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Abstract: Polyoxometalates (POMs) are a diverse class of anionic metal-oxo clusters with intriguing
chemical and physical properties. Owing to unrivaled versatility and structural variation, POMs
have been extensively utilized for catalysis for a plethora of reactions. In this focused review,
the applications of POMs as promising catalysts or co-catalysts for CO2 conversion, including CO2

photo/electro reduction and CO2 as a carbonyl source for the carbonylation process are summarized.
A brief perspective on the potentiality in this field is proposed.
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1. Introduction

As the main greenhouse gas produced by human activity, about 10 ± 0.5 gigatons CO2 were
released in 2018, bringing the atmospheric CO2 concentration level over the threshold of 400 ppm [1].
The large increase of global CO2 levels has led to serious environment problem. Meanwhile, it is also
the most abundant and nontoxic carbon resource for preparing useful compounds [2]. From a practical
point of view, its catalytic conversion is of significance to the supply of renewable energy, chemicals,
and mitigation of global warming.

Polyoxometalates with {MOx} (x = 5, 6) as basic construction units have derived an enormous
fraternity of inorganic molecular complexes [3–6]. To obtain various composite materials with specific
function, the modification and decoration of POM can be attained by partially substituting {MOx} units
with different transition metal moieties or attaching organometallic complexes onto POM. Based on
geometrical morphology, most of POMs can be classified as Keggin, Wells-Dawson, Anderson-Evans,
Silverton, Waugh, Strandberg, Lindqvist, and Peacock-Weakley type structures, which are named
after their corresponding discoverers [7]. Among these types, Keggin-type POMs ([XM12O40]n−) are
comparatively well-studied. POMs discussed in the following sections are mostly Keggin type [8].
The original Keggin structure is designated α-, which consists of a tetrahedron central ion, [XO4]n − 8,
caged by twelve MO6 octahedron. The Keggin structure includes four additional isomers (β-, γ-, δ-, and
ε-), each resulting from 60◦ rotations of the four {M3O13} units [9]. The lacunary species of Keggin-type
POMs stem from removing a variable number of {MO6} octahedra from the plenary polyanion, resulting
in metal-oxide clusters with vacant addenda metal sites. Such vacant sites can be treated as inorganic
multidentate ligands (Figure 1) [10], For example, sandwich-type POMs are usually synthesized by the
reaction of transition metal ions with appropriate lacunary POM precursors [5,8]. The extraordinary
diversity and synthetic accessibility of POMs have led to a wide spectrum of applications, ranging
from catalysis, biochemistry/medicinal chemistry, to materials science [11–14]. In the field of catalysis,
the development of POMs as oxidation and acid catalysts was flourish in the past few decades, with
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molybdic and vanadomolybdic clusters being more employed in the former case and tungstic ones in
the latter [12,15]. The explorations of POMs as catalysts (or co-catalysts) for many other industrially
important transformations were sought-after.
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Figure 1. Isomers and mono- to trilacunary derivatives of the Keggin structure; color code: MO6

octahedron, light blue; XO4 tetrahedron, red (X = central atom).

As early as 1988, Kozik and co-workers first reported the coordination of CO2 with several POM
derivatives [16]. Afterwards more researches about the interaction of POMs with CO2 emerged [17–22].
Since the interaction between CO2 and POM is one of the crucial steps for catalytic transformations
of CO2, it is necessary to clarify the mode of such interaction. However, considering the facts that
CO2 can be transformed to CO2−

3 or HCO−3 with water and this transformation is both reversible
and temperature-dependent, the explicit “real” form of dissolved CO2 to interact with POM catalyst,
was challenging to be justified. POMs displayed variable interacting modes. 13C NMR, UV/vis, IR
with isotope-labelled CO2 (13CO2 and C18O2), and X-ray crystallography are useful tools to solve
this issue. As pointed in the seminal report of Kozik et al. [16], the IR spectra and thermochromic
behavior of POM α-[SiW11O39Co]6− in the presence of either CO2−

3 or HCO−3 was in contrast to the
scenario with CO2. On 13C NMR spectra, the 13C chemical shifts of aqueous CO2, HCO−3 , and CO2−

3
are respectively at 125, 160, and 162 ppm. After bubbling CO2 into hydrous toluene solution of
α-[SiW11O39Co]6−, the appearance of two signals at 792 and 596 ppm demonstrated the presence of
two different kinds of paramagnetic CO2 species. In their report, two patterns were suggested on
the basis of all 13C NMR, IR observations: (i) the complexation between α-[SiW11O39Co]6− and CO2

was either via CO2 complexes with a direct η1 metal-carbon bond or bicarbonate complexes; (ii) the
existence of H-bonding in the CO2 complexes was plausible. Other modes of POM-CO2 or POM-CO2−

3
interaction were also discovered. Hill et al. reported the sandwich-type encapsulation of CO2−

3 via
forming [(YOH2)3(CO3)(A-α-PW9O34)2]11− [20]. [SiMo11CoO38(CO2)]n polymeric chains reported by
Xu et al. displayed the µ-η1,η1-OCO linear coordination mode of POM-CO2 interaction [21]. Two kinds
of POM-CO2 interaction modes were observed on [(n-C8H17)4N]8[α2-P2W17O61Zn-(CO2)] [21]. The
stronger “side-on” binding of CO2 by is predominant at higher temperatures (room temperature down
to ca. 250 K) and the more weakly coordinated “end-on” POM-Zn-O-C-O structures were observable at
lower temperatures (Figure 2). One particular case was uptaking 30 CO2 molecules by one capsule of
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[{(MoVI)MoVI
5 O21(H2O)6}12{MoV

2 O4(CH3COO)}30]42−. In this case, CO2 reacted directly with the H2O
ligands in {MoV

2 O4(H2O)2}2+ linkers to generate CO2−
3 at pH 7. Then the uptake of 30 CO2 molecules

was realized via the fast exchange of acetate by carbonate ligands [22]. Above cases indicated the
abundance of POM-CO2 interaction mode.

Molecules 2019, 24, x FOR PEER REVIEW 3 of 26 

 

molecules was realized via the fast exchange of acetate by carbonate ligands [22]. Above cases 
indicated the abundance of POM-CO2 interaction mode.  

 
Figure 2. Suggested modes of coordination of CO2. Color code: W, black ball; P, green ball; O, red ball; 
Zn, purple ball. Reprinted with permission from [21]. Copyright © 2018 Wiley-VCH Verlag GmbH 
and Co. KGaA. 

In this context, we have witnessed the leap in developing POMs-based catalysts for the photo- 
or electrocatalytic CO2 reduction and CO2 as C1 synthon in organic synthesis. Herein, in this review, 
we focused on the recent experimental and theoretical advances in CO2 transformation with POMs-
based catalyst or co-catalyst. The key factors for high-efficiency POMs-catalyzed CO2 conversion are 
highlighted. 

2. Photocatalytic CO2 Reduction 

Only high-energy vacuum ultraviolet laser (<200 nm) is able to directly excite and split CO2 into 
CO and O fragments [23], therefore highly efficient photocatalyst is vital to motivate and accelerate 
photocatalytic CO2 reductions with low-energy common visible light (>380 nm). This reduction 
process usually involves multi-electron transfer and the final products are carbon monoxide (CO), 
formic acid (HCOOH), formaldehyde (HCHO), methanol (CH3OH), and methane (CH4) [24,25]. The 
corresponding redox potentials for the possible CO2 reduction at pH = 7 are listed in Table 1. 

