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Abstract: In this study, some hybrid materials based on sodium alginate (NaAlg) and porous clay 
heterostructures (PCHs) were investigated as new hosts for 5-Fluorouracil (5-FU) encapsulation. 
The hybrid hosts were prepared by ionotropic gelation technique using different concentrations of 
PCHs (1, 3, and 10 wt%) in order to identify the optimal parameters for encapsulation and drug 
release. The obtained hybrid materials were characterized using FTIR Spectrometry, thermo-
gravimetric analysis (TGA), scanning electron microscopy (SEM), and UV-Vis spectrometry to in-
vestigate the interactions of the raw materials involved in the preparation of hybrid hosts, the in-
fluence of PCHs concentrations on drug encapsulation efficiency and drug release profile. All the 
results show that the synthesized hybrid materials were able to load a high amount of 5-FU, the 
encapsulation efficiency and the release profile being influenced by the concentrations of PCHs. 
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1. Introduction 
Cancer is a leading cause of morbidity and death worldwide, which is character-

ized by the growth of abnormal cells that multiply uncontrollably and have the capacity 
to destroy healthy cells [1,2]. Nanotechnology is the most important technology used to 
identify cancerous cells in the initial stage. Another important aspect of cancer therapy 
is the development of new materials able to minimize the side effects of therapeutic 
drugs and also to enhance the efficiency of cancer immunotherapy [3,4]. 

Fluorouracil (5-fluoro-2,4-pyrimidinedione, 5-FU) is a pyrimidine analog drug 
widely used in chemotherapy. This type of drug shows an important activity concerning 
solid tumors encountered in breast, lung, colon, brain tumor, pancreatic, liver, and 
stomach cancer [5,6]. The 5-FU drug exhibits significant disadvantages such as high tox-
icity, low light stability, short half-life, and low drug selectivity towards tumors. These 
disadvantages can be overcome by the development of controlled drug-release systems 
and through loading the 5-FU drug in inorganic clay and/or biopolymeric systems. Usu-
ally, 5-FU is available as an intravenous formulation. This type of administration of 5-FU 
is associated with different side effects such as psychological stress, hypertrophy, or at-
rophy, which cause damage in healthy tissues. Moreover, intravenous administration of 
the drug has been shown to cause severe gastrointestinal, hematological, cardiac, der-
matological, and neuronal effects [6–8]. The encapsulation of 5-FU into the host system 
may reduce the side effects and makes possible its oral administration. 
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Abstract: In this study, some hybrid materials based on sodium alginate (NaAlg) and porous clay
heterostructures (PCHs) were investigated as new hosts for 5-Fluorouracil (5-FU) encapsulation. The
hybrid hosts were prepared by ionotropic gelation technique using different concentrations of PCHs
(1, 3, and 10 wt%) in order to identify the optimal parameters for encapsulation and drug release. The
obtained hybrid materials were characterized using FTIR Spectrometry, thermogravimetric analysis
(TGA), scanning electron microscopy (SEM), and UV-Vis spectrometry to investigate the interactions
of the raw materials involved in the preparation of hybrid hosts, the influence of PCHs concentrations
on drug encapsulation efficiency and drug release profile. All the results show that the synthesized
hybrid materials were able to load a high amount of 5-FU, the encapsulation efficiency and the release
profile being influenced by the concentrations of PCHs.
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1. Introduction

Cancer is a leading cause of morbidity and death worldwide, which is characterized
by the growth of abnormal cells that multiply uncontrollably and have the capacity to
destroy healthy cells [1,2]. Nanotechnology is the most important technology used to
identify cancerous cells in the initial stage. Another important aspect of cancer therapy is
the development of new materials able to minimize the side effects of therapeutic drugs
and also to enhance the efficiency of cancer immunotherapy [3,4].

