabrera M, Córdova-Lepe F, Gutiérrez-Jara JP, Vogt-Geisse K. An SIR-type epidemiological model

that integrates social distancing as a dynamic law based on point prevalence and socio-behavioral fac-

tors. Scientific Reports. 2021; 11(1):1–16. https://doi.org/10.1038/s41598-021-89492-x PMID:

33986347

42. Python Software Foundation;. https://www.python.org/.

43. Nishiura H, Chowell G. The effective reproduction number as a prelude to statistical estimation of time-

dependent epidemic trends. In: Mathematical and statistical estimation approaches in epidemiology.

Springer; 2009. p. 103–121.

44. Gumel AB, Iboi EA, Ngonghala CN, Elbasha EH. A primer on using mathematics to understand COVID-

19 dynamics: Modeling, analysis and simulations. Infectious Disease Modelling. 2021; 6:148–168.

https://doi.org/10.1016/j.idm.2020.11.005 PMID: 33474518

45. Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global panel database of pan-

demic policies (Oxford COVID-19 Government Response Tracker). Nature Human Behaviour. 2021; 5

(4):529–538. https://doi.org/10.1038/s41562-021-01079-8 PMID: 33686204

46. Our World in Data, Oxford Martin School, University of Oxford;. https://ourworldindata.org/covid-

stringency-index.
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