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Objective. To explore medications that have a therapeutic effect on idiopathic membranous nephropathy (IMN) using the Gene
Expression Omnibus (GEO), the Connectivity Map (CMap) database, and bioinformatics approaches. Methods. IMN patients’
glomerular whole-genome sequencing data were retrieved and screened in the GEO database, differentially expressed genes
were identified using GEO2R analysis, a PPI network was built in the STRING database, node degree values were calculated,
and topological analysis was performed using the degree value to identify core genes. The WebGestalt database was used to
perform GO enrichment and KEGG pathway analyses on the core genes. Candidate medications for the therapy of IMN were
collected from the CMap database, and the candidate medications were then searched and analyzed. Results. 113 core genes
were identified by topological analysis from the 1157 genes that were shown to be differentially expressed. The enrichment
analysis identified several important gene functions and signaling pathways related to IMN. Some possible medications for the
treatment of IMN have been found using the CMap database. Naringin, with the lowest CMap score, meaningful P value, and
specificity score, was predicted as the most likely medication. Conclusion. The GEO and CMap databases can be used to
understand the molecular changes of IMN and to provide new ideas for medication research. However, medication candidates

must undergo clinical and experimental testing.

1. Introduction

Membranous nephropathy (MN) is a common pathological
type of nephrotic syndrome with clinical manifestations of
massive proteinuria, hypoalbuminemia, edema, and hyperlip-
idemia. 70%-80% of MN with an unknown origin is classified
as idiopathic membranous nephropathy (IMN). One-third of
patients with IMN will eventually develop end-stage renal dis-
ease (ESRD), 30% to 40% will resolve spontaneously, and the
remainder will have persistent proteinuria with relatively sta-
ble renal function [1]. However, these patients are also at an
increased risk of life-threatening thromboembolic and cardio-
vascular events [2]. For extended periods of time, IMN was the
second or third largest cause of primary glomerulonephritis
resulting in renal failure in the United States and Europe [3].
As a result, IMN imposes a significant financial burden on
patients and the healthcare system.

MN may affect people of various nationalities and eth-
nicities globally. The annual incidence rates of MN in North

America are estimated to be 10-12 per million and 2-17 per
million in Europe [4-8]. Hormones and immunosuppres-
sants are used to treat [9]. While clinical success can be
obtained, there are several complications, including adverse
effects, a high likelihood of recurrence upon medication dis-
continuation, and poor patient compliance. Regardless of
the hormone or immunosuppressant used, approximately
one-third of people with IMN report no apparent therapeu-
tic benefit [1, 10]. As a result, there is an urgent need to find
a medicine that is both effective and safe, with few adverse
effects.

System biology studies cells, tissues, and organ systems
as systems of interacting components. Methods from sys-
tems biology can be applied to the identification of novel
medications and the creation of procedures for system phar-
macology. And system biology insights can be applied to the
development of precision and personalized medical strate-
gies [11]. The Gene Expression Omnibus (GEO) database,
a National Center for Biotechnology Information (NCBI)
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data base for gene expression and hybridization array data,
contains a wide assortment of experimental data for various
diseases [12, 13]. The GEO database may be used to analyze
membranous nephropathy gene expression data. The con-
nectivity map (CMap) database is a resource for understand-
ing the mechanisms of drug action and drug localization
using RNA chip technology [14, 15]. If there is a strong neg-
ative correlation between the gene expression profile of the
sickness and the functional profile of the medication, the
medication may have a therapeutic effect on the condition.
Medication repositioning or rediscovery refers to the process
of relocating or rediscovering existing medications. CMap
has been successfully applied in medication rediscovery
many times [16-19]. Based on the GEO and CMap data-
bases, this study used system biology methods to screen
out the key pathogenic genes and potential therapeutic med-
ications for IMN and provides new ideas for the treatment of
IMN. The study flow chart is shown in Figure 1.