Since the pioneering application of Honda–Fujishima effect in TiO2-catalyzed CO2 
photoreduction was reported [26], multitudinous different type of photocatalysts, including simple 
metal oxides [25], perovskite oxides [27,28], C3N4 [29], MOFs [30], conjugated polymers [31,32], and 
POMs [33,34] have been developed. Since the seminal study on the photochemistry of molybdates 
and tungstates for analytical purposes over half century ago [35,36], the photoredox chemistry of 
POMs has been verified for a long time. The metals in POMs are fully oxidized with d0 electron 
configuration. Light absorption is mainly attributed to O→M ligand to-metal charge transfer (LMCT) 
bands in the wide range of the electronic spectra. Consequently, an electron is promoted from a spin-
paired, doubly occupied bonding orbital (HOMO) to an empty, antibonding orbital (LUMO), thus an 
oxo-centered radical is generated. This photo-excited POMs are more reactive both in oxidation and 
reduction than the non-excited species [37]. In the photocatalysis by POM with LMCT mode, forming 
lower-energy O→M LMCT transitions is vital to more efficiently absorb visible light. Substituting 
addenda centers with different metals has been well demonstrated as one of the effectual tactics to 
tune the photochemical properties of POMs and optimize their visible light absorption via narrowing 
the band gap between valence band and conduction band. For instance, Streb et al. discovered that 
the vanadium substitution effectively improved the visible light absorption and photocatalytic 
activity of molybdate [Mo6O19]2– [38]. TD-DFT calculations disclosed the corresponding contribution 
of O→V LMCT on absorption profile in the visible range. The progress of such strategy on POM-
catalyzed selective photooxidation driven by visible light has been included in the recent review [15]. 
Besides altering the addenda centers on POMs, various other strategies have also been established in 
order to foster POMs as effective photocatalyst and most of their utilization were focused on 

Figure 2. Suggested modes of coordination of CO2. Color code: W, black ball; P, green ball; O, red ball;
Zn, purple ball. Reprinted with permission from [21]. Copyright© 2018 Wiley-VCH Verlag GmbH
and Co. KGaA.

In this context, we have witnessed the leap in developing POMs-based catalysts for the photo-
or electrocatalytic CO2 reduction and CO2 as C1 synthon in organic synthesis. Herein, in this
review, we focused on the recent experimental and theoretical advances in CO2 transformation with
POMs-based catalyst or co-catalyst. The key factors for high-efficiency POMs-catalyzed CO2 conversion
are highlighted.

2. Photocatalytic CO2 Reduction

Only high-energy vacuum ultraviolet laser (<200 nm) is able to directly excite and split CO2 into
CO and O fragments [23], therefore highly efficient photocatalyst is vital to motivate and accelerate
photocatalytic CO2 reductions with low-energy common visible light (>380 nm). This reduction
process usually involves multi-electron transfer and the final products are carbon monoxide (CO),
formic acid (HCOOH), formaldehyde (HCHO), methanol (CH3OH), and methane (CH4) [24,25].
The corresponding redox potentials for the possible CO2 reduction at pH = 7 are listed in Table 1.

Table 1. Redox potentials for CO2 reduction.

Products Products Reaction E0 (V) E0 (V) pH = 7

- HO + 2 h+
→ 1/2O2 + 2H+ +0.82

- CO2 + e− → CO−2 −1.9
HCOOH CO2 + 2 H+ + 2 e− → HCOOH −0.61

CO CO2 + 2 H+ + 2 e− → CO + H2O −0.53
HCHO CO2 + 2 H+ + 4 e− → HCHO + H2O −0.48
CH3OH CO2 + 6 H+ + 6 e− → CH3OH + H2O −0.38

CH4 CO2 + 8 H+ + 8 e− → CH4 + 2H2O −0.24
- 2 H+ + 2 e− → H2 –0.41

Since the pioneering application of Honda–Fujishima effect in TiO2-catalyzed CO2 photoreduction
was reported [26], multitudinous different type of photocatalysts, including simple metal oxides [25],
perovskite oxides [27,28], C3N4 [29], MOFs [30], conjugated polymers [31,32], and POMs [33,34] have
been developed. Since the seminal study on the photochemistry of molybdates and tungstates for
analytical purposes over half century ago [35,36], the photoredox chemistry of POMs has been verified
for a long time. The metals in POMs are fully oxidized with d0 electron configuration. Light absorption
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is mainly attributed to O→M ligand to-metal charge transfer (LMCT) bands in the wide range of the
electronic spectra. Consequently, an electron is promoted from a spin-paired, doubly occupied bonding
orbital (HOMO) to an empty, antibonding orbital (LUMO), thus an oxo-centered radical is generated.
This photo-excited POMs are more reactive both in oxidation and reduction than the non-excited
species [37]. In the photocatalysis by POM with LMCT mode, forming lower-energy O→M LMCT
transitions is vital to more efficiently absorb visible light. Substituting addenda centers with different
metals has been well demonstrated as one of the effectual tactics to tune the photochemical properties
of POMs and optimize their visible light absorption via narrowing the band gap between valence band
and conduction band. For instance, Streb et al. discovered that the vanadium substitution effectively
improved the visible light absorption and photocatalytic activity of molybdate [Mo6O19]2− [38].
TD-DFT calculations disclosed the corresponding contribution of O→V LMCT on absorption profile in
the visible range. The progress of such strategy on POM-catalyzed selective photooxidation driven by
visible light has been included in the recent review [15]. Besides altering the addenda centers on POMs,
various other strategies have also been established in order to foster POMs as effective photocatalyst
and most of their utilization were focused on photooxidation of water, photodegradation of organic
dyes, as well as H2 evolution [37,39]. Here the progress of photoreduction of CO2 with POMs-based
catalyst was summarized.

2.1. CO2 to CO

2.1.1. Homogeneous Catalysts

Neumann and co-workers reported that Ru-substituted POM ([RuIII(H2O)SiW11O39]5−) in
combination with tertiary amines exhibited photoactivity for CO2 reduction Figure 3 [40]. Triethyl
amine acted as the sacrificial agent. CO was the major product (~50 µmol after 20 h irradiation
with ca. 2% quantum yield). None of HCOOH, MeOH, and CH4 was detected. UV/Vis, EPR, 13C
NMR, and isotope labelling demonstrated that coordinated CO2 ([RuIII(CO2)SiW11O39]5−) was easily
formed by substituting H2O in [RuIII(H2O)SiW11O39]5−. DFT results demonstrated that CO2 tended to
coordinate to RuIII by forming a Ru-O bond in an “end-on” manner. Based on these experimental and
computational results, the authors concluded that the RuIII site was responsible for activating CO2 via
the coordination and the lacunary [SiW11O39]8− site acted as photocatalyst in this process.

Molecules 2019, 24, x FOR PEER REVIEW 4 of 26 

 

photooxidation of water, photodegradation of organic dyes, as well as H2 evolution [37,39]. Here the 
progress of photoreduction of CO2 with POMs-based catalyst was summarized.  

Table 1. Redox potentials for CO2 reduction. 

Products Products Reaction E0 (V) E0 (V) pH = 7 
- HO + 2 h+ → 1/2O2 + 2H+ +0.82 
- CO2 + e– → CO– 

2  –1.9 
HCOOH CO2 + 2 H+ + 2 e– → HCOOH –0.61 

CO CO2 + 2 H+ + 2 e– → CO + H2O –0.53 
HCHO CO2 + 2 H+ + 4 e– → HCHO + H2O –0.48 
CH3OH CO2 + 6 H+ + 6 e– → CH3OH + H2O –0.38 

CH4 CO2 + 8 H+ + 8 e– → CH4 + 2H2O –0.24 
- 2 H+ + 2 e– → H2 –0.41 

2.1. CO2 to CO 

2.1.1. Homogeneous Catalysts 

Neumann and co-workers reported that Ru-substituted POM ([RuIII(H2O)SiW11O39]5–) in 
combination with tertiary amines exhibited photoactivity for CO2 reduction Figure 3 [40]. Triethyl 
amine acted as the sacrificial agent. CO was the major product (~50 μmol after 20 h irradiation with 
ca. 2% quantum yield). None of HCOOH, MeOH, and CH4 was detected. UV/Vis, EPR, 13C NMR, and 
isotope labelling demonstrated that coordinated CO2 ([RuIII(CO2)SiW11O39]5–) was easily formed by 
substituting H2O in [RuIII(H2O)SiW11O39]5–. DFT results demonstrated that CO2 tended to coordinate 
to RuIII by forming a Ru-O bond in an “end-on” manner. Based on these experimental and 
computational results, the authors concluded that the RuIII site was responsible for activating CO2 via 
the coordination and the lacunary [SiW11O39]8– site acted as photocatalyst in this process. 