Fluorouracil (5-fluoro-2,4-pyrimidinedione, 5-FU) is a pyrimidine analog drug widely
used in chemotherapy. This type of drug shows an important activity concerning solid
tumors encountered in breast, lung, colon, brain tumor, pancreatic, liver, and stomach
cancer [5,6]. The 5-FU drug exhibits significant disadvantages such as high toxicity, low
light stability, short half-life, and low drug selectivity towards tumors. These disadvantages
can be overcome by the development of controlled drug-release systems and through
loading the 5-FU drug in inorganic clay and/or biopolymeric systems. Usually, 5-FU is
available as an intravenous formulation. This type of administration of 5-FU is associated
with different side effects such as psychological stress, hypertrophy, or atrophy, which
cause damage in healthy tissues. Moreover, intravenous administration of the drug has
been shown to cause severe gastrointestinal, hematological, cardiac, dermatological, and
neuronal effects [6–8]. The encapsulation of 5-FU into the host system may reduce the side
effects and makes possible its oral administration.
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Natural polymers (polysaccharides, proteins, peptides, polyesters) are materials ex-
tensively used in drug delivery systems due to favorable properties such as good biocom-
patibility and biodegradability, lower toxicity, easy accessibility, the ability to form gels,
biological activities, low immunogenicity, low cost, and targeting capacity [9,10]. The most
widely used natural polymers in drug delivery system are polysaccharides because these
materials exhibit an excellent ability to encapsulate various drug molecules and a good
capacity to achieve a controlled drug release profile. Polysaccharides can also minimize
the side-effects of drugs and enhance the pharmacokinetic profile [11]. They can also
improve the stability of drug molecules, decrease the drugs premature degradation and
also enhance intracellular penetration [12].

Sodium alginate (NaAlg) is an anionic heteropolysaccharide with a linear structure de-
rived from brown seaweed, The structure of sodium alginate consists from (1-4) linked β-D-
mannuronic acid and αL-guluronic acid monomers. NaAlg is a pure natural biodegradable
polymer characterized by attractive properties such as biocompatibility, hydrophilicity, rel-
atively low expense, high swelling capacity, and cell attachment ability. It is also a non-toxic
material to the human body [13–22]. Unfortunately, NaAlg presents disadvantages such as
a strong hydrophilic character and loss of structural integrity. Additionally, being a pH
sensitive polymer in an acidic environment, it tends to shrink, leading to a reduction of the
bead size. This decrease is another drawback because the release of the encapsulated drug
in NaAlg is lower in gastric fluid. Moreover, the dissolution of the polymer in basic condi-
tions is another limitation of NaAlg [23]. To overcome the disadvantages of the polymer
(Na-Alg) and drug (5-FU) limits, new strategies have been developed to obtained materials
with special properties. These involve intercalation and reinforcement of sodium algi-
nate with other polymers (gelatin, polyvinyl alcohol, chitosan [24], carrageenan [25], and
pectin [26]) or dispersion of micro- and nano-structures (magnesium aluminum silicate [27]
montmorillonite (MMT), [28,29], halloysite (HNT) [30,31], mesoporous silica [32], layered
double hydroxide (LDH), rectorite, hydroxyapatite [33], graphene oxide (GO) [34,35], and
carbon nanotubes (CNT) [36]) within the polymer matrix.

The biomedical applications of NaAlg include drug delivery vehicles for active phar-
maceutical ingredients [37]; excipients (e.g., binders) for preparation of tablets or capsules;
scaffolds for cell culture and tissue engineering; and model extracellular matrices for
biological studies, drug delivery, and magnetic resonance imaging [19,38].

Recently, hybrid nanoparticles based on NaAlg and organic/inorganic compounds
were widely used in drug delivery systems because they improve drug release profile,
compatibility, and swelling properties [39–41]. Good biocompatibility, tunable mechanical
properties, and easy degradation are extraordinary and versatile properties for pharma-
ceutical purposes. Additionally, these systems have been synthesized to sustain a suitable
amount of the drug without causing toxicity or leading to its effects being below the
minimum effective level [42].

First, their small size and large surface lead to a higher absorption capacity of the
drug and better drug controlled release compared with large carrier [43]. Second, the
nanoparticle surface can be modified by chemical functionalization with various molecules
in order to increase the drug absorption and release. Third, the introduction of an inorganic
guest such as MMT within the polymer matrix could enhance the stability of the alginate
and preserves its original biological function. The physical properties of the alginate beads
could be improved by dispersing the magnesium aluminum silicate (MAS) due to the
interaction of Na-Alg with silanol groups of MAS [44]. Drug delivery systems (DDS) based
on NaAlg- nano-microparticles, composite microparticles, and biodegradable hydrogels
are some examples that offer special features such as controlled drug release, improved pH
sensitivity, and improved swelling capacity [32,36,45–47].

Porous clay heterostructures (PCHs) are inorganic materials, prepared for the first
time in 1995 by Galarneau et al. [48]. The PCHs synthesis is based on three main steps:
(1) intercalation of surfactant (quaternary alkylammonium cations) and co-surfactant (neu-
tral amine) into layered inorganic clay, (2) hydrolysis and condensation of silica precursor
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(tetraethyl orthosilicate) in the clay gallery, and (3) thermal treatment or solvent extraction
in order to remove the organic compounds [49–53]. PCHs are innovative materials with
versatile properties such as: tunable textural properties (high surface area, microporos-
ity, and mesoporosity) [54–58], high adsorption capacity of volatile organic compounds
(VOCs) [59], acidic properties [60], high thermal stability and mechanical strength, catalytic
properties [61], and dielectric properties [62,63]. The properties of PCH can be adjusted
according to the targeted application. For example, the incorporation of different metals
(e.g., Al, Zr) into the silica gallery can improve the thermal stability and increase the surface
area and surface acidity. These properties make PCHs an efficient absorbent material for
different pollutants (heavy metals, dyes). [64,65].

These versatile properties mean that PCHs can be used in a wide range of applications,
such as in adsorbents [66–68], decontamination agents [69], and catalysts [70–73]. A new
application of PCHs in the field of drug delivery systems was reported in our previous
article [74].

In addition, we reported that the PCHs can be used as a nanofiller for NaAlg based
films, inducing an increase of thermal stability and storage modulus [75].

Recently, hybrid beads based on PCHs and Na-Alg were synthesized and tested as
adsorbents for volatile organic compounds [76].

In this study, some organic–inorganic hybrid hosts based on NaAlg and PCHs were
synthesized and proposed as drug delivery systems for 5-Fluorouracil active substance.
The performance of these materials as drug delivery systems may be influenced by the
interaction between the components involved in the synthesis and the dispersion degree of
PCHs within polymeric matrix, and the release of the drug is strongly influenced by the
porous texture of PCHs and PCHs content.

2. Materials and Methods
2.1. Materials

Alginic acid sodium salt (NaAlg) from brown algae with medium viscosity was
supplied from Sigma-Aldrich (St. Louis, MO, USA). Nanofil 116 (MMT-Na), a natural
montmorillonite with a cationic exchange capacity (CEC) of 116 mEq/100 g clay was
purchased from Southern Clay Products (Gonzales, TX, USA). Hexadecyltrimethylammo-
nium bromide (HDTMA-Br), tetraethyl orthosilicate (TEOS), dodecylamine (DDA), and
5-fluorouracil (5-FU) were provided from Sigma–Aldrich and used as received Figure 1.

2.2. Synthesis of PCHs

The PCHs material was synthesized using the method described in our previous
paper [54], which involves three main steps: (1) organophilization of montmorillonite raw
material, (2) hydrolysis and polycondensation reaction of silica precursor in the presence
of organically modified MMT, and (3) the final step focused on thermal treatment of PCHs
precursors.

In the first step, 10 g of MMT were subjected for the swelling process in 900 mL of
demineralized water, and then 6 g of HDTMA was used as an organic agent to intercalate
the swollen clay by cationic exchange reaction. The suspension was maintained for 5 h at
50 ◦C under mechanically stirring, and the final product was washed with water, isolated
by centrifugation, and dried at room temperature.

The second step was focused on the synthesis of PCHs precursors using organically
modified MMT that was treated with a precise amount of neutral amine (DDA) and silica
precursor (TEOS) in the presence of water. The molar ratio used in the PCHs synthesis was
1:20:120 (modified MMT:DDA:TEOS).

The thermal treatment of PCHs precursors involves calcination at 650 ◦C for 6 h in air
in order to remove the organic templates.
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Figure 1. Chemical structure of raw materials.