 
Figure 3. The substitution of H2O with CO2 in [RuIII(H2O)SiW11O39]5–. Reprinted with permission from 
[40]. Copyright © 2010 Wiley-VCH Verlag GmbH and Co. KGaA. 

By employing H2 instead of tertiary amines as the sacrificial agent, a viable CO2 reduction 
approach with Pt/C and ReI(L)(CO)3-MHPW VI 

12 O40 (L = 5,6-(15-crown-5)-1,10-phenanthroline) as 
synergistic catalysts was developed. The grafting of ReI(L)(CO)3 complexes onto POMs was achieved 
via the complexation of crown ether moiety on L with the sodium cation binding two PW12O40 
moieties (Figure 4) [41]. H2 was oxidized with the facilitation of Pt(0) on the Pt/C surface to afford 
two protons. In the following step, protons and electrons retained by Pt were simultaneously 
transferred onto ReI(L)(CO)3(CH3CN)-MHPWVI 

12 O40 (MHPWVI 
12 O40 + 2H+ + 2e– → MH3PWV 

2 WVI 
10 O40) 

(Scheme 1). ReI(L)(CO)3-MH3PWV 
2 WVI 

10 O40 possessed the photoreductive activity for converting CO2 to 
CO, because its transition to excited CO2-reduction active state was allowed by absorbing visible 
light. CO were almost exclusively produced with turnover of 22.6% and 1.1% quantum yield. Besides 
CO, only trace CH4 but no further CO reduction products (e.g., CH3OH, HCHO, and HCOOH) was 
detected on GC-MS after 14 h irradiation. 
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By employing H2 instead of tertiary amines as the sacrificial agent, a viable CO2 reduction
approach with Pt/C and ReI(L)(CO)3-MHPWVI

12 O40 (L = 5,6-(15-crown-5)-1,10-phenanthroline) as
synergistic catalysts was developed. The grafting of ReI(L)(CO)3 complexes onto POMs was achieved
via the complexation of crown ether moiety on L with the sodium cation binding two PW12O40 moieties
(Figure 4) [41]. H2 was oxidized with the facilitation of Pt(0) on the Pt/C surface to afford two protons.
In the following step, protons and electrons retained by Pt were simultaneously transferred onto
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ReI(L)(CO)3(CH3CN)-MHPWVI
12 O40 (MHPWVI

12 O40 + 2H+ + 2e−→MH3 PWV
2 WVI

10 O40) (Scheme 1).
ReI(L)(CO)3-MH3PWV

2 WVI
10 O40 possessed the photoreductive activity for converting CO2 to CO,

because its transition to excited CO2-reduction active state was allowed by absorbing visible light. CO
were almost exclusively produced with turnover of 22.6% and 1.1% quantum yield. Besides CO, only
trace CH4 but no further CO reduction products (e.g., CH3OH, HCHO, and HCOOH) was detected on
GC-MS after 14 h irradiation.
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The TD-DFT calculations disclosed a more detailed mechanism for the photoreduction of CO2 to
CO with this POM-ReI complex catalyst [42]. Simulated absorption spectrum of ReI-POM complex
was calculated at different functional level (i.e., X3LYP, M06X, B3LYP, and CAMB3LYP) and the
computed results were found to be basically consistent with the experimental absorption spectrum
(two major bands with maxima at 500 and 656 nm). In the ground state without any light irradiation,
bonding CO2 with ReI center to afford the reactive POM-ReI-CO−2 complex had to overcome a high
energy barrier (≥38 kcal mol−1), therefore, the direct CO2 reduction with ReI-POM occurred less likely
(Figure 5). In the conditions with photoexcitation, the excited ReI-POM was allowed to interact with
CO2 to form POM-ReI-CO−2 . The subsequently protonation and further electron reduction process
were exothermic by more than 78 kcal mol−1. These energy profiles revealed that the role of POM
as photosensitizer in the reduced state, electron “shuttles” as well as electron/proton reservoirs in
this process. Plausible CO2 photoreduction mechanism consists of five steps: (1) photoexcitation and
charge transfer; (2) disassociation of solvent molecule; (3) CO2 coordination; (4) proton and electron
transfer; and (5) release of CO and recoordination of solvent.
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Recently, by replacing crown ether-affiliated 1,10-phenanthroline with 6-hydrazinyl-2,2′-bipyridine
on the Re complex, the Re2(CO)6Cl2L2-H3PW12O40 (L = 6-hydrazinyl-2,2′-bipyridine) hybrid pair and
related relay process for CO2 reduction by photocatalysis and electrocatalysis was developed [43].
Initially, [PWVI

12 O40]3− was reduced to [PWV
2 WVI

10 O40]5− by two electrons at −1.302 V (versus Fc/Fc+,
Fc= ferrocene). Then the reduced POM undertook the functions of photoreductant and electron/proton
acceptors. Photo irradiation promoted the generation of ReI(L−)(CO)3 via the electron transfer from
[PWV

2 WVI
10 O40]5− to ReI(L)(CO)3. This reductive ReI intermediate possessed reactivity for the selective

CO2 reduction. Only CO was observed in this catalytic electro-photochemical reduction process.
The result in the dark conditions indicated that light facilitated the CO2 reduction. The formation
of dirhenium complex-H3PW12O40 hybrid pair via acid-base interaction was indispensable to this
catalytic electro/photochemical transformation.

2.1.2. Heterogeneous Catalysts

Photocatalytic CO2 reduction by POMs-based heterogeneous catalyst has received intensive
research interests. As a POM-stabilized multi–Co-oxide clusters, [Co4(PW9O34)2]10− is comprising
a Co4O4 core stabilized by two oxidatively resistant polytungstate ligands (Figure 6a). The
Na10[Co4(H2O)2(PW9O34)2 @graphitic carbon nitride hybrid material (Co4@g-C3N4) was reported
for the efficient photocatalytic CO2 reduction [44]. It manifested the advantages of convenient
recovery, steady reuse, simple preparation and flexible composition. The Co4@g-C3N4 photocatalyst
with 43 wt% Co4 content showed high CO yield (107 µmol g−1 h−1) and excellent selectivity (94%)
(Figure 6b). After 10 h reaction, the production of CO reached 896 µmol g−1 (Figure 6c). After 5 runs,
the activity still remained (Figure 6d). Experimental and characterization results revealed that the Co4

unit both facilitated the charge transfer of g-C3N4 and significantly enhanced the surface catalytic
oxidative activity.
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Figure 6. The photoreduction of CO2 by the Co4@g-C3N4 hybrid material. The structure of
Na10[Co4(H2O)2(PW9O34)2]; color code: WO6 octahedron, light blue; PO4 tetrahedron, red; Co,
purple ball; O, red ball. (a). The photocatalytic activity of different photocatalysts (b). Time course of
the CO and H2 (c). Recycling experiments (d). Reprinted with permission from [44]. Copyright© 2017
American Chemical Society.