2.3. Synthesis of Hybrid Beads

The preparation of hybrid beads based on NaAlg and PCHs was performed using
the protocol shown in Figure 2. In the first step, 10 mg of 5-FU were dissolved in 10 mL
of deionized water at room temperature (RT) under magnetic stirring. In the second step,
different PCHs concentrations (1, 3, and 10 wt%) were dispersed in 5-FU solution under
magnetic stirring for 1 h at RT. Into the obtained suspensions a certain amount of NaAlg
was added to achieve 2% NaAlg solution, and then the hybrid systems (NaAlg-PCHs-5-FU)
were stirred for 24 h in the absence of light at RT. In the final step, each suspension was
dropped into calcium chloride solution (1 wt%) in order to obtain the hybrid beads by
inotropic gelation. The hybrid beads were maintained in CaCl2 solution for 30 min and
then were collected by filtration. After filtration, the supernatant was used to determine
the encapsulation efficiency of 5-FU from hybrid beads. The amount of 5-FU entrapped
in the NaAlg-PCHs system was determined using UV-Vis spectrophotometer (Cary 60,
Agilent Technologies, Santa Clara, CA, USA) at λ = 265 nm. The beads were air dried for
further characterization.
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Figure 2. Synthesis steps of hybrid beads.

2.4. Characterization Techniques

Fourier Transform Infrared Spectrometry (FTIR) were recorded on an ATR Bruker
VERTEX 70 spectrometer (Bruker, Billerica, MA, USA), using 32 scans with a resolution of
4 cm−1 in 4000–600 cm−1 wavenumbers range.

Thermogravimetric analysis (TGA) was done on Q 500 TA Instruments equipment
(Bellingham, WA, USA), under inert atmosphere (nitrogen) and a heating rate of 10 ◦C/min.

The Quanta Inspect F50 scanning electron microscope (SEM) (FEI, Hillsboro, OR,
USA), coupled with energy dispersive X-ray analysis (EDAX, USA), was used to evaluate
the morphology of hybrid materials.

The drug encapsulation efficiency and in vitro drug release profiles of 5FU from dif-
ferent hybrid materials was investigated using a UV-Vis spectrophotometer (Cary 60) with
a flow cell of 1 mm and a UV Dissolution software, coupled with a completely automated
dissolution bath USP Apparatus 1 (708-DS Agilent, Agilent Technologies, Santa Clara, CA,
USA) connected to an auto-controlled multichannel peristaltic pump (801 Agilent, Agilent
Technologies, Santa Clara, CA, USA). The samples were put into a dialysis membrane bag
with 4 mL buffer solution and then the samples were immersed in 200 mL dissolution
medium (2 h in SGF and 22 h in SIF) and spin for 24 h with 70 rpm at 37 ◦C. At specific
time intervals, the amount of released 5-FU was determined at λ = 265 nm. The hybrid
hosts based on NaAlg and PCHs were analyzed in triplicate. The dissolution media were
used without enzymes.



Polymers 2021, 13, 2803 6 of 15

3. Results
3.1. Characterization of Hybrid Beads
3.1.1. FTIR Analysis

FTIR analysis was suitable to investigate the presence of clay (PCHs) and the anti-
tumoral drug (5-FU) in the NaAlg beads, as well as to identify the possible interaction
established between the components involved in the hybrid beads structures. The FTIR
spectra of raw materials (NaAlg, PCHs, and 5-FU) and composite beads with various
concentrations of PCHs (1, 3, and 10 wt%) are shown in Figure 3a,b. The FTIR spectra of
5-FU, NaAlg, and PCHs are similar to the ones reported in the literature [13,45,59,60,77,78].
In Table 1 are summarized the spectral assignments for raw materials.

As can be observed from Figure 3b, the presence of PCHs and the active substance
into the polymeric matrix (NaAlg) was proven through the shifting to a higher value of the
following peaks: (1) peak at 3343 cm−1 and (2) peak at 1408 cm−1 from NaAlg spectrum
(Figure 3a)
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Table 1. Assignment of the characteristic peak of raw materials.