NENU-10 and NENU-3 are respectively Ti-substituted Keggin-type POM [PTi2W10O40]7− (This
Ti-disubstituted Keggin-type POM contains the Ti centers in relative 1,5 positions according to the
IUPAC nomenclature. This anion is one of the few cases in the literature in which a salt of a
disubstituted Keggin species displays a predominant isomer (ca. 75% of the α (1,5) isomer)) and
Keggin-type POM [PW12O40]3− encaged into MOF Cu3(BTC)2 (BTC: benzene-1,3,5-tricarboxylate;
Cu3(BTC)2 = HKUST-1) developed by Liu et al. Efficient photoreduction of CO2 catalyzed by hybrid
material Au@NENU-10 (Both Au@NENU-10 and Au@NENU-3 were prepared by one-pot method.
The Au NPs were in-situ deposited during the assembly of NENU-10 and NENU-3 as shown in
Figure 7.) was recently achieved [45]. Table 2 illustrated the catalytic performance of as-prepared
hybrid in the reductive CO2 transformation to CO and CH4 under visible-light irradiation. Compared
to Ti-free Au@NENU-3, Au@NENU-10 presented both higher activity and selectivity in the CO2

photoreduction. Similarly, Au/K7(PTi2W10O40) also had better performance than Au/Na3(PW12O40).
Results of control experiments implied the indispensability of Au nanoparticles to the CO reduction
activity and precursors was inactive. Combing these patterns, authors deduced the following steps for
the overall process: Firstly, Au nanoparticles produced electrons and holes where the holes oxidized
H2O to generate two electrons and two protons. Then the electrons and protons directly transferred
to [PTi2W10O40]7− to form [P(TiIII-H)2 WVI

10 O40]7−. Some of [P(TiIII-H)2 WVI
10 O40]7− species reduced

CO2 to CO and H2, and others further obtained electrons and protons to form [P(TiIII-H2)2 WV
2 WVI

8
O40]7− intermediates. Finally, [P(TiIII-H2)2 WV

2 WVI
8 O40]7− reduced CO2 to CH4 and simultaneously

returned to initial state. Ti-O-W in [PTi2W10O40]7− may responsible to absorb CO2. Compared with
[PTi2W10O40]7− and [PW12O40]3−, [PTi2W10O40]7− had stronger electron-coupling protons ability.
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of Cu2+ around polyoxometalate (POM) (a). The proposed the basic growing unit consisting of 1 POM,
24 Cu2+, and 8 BTC ligands in which each Cu2 unit coordinates with 2 BTC ligands (b). Eight BTC
ligands are needed to coordinate with four Cu2 units when crystal grows along the 〈100〉 direction (c).
While only six BTC ligands are needed for three Cu2 units along the 〈111〉 direction (d). The enlarged
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Table 2. Catalytic performance of CO, H2, and CH4 from CO2 photoreduction a.

Entry Catalysts Products (µmol g−1 h−1)

CO CH4 H2

1 Au@NENU-10 12.8 2.1 2.6
2 Au@NENU-3 0.5 - 0.15
3 Au/Na3PW12 O40) - - 0.45
4 Au/K7(PTi2W10O40) 2.1 0.35 0.29
5 NENU-10 - - -
6 NENU-3 - - -
7 HKUST-1 - - -

a. Reaction conditions: 100 mL quartz reactor, 15 mL H2O, 100 mg catalyst, 40 ◦C, 5 h, 300 W Xe lamp (λ > 420 nm).
Solid catalyst was in the atmosphere of water vapor and CO2 instead of being immersed in water.

2.2. CO2 to HCOOH

HCOOH is one of the promising hydrogen carriers and the important C1 source for organic
synthesis. The generation of HCOOH in CO2 photoreduction consumes the same amount of protons
and electrons as that for CO formation, but it requires slightly higher reduction potential.

The POM microions are the molecules denoted as {POM} in dilute solutions, they tend to afford
suprestructural macroions denoted as {POM}n (POM macroions). Three POM macroions catalysts,
Na15[MoVI

126 MoV
28 O462H14(H2O)70]0.5[MoVI

124 MoV
28 O457H14(H2O)68]0.5 ({Mo154}1156), Na17[Mn6P3W24O94(H2O)2]
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({Mn6P3W24}931) and (NH4)42[MoVI
72 MoV

60 O372(CH3COO)30(H2O)72]@RGO hybrid ({Mo132}1064@RGO;
RGO = reduced graphene oxide) featured with peculiar structures, were respectively employed in the
photocatalytic CO2 reduction coupling with water oxidation [46]. The enormous spherical
superstructures in these three catalysts in dilute dispersion ({Mo154}1156, {Mn6P3W24}931,
{Mo132}1064@RGO) are respectively made up by wheel-shaped {Mo154} rings, bent rod {Mn6P3W24}
units and “Keplerate” {Mo132} spheres (Figure 8). The numbers of metal oxide cluster units in these
superstructures were calculated by following equation: n = (4πR2)/(72.006σ2) × 60. (R, representing
the hydrodynamic radius of POM vesicles formed in the dispersion, was obtained by dynamic light
scattering analysis. σ, representing the diameter of isolated single cluster, was determined by the
van der Waals radii of the constituent atoms.) The results showed that although HCOOH is the
main product of CO2 reduction with these three catalysts, a considerable amount of HCHO was also
obtained when {Mo154}1156 and {Mo132}1064@RGO catalysts were applied. In the case of {Mn6P3W24}931,
CO2 was exclusively reduced to HCOOH. In terms of formic acid production, {Mo154}1156 and
{Mo132}1064@RGO displayed better performance than {Mn6P3W24}931 (Table 3). This phenomenon can
be rationally explained by that the simultaneous excitation of multitudinous photoactive clusters
on the surface of {Mo154} and {Mo132} vesicles under light irradiation. For {Mo132}1064@RGO, good
conductivity of RGO may help the facile electrons transfer.
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Table 3. The photocatalytic performance of the different catalysts a.

Catalyst HCOOH Yield (µmol) TON TOF (s−1)

{Mo154}1165 116.7 778 377
{Mn6P3W24}931 40.6 270 56

{Mo132}1064@RGO 205 1366 610
a. Catalyst containing 0.15 µmol of {Mo154}, {Mn6P3W24} or {Mo132} units. The reaction mixtures were kept in a
photo-reactor under UV-light lamp with 373 nm wavelength and 19 mW cm−2 energy density.

Afterwards, POM macroions for the water oxidization-coupled CO2 photoreduction to HCOOH
was extend to {Cu-PW12}n=1348−2024 ({Cu-PW12}n = [(K6.5Cu(OH)8.5(H2O)7.5)0.5@(K3PW12O40)]n) [47]
and gigantic oxo-molybdate catalyst Na48[HxMo368O1032(H2O)240(SO4)48] ({Mo368}) [48]. In the former
case, the max TON per mole was 613. Both FT-IR and Raman spectroscopies showed that the structure
remained integral after reaction and the activity was kept after ten cycles. In the latter one, {Mo368},
which consisted of a central ball shaped unit {Mo288} and two {Mo40} capping units, showed excellent
selectivity for HCOOH (95.73%) with impressive TON (27666) and TOF (4419 h−1). Its external
quantum efficiency reached 0.6%. It is worth noting that in all above cases external photosensitizer
was unessential. Because intervalence charge transfers (IVCT) of MoV to MoVI and WV to WVI have
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appropriate gap between conduction band and valence band, which can give rise to absorbance
maxima in the region of visible light.

2.3. CO2 to CH4

Compared to the photoreductive conversion of CO2 to CO or HCOOH, photocatalytic methanation
of CO2 involving an eight-electron transfer process was much more challenging. [PTi2W10O40]7− was
reported as the first POM-based photocatalyst for reducing CO2 to CH4 with CH3OH as electron
donator [49]. Although [PTi2W10O40]7− had poor activity and limited efficiency in photoreduction of
CO2, this result suggested that POM could be an active catalyst in the CO2 photoreduction.

Since this time, few works focusing on photocatalytic CO2 reduction to CH4 during past decades.
Recently, a remarkable achievement in photocatalytic CO2 reduction to CH4 with two hydrothermal-
synthesized POM catalysts H[[Na2K4Mn4(PO4) (H2O)4]3[[Mo6O12(OH)3(HPO4)3(PO4)]4[Mn6(H2O)4]]
(NENU-605) and H[[Na6CoMn3(PO4)(H2O)4]3[[Mo6O12(OH)3(HPO4)3(PO4)]4[Co1.5Mn4.5]] (NENU-606)
was reported [50]. These two water-insoluble POMs showed good structural stability and extended
solar spectrum absorption range in aqueous solutions.

Under CO2 atmosphere with triethanolamine (TEOA) as sacrificial agent and [Ru(bpy)3]Cl as
photosensitizer, CH4 and CO were the main gaseous photoreduction products, only a trace amount of
HCOOH was detected in the aqueous phase. The productivity of CH4 for NENU-605 and NENU-606
reached up to 170 nmol (894.7 nmol g−1 h−1) and 402 nmol (1747.8 nmol g−1 h−1) respectively. Good
CH4 selectivity of 76.6% (NENU-605) and 85.5% (NENU-606) was achieved (Table 4, entry 1 and
2). Moreover, H2 evolution as the side reaction was not detected. Regarding to the higher CH4

selectivity of NENU-606 than NENU-605, the heterometallic MnII/CoII ions in NENU-606 might be
more favorable to the adsorption and activation of CO2 than the homometallic MnII ions in NENU-605.
In contrast, Mn[Mo6O12(OH)3(HPO4)3(PO4)]2 (NENU-607), the dimer containing only one MnII atom
sandwiched between two P4Mo6 unit and displaying a similar connection mode to NENU-605 and
NENU-606 (Figure 9), had much lower activity (Table 4, entry 3). Outcomes from control experiments
demonstrated the necessities of both photosensitizer and light irradiation as well as the contribution
from solvent effect (Table 4, entries 4–6). 13C-isotope labelling verified that CO2 was the carbon
source of CO and CH4. Deduced from these patterns, a plausible multi-step mechanism for the
photocatalytic CO2 methanation was proposed (Figure 10). Initially, the photosensitizer absorbs light
to produce photo-excited electrons from its HOMO and then transfers electrons to the P4MoVI

6 unit
through the matched LUMO positions (P4MoVI

6 + 6e−→ P4 MoV
6 ). Simultaneously, the electron holes

produced in the valence band of ruthenium complex was consumed by TEOA (TEOA + h+
→ TEOA+).

Subsequently, strongly reductive P4MoV
6 unit further transfer electrons to the active metal center (MII +

e−→MI). Then the adsorbed CO2 (MI
→MI-CO2) obtains electrons from active metal sites (MI-CO2→

MII-CO−2 ) with the help of H2O as a proton source (MII-CO−2 + H+
→MII-COOH). MII-CO was formed

via the proton- and electron-assisted dehydroxylation (MII-CO2H + H+ + e−→MII-CO + H2O). CH4

is eventually produced with further six-electron transfer process (MII-CO + 6H+ + 6e−→MII + CH4

+ H2O).
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Table 4. The photocatalytic reduction of CO2 to CH4 using different catalysts a.

Entry Catalyst CO
(nmol/g)

CH4
(nmol/g)

CH4-TON
(10−3)

CH4-TOF
(10−3 h−1)

All-TON
(10−3)

All-TOF
(10−3 h−1)

1 NENU-605 52 170 104.1 5.5 135.9 7.2
2 NENU-606 68 402 241.4 10.5 282.2 12.3
3 NENU-607 47 70 15.2 0.75 25.4 1.3

4 b NENU-606 n.d. n.d. - - - -
5 c NENU-606 n.d. n.d. - - - -
6 d NENU-606 n.d. n.d. - - - -
7 blank n.d. n.d. - - - -

a. Reaction conditions: PS = [Ru(bpy)3]Cl2.6H2O (0.01 mmol, ) H2O (28 mL), SD = TEOA (2 mL), CO2 (1 atm),
λ ≥ 420 nm, 20 ◦C; b. without PS; c. In dark; d. Altering H2O with dry MeCN. n.d. = not detected.
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3. Electrocatalytic CO2 Reduction

Electrocatalytic CO2 reduction to produce various C1 and C2 molecules, for instance, CO, HCOOH,
HCHO, CH3OH, CH4, oxalic acid, ethylene, and ethanol, is regarded as a promising proctol for the
production of liquid fuels or bulk chemicals. The corresponding reactions and standard potentials
were list in Table 5 [51].
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Table 5. CO2 reduction potentials vs. SHE a.

Products Half-Electrochemical Thermodynamic Reactions V vs. SHE

C CO2(g) + 4 H+ + 4 e− = C(s) + 2 H2O(l) −0.210
C CO2(g) + 2 H2O(l) + 4 e− = C(s) + 4 OH− −0.627

HCOOH CO2(g) + 2 H+ + 2e− = HCOOH(l) −0.250
HCOO− CO2(g) + 2 H2O(l) + 2 e− = HCOO− (aq) + OH− −1.078

CO CO2(g) + 2 H+ + 2 e− = CO(g) + H2O(l) −0.106
CO CO2(g) + 2 H2O(l) + 2 e− = CO(g) + 2 OH− −0.934

HCHO CO2(g) + 4 H+ + 4e− = HCHO(l) + H2O(l) −0.070
HCHO CO2(g) + 3 H2O(l) + 4 e− = HCHO(l) + 4 OH− −0.898
CH3OH CO2(g) + 6 H+ + 6 e− = CH3OH(l) + H2O(l) 0.016
CH3OH CO2(g) + 5 H2O(l) + 6 e− = CH3OH(l) + 6 OH− −0.812

CH4 CO2(g) + 8 H+ + 8 e− = CH4(g) + 2 H2O (l) 0.169
CH4 CO2(g) + 6 H2O(l) + 8 e− = CH4(g) + 8 OH− −0.659

oxalic acid 2 CO2(g) + 2 H+ + 2 e− = (COOH)2(aq) −0.500
oxalate 2 CO2(g) + 2 e− = C2O2−

4 (aq) −0.590
ethylene 2 CO2(g) + 12 H+ + 12 e− = CH2CH2(g) + 4 H2O(l) 0.064
ethylene 2 CO2(g) + 8 H2O(l) + 12 e− = CH2CH2(g) + 12 OH− −0.764
ethanol 2 CO2(g) + 12 H+ + 12 e− = CH3CH2OH(l) + 3 H2O(l) 0.084
ethanol 2 CO2(g) + 9 H2O(l) + 12 e− = CH3CH2OH(l) + 12 OH− −0.744

a. Reprinted with permission from [51]. Copyright© 2014 Royal Society of Chemistry.

Electrocatalytic reduction of CO2 with POM was first reported by Kozik et al. [52]. Cyclic
voltammograms (CV) of several POMs with or without the presence of CO2 in various nonpolar
solvents were compared. For α-[SiW11O39Co]6−, a large change on its CV was recorded after CO2 was
bubbled. Meanwhile for α-[P2W18O62]6−, almost no change was observed before and after bubbling
CO2. The evidence from CV hinted that α-[SiW11O39Co]6− might be active to CO2 reduction. Further
investigations on reducedα-[SiW11O39Co]6−with CV indeed confirmed thatα-[SiW11O39Co]6− showed
the electrocatalytic for CO2 reduction. However, the final CO2 reduction product was unstated.

More than decade later, Proust et al. reinvestigated this reaction in more detail by using
[α-SiW11O39Co]6− in the electro-assisted reduction of CO2 (Figure 11) [53]. The [α-SiW11O39Co]6−

contained a CoII in place of a WVI. The square-pyramidal CoO5 with a vacant site was generated
by losing a coordinated water molecule from CoO5(H2O) octahedral when the POM was extracted
from aqueous to organic media. Except CO and HCHO, neither H2 nor other CO2 reduction products
were detected. This indicated that the unique selectivity of [α-SiW11O39Co]6− POM catalyst in the
electroreduction of CO2. The turnover of CO2 to CO reached to 3.7 with the faradic efficiency of 13%.
HCHO was the other detectable product. Its amount varied from 2.1 × 10−7 to 2.2 × 10−6 mol with the
faradic yield varying from 25% (high HCHO content with low electrolysis charge) to 0.8% (low HCHO
content with high electrolysis charge).
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Inspired by organometallic CO2 reduction catalyst [Cp*RhIII(bpy)Cl]+ (Cp* = pentamethyl-
cyclopentadienyl anion; bpy = 2,2’-bipyridine), [α-H2PW11O39{RhIIICp*(OH2)}]3– with analogous 
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prepared (Figure 12) and tested as the electrocatalyst for CO2 reduction [54]. Compared to previously 

Figure 11. Electroreduction of CO2 by [SiW11O39Co]6− catalyst. Color code: WO6 octahedron, light
blue; SiO4 tetrahedron, red; Co, purple ball; O, red ball. The notation of (_) in the above figure represents
a vacant coordination site.