NaAlg PCH 5-FU

Wavenumber
(cm−1) Type of vibrations Wavenumber

(cm−1) Type of vibrations Wavenumber
(cm−1) Type of vibrations)

3343

Symmetric
stretching vibration
of hydroxyl group

(OH)

3736
Stretching vibration of

the OH group from
Si–OH

1661

Stretching vibration
C=C

Stretching vibration of
carbonyl group (C=O)

1600

Symmetric
stretching vibration
of carboxylate group

(COO−)

3434

Stretching vibration of
the OH group of water
molecules adsorbed on

PCH

1425 Bending vibration of
N–H

1408

Asymmetric
stretching vibration
of carboxylate group

(COO−)

1631
Bending vibration of

adsorbed water
molecules

1247 Stretching vibration of
the aromatic ring

1086
1036

Stretching vibration
of C–O–C 1078

Stretching vibrations
of three dimensional

silica network
- -

- - 807

Symmetric stretching
vibrations of

Si–O–Si
or

Si–O–Al

- -

The presence of the inorganic component (PCHs) into the polymeric matrix (NaAlg)
induces a shifting of the peak from 3343 cm−1 to a higher value (3361/3371/3382 cm−1),
which can be attributed to some physical interaction between NaAlg and PCHs (e.g.,
hydrogen bonding formation). Additionally, the FTIR data indicate that the shifting of this
peak is significantly influenced by the PCHs concentration. The highest peak shifting was
registered for hybrid materials with 10 wt% PCHs.

The presence of the active substance (5-FU) into the hybrid materials (NaAlg-PCHs)
was highlighted by shifting the peak from 1408 cm−1 for NaAlg to higher values for hybrid
materials (e.g., 1425 cm−1 for NaAlg-PCHs 10 wt%).

3.1.2. TGA Tests

TGA tests were performed to demonstrate the presence of PCHs in drug loaded hybrid
beads. PCHs material exhibits a different thermal degradation profile [74], characterized
by a higher thermal stability, and therefore the hybrid materials based on the NaAlg matrix
and PCHs exhibited different thermal properties depending on PCHs content. As shown
in Figure 4 and Table 2, the presence of PCHs was confirmed by the increase of thermal
stability of the drug loaded hybrid beads.

All the hybrid materials exhibit a similar TG profile to the 5-FU loaded NaAlg beads,
but the presence of PCHs induces a barrier effect, and therefore a slight increase of degra-
dation temperatures (Td15 % and Td40 %) was recorded. This effect was mainly observed for
hybrids beads with high content of PCHs (10 wt%).

A similar trend was also observed by other authors for various materials based on NaAlg
and different nanostructured agents such as graphene oxide (GO), Na-montmorillonite, and
layered double hydroxide (LDH) [34,79,80].
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Table 2. Thermal properties of hybrid beads.

Sample Td15% (◦C) * Td 40% (◦C) **

NaAlg-5-FU 194 284
NaAlg-5-FU-PCHs 1 wt% 194 285
NaAlg-5-FU-PCHs 3 wt% 196 287
NaAlg-5-FU-PCHs 10 wt% 201 303

* Td15%-the temperature at which the weight loss is 15 % ** Td40%-the temperature at which the weight loss is 40 %.

3.1.3. SEM Characterization

SEM analysis was employedto investigate the surface morphology of hybrid beads
(Figure 5).

The SEM micrographs reveal that dried hybrid beads based on NaAlg and PCHs were
characterized by a rough surface with visible wrinkles and a spherical shape after drying.
The SEM images of NaAlg beads indicate a smooth surface that suggests the presence of a
uniform structure. The uniform dispersion of PCHs into the core structure of hybrid beads
was highlighted by the SEM results. Even at high PCHs concentrations (10 wt%), the clay
did not exhibit a tendency to form clusters.

Similar results were reported for the hybrid systems alginate/bentonite/imidacloprid [81]
and alginate/montmorillonite/curcumin [82].

Energy dispersive X-ray spectroscopy (EDAX) is a useful method to confirm the
presence of PCHs in the NaAlg matrix. The EDAX spectrum of PCHs confirms the pres-
ence of characteristic signals such as Si and O, which are the major elements of the clay
(Figure 6a).The neat NaAlg hydrogel exhibits the characteristic peaks of a crosslinked
network (Ca, Cl) (Figure 6b).

The EDAX spectra of hybrid beads (Figure 6c) based on NaAlg and PCHs show the
presence of peaks assigned for Si and Al atoms, which confirmed the presence of PCHs in
the polymer.
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3.1.4. Determination of the Encapsulation Efficiency and Drug Release Profile

Encapsulation efficiency of 5-FU and the amount of 5-FU released from the hybrid
beads systems based on NaAlg and PCHs were determined using the UV-Vis method.

The 5-FU encapsulation efficiency was calculated using Equation (1).