Inspired by organometallic CO2 reduction catalyst [Cp*RhIII(bpy)Cl]+ (Cp* = pentamethyl-
cyclopentadienyl anion; bpy = 2,2′-bipyridine), [α-H2PW11O39{RhIIICp*(OH2)}]3− with analogous
coordination structure via grafting a {Cp*RhIII}2+ fragment on the monovacant [PW11O39]7− anion was
prepared (Figure 12) and tested as the electrocatalyst for CO2 reduction [54]. Compared to previously
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reported [CoSiW11O39]6− catalyst, its electrochemical behavior in the presence of CO2 exhibited a clear
improvement, strongly suggesting some interaction with the POM derivative despite the presence of a
coordinating solvent. But H2 was still as major product (68% faradic yield) with HCOO− as minor
reduction product (4.5% faradic yield).
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The remarkable capability of storing and donating electrons endows POMs the feature of reversibly
transferring multi-electrons. Hence, selecting proper co-catalyst to establish synergistic catalytic systems
containing POM catalyst is reasonable to achieve the efficient CO2 reduction. On one side, by taking
the advantage of POMs on reversible transfer of multi-electrons or protons, co-catalysts can efficiently
overcome the barrier of CO2 activation. On the other side, co-catalysts with good conductivity and
adsorbing CO2 capability can facilitate the electroreduction and improve the activity of catalytic system.
Poor electrical conductivity and electron-donating capability are the major drawbacks for MOFs being
as efficient electrocatalysts. Therefore, the integrated use of POM and MOF would combine the
strengths of each other and generate electrocatalysts with excellent activity [55–57].

Following the above intention, Lan et al. prepared various Polyoxometalate-Metalloporphyrin
Organic Frameworks (PMOFs) by assembling Zn-ε-Keggin cluster ε-PMoV

8 MoVI
4 O40Zn4 with M-TCPP

(M-TCPP = tetrakis[4-carboxyphenyl]-porphyrinato-M; M = Co, Fe, Ni, Zn) via the links between Zn2+

ions of POM and carboxylates of porphyrin in hydrothermal conditions (Figure 13) and measured their
catalytic performances (Table 6) [58]. In the skeleton of these M-PMOFs, the moieties of Zn-ε-Keggin
cluster, as electron reservoirs, potently helped the electron transfer to CO2 reduction catalyst M-TCPP
and improve its performance of CO2 reduction. The best results were obtained on Co-PMOF with
lower onset potential, tafel slope, and electrochemical impedance as well as higher partial CO current
density (jCO), electrochemical active surface area (ECSA), faradic efficiency for CO (FECO) and turnover
frequency (TOF). Co-PMOF converted CO2 to CO with a superior faradic efficiency of 99%. The value
of TOF was elevated to 1656 h−1 at −0.8 V. No evident activity attenuation was observed during the 36
h stability test, which indicated the robustness of Co-PMOF.

Table 6. CO2 electroreduction performances a.

Catalysts E
V vs. SHE

Onset Potential
V

jCO
mA cm−2

Tafel Slope
(mV dec−1)

ECSA
mF cm−2

EIS
Ω

FEco
%

TOF
H−1

Co-PMOF −0.8 −0.35 18.08 98 12.17 9.83 98.7 1656
Fe-PMOF −0.7 −0.53 0.47 211 10.26 10.26 28.8 17.45
Ni-PMOF −0.8 −0.58 0.27 675 10.16 10.70 18.5 8.11
Zn-PMOF −0.9 −0.60 0.02 206 9.83 12.17 0.95 0.005
Co-TMCP −0.9 −0.53 NA b 151 NA NA 40 NA

TMCP −0.6 −0.67 NA 552 NA NA 0.77 NA
NNU-12 −0.6 −0.6 NA 413 NA NA 1.8 NA

a. Electrolyte and pH 0.5 M KHCO3, pH = 7.2; b. NA means not mentioned in the [58].
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CoI. Then CoI interacts with CO2 to afford CoII-* COO–, which was converted to CoII-* CO via the 
proton-coupled electron transfer. Finally, CO is desorbed and released (Figure 14c,d). 
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permission from [58]. Copyright© 2015 Attribution 4.0 International (CC BY 4.0).

DFT calculations was employed to explicitly understand the excellent performance of Co-MPOF
and synergism between Zn-ε-Keggin cluster and Co-TCPP. Owing to rather high Gibbs free energies of
0.96 eV (∆G1 in Figure 14a), the formation of adsorbed intermediates * COOH was regarded as the
rate-determining step (RDS) for CO2 reduction on Zn-ε-Keggin cluster. On the contrary, the formation
of adsorbed intermediates * CO on Co-TCPP was RDS with high Gibbs free energies of 0.53 eV (∆G2 in
Figure 14a). In accordance with expectation, remarkable drops of both ∆G1 and ∆G2, particularly the
much lower ∆G1 = 0.34 eV, were revealed. For Co-PMOF, the more favorable CO2 reduction active
site is Co on Co-TCPP instead of Zn on POM. In fact, this Zn POM was inactive in CO2 reduction,
and the synergistic effect was derived from the intramolecular electron transfer between the electron
mediator of POM and Co-TCPP. The effect of different metal center in porphyrin was also computed
(Figure 14b). The energy profile of reaction on different metal centers was well consistent with the
outcomes of experiments. Based on the experimental results and theoretical calculations, the possible
mechanism about reducing CO2 to CO on Co-PMOF was suggested. Firstly, the POM captures and
transfers electrons from the electrode to the CoII center. Subsequently, CoII centers was reduced to
CoI. Then CoI interacts with CO2 to afford CoII-* COO−, which was converted to CoII-* CO via the
proton-coupled electron transfer. Finally, CO is desorbed and released (Figure 14c,d).

The design and application of [α-SiW12O40]4−-modified AgNC@BSA catalyst (AgNC@BSA =

silver nanoclusters capped with bovine serum albumin; BSA is both the stabilizer and reducing reagent
for the synthesis of AgNC) in the electroreduction of CO2 to CO also exhibited the same concept of
synergism [59]. Similar to the case of Co-PMOF, although [α-SiW12O40]4− had little CO2 reduction
activity, it played the role of electron transfer mediator and assisted the CO2 reduction through its
strong interaction with CO2 on the surface of AgNC. It had excellent faradic efficiency (>75%) in DMF
containing 1% (v/v) H2O. The overpotential of [α-SiW12O40]4−-modified AgNC@BSA electrode was
about 0.7 V. The onset potential for this POM-decorated AgNC electrocatalyst was about 400 mV more
positive than that on bulk Ag.
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Metal nanoparticles stabilized by POMs was extensively researched [60,61]. By replacing BSA
with POM as the stabilizer of AgNC, three Ag-POM nanocomposites respectively with [PMo12O40]3−,
[α-SiW12O40]4− and [PW12O40]3− were synthesized by electrodeposition method [62]. POM is the
promoter for the CO2 reduction. Due to the higher charge density and stronger basicity associated
with [PMo12O40]3−, the activity of Ag-[PMo12O40]3− nanocomposite was better than Ag-[PW12O40]3−

and Ag-[α-SiW12O40]4−. This nanocomposite exhibited efficient and sustained CO2 reduction at
a wide potential range with faradic efficiency of 90 ± 5%. The Tafel slope, an inherent property
of electrocatalyst determined by the rate-limiting step (formation of CO−2 or protonation of CO−2 ),
calculated for Ag-[PMo12O40]3− (60 mV dec−1) was very close to the theoretical value (59 mV dec−1),
which indicated the faster formation of CO−2 on the Ag-[PMo12O40]3− nanocomposite-modified electrode

4. Electromicrobial Conversion of CO2

Since the introduction of lithoautotrophic bacterium Ralstonia eutropha H16 as the production host
for biological formate conversion as well as the coupling between this biological formate conversion
method and the electroreductive conversion of CO2 to formate on indium cathode was employed to
produce fuels for internal combustion engines from CO2 [63], the integration of electrocatalytic reduction
with microbial conversion represents an edge-cutting strategy for the direct but non-photosynthetic
CO2 conversion to important molecules.