EE (%) =
Wtotal 5-FU − Wfree 5-FU

Wtotal 5-FU
× 100 (1)

where Wtotal 5-FU is the initial 5-FU amount and Wfree 5-FU is the unloaded 5-FU amount.
The UV-Vis results confirmed the PCHs influence in the NaAlg beads. The PCHs

concentration influences the encapsulation efficiency (EE%) and release profile of 5-FU
from hybrid beads.

As shown in Table 3, the values of drug EE registered for hybrid beads (NaAlg-PCHs)
that contain different concentrations of PCHs (1, 3, 10 wt%) are significantly changed.

Table 3. 5-FU encapsulation efficiency (EE, %) of neat NaAlg beads and hybrid beads.

Sample EE, %

NaAlg-5-FU 60
NaAlg-5-FU-PCHs 1 wt% 70
NaAlg-5-FU-PCHs 3 wt% 70

NaAlg-5-FU-PCHs 10 wt% 70

The presence of PCHs induces a noticeable increase of EE by comparing with the
NaAlg-5-FU. The lowest drug EE value was recorded for the neat NaAlg beads (60%), and
the hybrid beads (NaAlg-5-FU-PCHs-1, 3, 10 wt%) exhibit a higher 5-FU encapsulation
efficiency (70%). This fact can be attributed to the properties of PCHs (textural properties,
large surface area, high porosity, and noticeable adsorbent capacity), which highlights the
importance of PCHs for the increase of drug encapsulation efficiency.

In these hybrid beads, two types of interactions play a crucial role on the drug release
profile. These interactions are schematically described in Figure 7 and include: (1) polymer-
divalent cation interaction and (2) clay-divalent cation interaction.
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Figure 7. Possible interaction of NaAlg and PCHs with divalent cation (Ca2+) in ionotropic gela-
tion process.

PCHs can adsorb Ca2+ ions into the porous structure, and therefore a significant
decrease of CaCl2 solution concentration involved in the ionotropic gelation process occurs.
The high adsorption capacity of PCHs has also been reported in the literature [69].

The release profiles of 5-FU from hybrid materials in SIF and SGF are presented
in Figure 8.
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As can be observed in Figure 8, the drug release profile can be influenced with the
increase of PCHs concentration. In both SGF and SIF, the highest amount of drug release is
registered for NaAlg-5-FU (35%), followed by NaAlg-5-FU-PCHs 10 wt% (29%), NaAlg-
5-FU-PCHs 3 wt% (28%), and then NaAlg-5-FU-PCHs 1 wt% (27%). The drug release
concentration decreases with the decrease of PCHs amount. This may be caused by the
possibility that PCHs adsorbs a part of the Ca2+ ions, and therefore the final structure of
the beads was affected. In addition, the presence of a high PCHs content (10 wt%) into
NaAlg beads induces a structure with a high porosity that allows an easier diffusion of
drug molecules through the polymer matrix. In the SGF (pH = 1.2), the hybrid beads
present a progressive release of 5-FU, and in SIF a linear release of 5-FU was recorded. This
may be attributed to the sensitivity of NaAlg to pH changes [83].

These results suggest that the presence of PCHs into NaAlg induced a decrease of
5-FU release from hybrid beads and also induce a decrease of the NaAlg hydrogel burst
release issue. This phenomenon can be attributed to the barrier effect of PCHs. Similar
results were reported for sodium alginate/layered double hydroxides/diclofenac [84].

4. Conclusions

New hybrid materials with potential applications in cancer therapy were successfully
prepared. These materials, based on NaAlg and PCHs, can be considered as possible
hybrid host candidates for 5-FU encapsulation.

The presence of PCH inorganic nanomaterial, characterized by a high specific surface
area, high porosity, and good adsorption capacity within NaAlg beads strongly influenced
the 5-FU encapsulation efficiency, and the drug release profile can be adjusted by using
different PCHs concentration. The burst release can be significantly diminished by adding
lower PCHs concentrations (1 wt%). The hybrids that include higher PCHs content (10 wt%)
are characterized by a faster drug release rate.

All the results proved that the hybrid materials based on NaAlg and PCHs exhibit
superior properties compared to the neat classical NaAlg beads for the encapsulation and
release of 5-FU.
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