Microorganisms, represented by R. eutropha and Clostridium spp, have been well harnessed to
transform CO2 and H2 to energy-dense liquid fuels [64]. As potent hydrogen-oxidizing bacterium,
R. eutropha has exhibited its versatility in synthesize poly[R-(−)-3-hydroxybutyrate], which is one of
the ingredients to manufacture biodegradable plastics [65]. On the other aspect, many POMs-based
catalysts have presented excellent activity for hydrogen evolution reaction (HER) [12,66]. Searching
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biocompatible POM-based HER catalysts and utilizing suitable microorganism to catalytically reduce
CO2 by consuming H2 generated from HER can effectually accomplish the electromicrobial conversion
of CO2.

Recently, Zhang and co-workers demonstrated the feasibility of such reckoning. The combination
of a heterometallic Co/Cu-containing polyoxometalate/carbon cloth (Cu6Co7/CC; Cu6Co7 = [Cu(en)2]6

[((PW9O34)Co3(OH)(H2O)2(O3PC(O)(C3H6NH3)PO3))2Co]2−, en = ethanediamine; see the structure
of Cu6Co7 POM in Figure 15; CC = carbon cloth) precatalyst with bacterium R. eutropha H16 was
developed to achieved the electricity-driven bioconversion of CO2 to biomass in neutral water [67].
Cu6Co7/CC hybrid material possessed good biocompatibility in this CO2 conversion system. It was
evidenced that most of the H2 produced on the Cu6Co7/CC cathode was consumed by the bacteria for
living and growth. In excess of half input electrical energy was transported into biomass. The authors
assumed that the electricity would be supplied by a photovoltaic device with an efficiency of 18%, the
expected overall solar-to-biomass efficiency could reach 10%, which would be nearly 10 times higher
than the natural photosynthesis. This Cu6Co7/CC-R. eutropha hybrid system exemplified the potential
to explore non-photosynthetic but highly efficient CO2-fixation methods by using POMs-based catalysts
and solar electricity.
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chemical CO2 fixation has been fully presented. Various useful chemicals, including cyclic carbonate 
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5. Non-Reductive CO2 Conversion to Carbonyl-Contained Organic Chemicals

Non-reductive chemical CO2 conversion provides diverse alternatives to achieve both the synthesis
of practical chemicals and CO2 fixation at the same time [68]. Currently, the industrial manufacture of
several chemicals demands CO2 as starting material [69]. Predominantly, due to the basic properties
of POM-based materials, the capture and transformation of CO2 with these materials has been
widely explored. Therefore, the versatility of POMs-based materials in non-reductive chemical
CO2 fixation has been fully presented. Various useful chemicals, including cyclic carbonate [19],
dimethyl carbonate [70–74], urea [74], quinazoline-2,4-(1H,3H)-diones [74,75], 2-benzimidazolone [74],
2-oxazolidinones [18], α-methylene cyclic carbonate [74], and methacrylic acid [76,77] were able
to be synthesized with POM-based catalyst (Scheme 2). Considering that several reviews have
already given comprehensive summaries of representative progress on non-reductive CO2 fixation
by POM catalysts [69,78,79], herein we briefly introduced the recent advances about non-reductive
CO2 conversion to organic chemicals, which were not collected in the very recent review published in
2018 [79].
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Scheme 2. Non-reductive chemical fixation of CO2 by POM catalysts.

Various important applications of cyclic carbonates make the research on POM or other material-
catalyzed synthesis of cyclic carbonates always receive long-lasting interests [80]. By integrating
POM components, chiral organic catalysts and CO2 activator in the skeleton of a single MOF, the
polyoxometallate-organocatalyst-metal organic framework (POMOF) was designed by Duan group [81].
Chiral cyclic carbonates were produced efficiently from olefins and CO2 on the POMOFs tandem
catalyst. By ingeniously connecting Keggin-type POM anions α-[ZnW12O40]6−, l-proline-derived
asymmetric organocatalysts pyrrolidine-2-yl-imidazole (PYI) and NH2-functionalized bridging links
2-amino-4,4′-bipyridine via the six-coordinated ZnII nodes in these POMOFs (α-[ZnW12O40]6−-PYIs),
a clear division of catalytic working for oxidation-coupled CO2 conversion was established that
POM as an oxidation catalyst, pyrrolidine moiety as a chiral organocatalyst, ZnII ions as Lewis acid
catalyst to activate the epoxide intermediate and amino groups on 4,4′-bipyridines as renewable CO2

absorption reagent in this tandem process (Figure 16). The multi-catalytic sites were orderly distributed
and spatially matched in the framework. The captured CO2 molecules are synergistically fixed and
activated by well-positioned pyrrolidine and amine groups, providing further compatibility with the
terminal W=O activated epoxidation intermediate and driving the tandem catalytic process in a single
workup stage and an asymmetric fashion.
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Figure 16. Synthetic procedure of the polyoxometallate-organocatalyst-metal organic frameworks
(POMOFs) and the schematic representation of tandem catalysis for the asymmetric cyclic carbonate
transformation from olefins and CO2. Color code: α-[ZnW12O40]6−, yellow polyhedral; Zn, cyan ball;
N, blue ball; C, orange ball; O, red ball; H atom was omitted. Reprinted with permission from [81].
Copyright© 2015 Attribution 4.0 International (CC BY 4.0).
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In conjunction with ionic liquid co-catalyst, two kinds of POMs attached with metal carbonyl
{P2W15O56Co3(H2O)3(OH)3Mn(CO)3}8− [82] and {(Se2W11O43)(Mn(CO)3)4}8− [83] were reported
as efficient catalysts for the cycloaddition of CO2 with epoxides under mild conditions. A rare
three-dimensional CO2-linked POM polymer {PMo12O40Zn4(CO2)}2− exhibited superior performance
in the cycloaddition of CO2 with epoxides [19]. The structural feature of catalyst is that the CO2

ligand connects with two Zn-ε-Keggin cores in a linear and symmetrical µ2-η2o,o coordination
pattern(Figure 17). Polyoxoniobates (DBUH)3(NbO5), (TBA)6[Nb10O28] and Na16[SiNb12O40] were
applied as Lewis base-type catalysts for the cycloaddition of CO2 with epoxides under halide-free
conditions [84–86]. Carbon nanotubes-supported Fe1.5PMo12O40 (theoretical formulas) obtained 57.7%
propylene oxide conversion and 99.0% propylene carbonate selectivity, both activity and selectivity
were higher than Fe1.5PMo12O40, Co1.5PMo12O40, Cu1.5PMo12O40, and Zn1.5PMo12O40 (theoretical
formulas). The good activity can be attributed to the well dispersion of the Fe1.5PMo12O40 on the
CNTs [87].
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function of the size. By plotting the correlation between redox potential and electron density per 
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resulted distinction on redox property among bulk WO3, colloid WO3 and [SiW12O40]4– has been 
clearly illustrated [88]. Despite the prevalence of both POMs and bulk oxides as photocatalysts of 
harvesting light in recent years, the smaller size endows POMs with wider gap and lower reduction 
potentials. The case given by Hill and Geletii et al. involving water oxidation catalyst 
[Co4(H2O)2(PW9O34)2]10– (Co4POM) also manifested the distinction between POM and bulk metal 
oxide on redox property. In their report, (PW9O34)9–-sandwiched Co4 unit in Co4POM was 
unambiguously identified as the dominant active center for water splitting and not CoOx. [89] 
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6. Outlook

POMs are regarded as discrete metal oxide clusters with much smaller nanometric size than
bulk metal oxides, therefore most of the distinctions on chemical properties, especially CO2 reductive
conversion-related redox property, between bulk metal oxides and POMs were originated from
quantum size effect. Quantum size effect leads to the changes of electronic configurations. These
changes arise through systematic transformations in the density of electronic energy levels as a function
of the size. By plotting the correlation between redox potential and electron density per volume
(Figure 18a) as well as the diagram of band structure (Figure 18b), the quantum size effect-resulted
distinction on redox property among bulk WO3, colloid WO3 and [SiW12O40]4− has been clearly
illustrated [88]. Despite the prevalence of both POMs and bulk oxides as photocatalysts of harvesting
light in recent years, the smaller size endows POMs with wider gap and lower reduction potentials.
The case given by Hill and Geletii et al. involving water oxidation catalyst [Co4(H2O)2(PW9O34)2]10−

(Co4POM) also manifested the distinction between POM and bulk metal oxide on redox property.
In their report, (PW9O34)9−-sandwiched Co4 unit in Co4POM was unambiguously identified as the
dominant active center for water splitting and not CoOx. [89]
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Figure 18. The effect of particle size on the flat band redox potentials (a) and schematic band structure
diagram of POMs and WO3 (b). Reprinted with permission from [88]. © 1997 2018 Elsevier BV.

The prospering arising of new POM structures provides vast opportunities to excavate latent
catalysts for chemical CO2 conversion. Titanium oxo-clusters [90] and polyoxo-noble-metalates [91] are
exemplified as two promising representatives among these new POM structures. Regarding titanium
oxo-clusters (also named polyoxotitanates), there are diverse variants including titanium oxoalkoxides
clusters TinOm(OR)4n–2m, titanium oxo-carboxo-alkoxides clusters TinO2n–x/2–y/2(OR)x(OOCR’)y, and
titanium oxocarboxo clusters [TinOm(OOCR)p] (2m + p = 4n) [90]. The tunable wide polynuclearity
(the number of titanium atoms n varies from 2 to 28) and facile fabrication of hybrid architectures with
organic components by covalent bonding are the two major features of these clusters. MOF MIL-125
(MIL stands for Material from Insitut Lavoisier) consisting of 1,4-benzenedicarboxylate-connected
titanium-oxo-hydroxo clusters has been reported to possess possible photocatalytic property when
alcohols are adsorbed inside its framework [92]. Based on this indication and as the extensive
applications of titanium oxide in CO2 photocatalytic reduction [93–95], there are likely to be extensive
catalytic application of hybrid materials containing titanium oxo-cluster cores in CO2 reductive
conversion. The emergance of various novel polyoxo-noble-metalates including polyoxopalladates,
-platinates, and -aurates [91] also provides different prospects for catalytic CO2 reductive conversion.
On these polyoxo-noble-metalates, the noble metal atoms Pd, Pt, and Au act as “addenda” atoms
rather than as heteroatoms [91]. Despite that there are no direct accessible active sites on noble
metal centers with saturated coordination environments, the very recent report about the catalytic
Suzuki-Miyaura cross-coupling application of polyoxopalladate-based MOF materials has implied
that these polyoxo-noble-metalates may acquire catalytic activity via in situ partial reduction [96]. For
polyoxoplatinate [Pt12O8(SO4)12]4− [97], although it is insoluble in any media, its six dumbbell-shaped
[Pt2]6+ anionic units perhaps will attract electrocatalytic research interests, because they may be in-situ
partially reduced to molecular mixed-valent metal clusters or platinum black-type “suboxides” [98].
Then these plausible in-situ generated species may be applied as HER catalysts for electromicrobial
conversion of CO2.

More than the mode of LMCT, developing POM-based catalysts with the intrinsic function of
metal-to-metal charge transfer (MMCT) will also be beneficial to look for more efficient POM-based
approach to harvest visible-near infrared emission of sunlight with higher quantum yield. The
MMCT transition occurs when two metal centers with different valence states are coupled by bridging
ligands (Ma+-O-M’b+). The two metal centers are respectively reduced and oxidized (Ma+-O-M’b+

→M(a−1)+-O-M’(b+1)+) during this transition. The MMCT transition often takes place in polynuclear
complexes [99]. The oxo-bridged and all-inorganic heterobinuclear units such as ZrIV-O-CoII [100–103],
ZrIV-O-CuI [104], TiIV-O-CoII [100], and TiIV-O-MnII [105] supported on silica material that display
MMCT transitions can extend the optical absorption from UV to visible regions. Some of these
materials have been applied as catalyst or cocatalyst for CO2 photoreduction [101–104]. Several reported
POM-based systems, such as the anchored polynuclear charge-transfer complexes consisting of CeIII ions
and CuII-substituted Keggin-type CuIIPW11O39 [106], the metal-oxide nanoclusters consisting of CeIII or
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CoII ions and Keggin-type PW12O40
3− [107], [CoIIW12O40]6− [108], and [CoII(MxOHy)W11O39](12-x-y)−

(MxOHy = VIVO, CrIII(OH2), MnII(OH2), FeIII(OH2), CoII(OH2), NiII(OH2), CuII(OH2), ZnII(OH2)) [109]
have sufficiently demonstrated the feasibility that such molecular inorganic MMCT (or MPCT,
metal-to-polyoxometalate charge transfer) [108,109] transition enable POM-based catalyst to function
as efficient visible-light-driven multielectron-transfer catalysts. Regarding the metal-oxide nanoclusters
consisting of CeIII or CoII ions and Keggin-type PW12O40

3−, even the straightforward video guide of
preparing catalytic material has been given [110]. These will further encourage to utilize MMCT of
POM-based catalytic materials in CO2 reduction. It is noteworthy that prolonging the picosecond-scale
lifetimes of photogenerated states during MMCT transition is still an important issue to be tackled [111].
The works from Lan and Hill et al. has validated the effects of heterometal location [108] and different
addenda substitution [109] on the lifetime of photo-excited state.

On the other hand, the tools of advanced operando spectral characterization techniques [112],
electrochemical measuring methods [113] and theoretical calculations [114], imbibing more
understandings and attaining insights on catalytic mechanisms and structure–reactivity relationships
of those reported POM-based catalysts will be helpful to design better POM catalysts for CO2

conversion with explicit destination. On CO2 photo/electroreduction, the hybridation of POM with
various novel materials can provide chances to fabricate catalysts with broader visible-light absorption
spectrum region or better selectivity but lower overpotential. In those systems with hybrid electro- or
photocaytalytic CO2 catalysts, once the light-harvesting/electron-storage centers and catalytically active
sites are designated in an integrated system, the key issue is the bridging of the two components—charge
kinetics. Exploiting time-resolved spectroscopic techniques to characterize charge kinetics is useful to
understand these hybrid catalysts and thus helps to improve their catalytic efficiencies [99].

In catalytic oxidation, POMs were looked upon as inorganic analogs of porphyrin [115–117]. The
thriving development of transition metal porphyrin or phthalocyanine derivatives as heterogeneous
molecular catalysts for electrochemical CO2 reduction [118] makes us have such confidence that
this analogy can be still established in electrochemical CO2 reduction. Therefore, the accumulated
understandings about electrochemical CO2 reduction by transition metal porphyrin or phthalocyanine
may help the development of POM-based catalysts for the electroreductive CO2 conversion. By sunlight
or solar electricity, producing fuels and chemicals via CO2 conversion is a promising and reliable option
for largely reducing fossil fuel consumption in the future [119]. Thus POM-catalyzed transformation
of CO2 with photo- or electrochemical methods will retain long-lasting interest of both academic and
industrial research.

To the non-reductive CO2 conversion, searching for POMs with stronger Lewis basicity will
benefit the elevation of turnover efficiency and the mitigation of harsh conditions under halogen-free
condition. To enhance Lewis basicity, high negative charge density on the terminal oxygen atoms on
POMs is required. Calculating and comparing natural bond orbital (NBO) charges of oxygen atoms
in POMs has been demonstrated as a useful access to gain more insights into the Lewis basicity on
POMs [84,120]. Making full use of both structural traits and diversity of POMs would help to break
through some ceilings of practical CO2 chemical conversion.
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