2. Materials and Methods

2.1. Data Sources. The GEO database provided the dataset of
membranous nephropathy, and the following screening cri-
teria were used: human glomerular tissue was used as the
source of the sample tissue, the normal group had more than
three cases, and the illness group had more than thirty.
Finally, the dataset GSE108109 was chosen, which is based
on the platform GPL19983. GSE108109 was released on
May 17, 2018 and was contributed by Grayson et al. [20].
This dataset sequenced the glomerular whole genome of 44
patients with IMN, 30 patients with focal segmental glomer-
ulosclerosis, 16 patients with minimal change disease, 15
patients with ANCA-associated small vessel vasculitis, and
6 healthy people.

2.2. Analysis of Differentially Expressed Genes. 44 IMN
patients in the dataset GSE108109 were assigned as the ill-
ness group, while 6 healthy people were set as the control
group, and then analyzed using the online analytic tool
GEO2R  (https://www.ncbi.nlm.nih.gov/geo/geo2r/). We
download and filter the findings of the analysis. The screen-
ing criteria were adj.P.Value < 0.01, |Log, Fold Change(FC)
| >1. And eventually, the differentially expressed genes
(DEGs) were determined between IMN and healthy people.
The IMN and healthy gene expression matrices were
uploaded to the drawing tool Weishengxin (http://www
.bioinformatics.com.cn/), and the differentially expressed
genes were shown using volcano plots.

2.3. Construction and Analysis of the Protein-Protein
Interaction Network. The DEGs were uploaded to the
STRING database [21], and a network of protein-protein
interaction (PPI) with a comprehensive score greater than
0.4 was created. The network that keeps linked nodes was
visually analyzed using Cytoscape (version 3.7.2). We calcu-
lated the degree value of each node through the Network
Analyzer function in the software, and the importance of
the node in the network increased with increasing degree
value. Referring to previous studies [22, 23], two topological
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analyses were performed according to the average value of
degree. The degree value of each selected node was greater
than the overall average value, and the core gene was ulti-
mately obtained.

According to the log,FC absolute value of core genes, the
top 60 were selected for visual description. To explore the
specific regulatory relationships in the PPI network, cluster
analysis was performed through the MCODE function of
Cytoscape software to calculate node information. The func-
tional modules of the cluster were established according to K
-Core, and the data parameters were set to the applicable
threshold: K-Core > 4.

2.4. GO and KEGG Pathway Enrichment Analyses. To clarify
the pathogenesis of IMN, the core genes obtained after topo-
logical analysis were uploaded to the WebGestalt database.
GO and KEGG enrichment analyses were performed on core
genes using the WebGestalt database [24, 25]. The results
were divided into biological processes (BP), cellular compo-
nents (CC), molecular functions (MF), and KEGG pathways,
which are displayed using bubble charts.

2.5. CMap Analysis. The core genes were submitted to the
CMap database for research in order to find potential med-
ications for IMN. The CMap database was compiled using
the Affymetrix U133A chip [14, 15], and the GSE108109
dataset was compiled using the Affymetrix Human Gene
2.1ST Array. Thus, we needed to convert it through Affyme-
trix Batch Query (https://www.affymetrix.com/analysis/
netaffx/batch_query.affx?netaffx=netaffx4_annot). We saved
the converted upregulated and downregulated genes in
grp” format and uploaded them to the CMap database,
respectively. The results, both detailed and permuted, were
downloaded. The results were screened according to the
mean CMap score, P value and specificity of related small
molecule compounds, and small molecule compounds that
were highly negatively correlated with IMN that may have
the potential to treat IMN were screened out.

3. Results

3.1. Screening of DEGs. We screened 1157 DEGs and discov-
ered that 532 were upregulated, and 625 were downregulated
(Figure 2).

3.2. Protein—Protein Interactions. The STRING database was
used to build the PPI network for DEGs. The PPI network
was visualized using Cytoscape. There were 873 nodes and
3982 edges in the network. The core genes were identified
after topological analysis (Figure 3). Finally, a disease target
network with 113 nodes and 975 edges was constructed,
which included 73 upregulated genes and 40 downregulated
genes (Figure 4). The core genes were visualized in Figure 5.

By MCODE analysis, 4 modules were extracted from the
disease target network, K-Core >4 (Figure 6). One cluster
included 26 nodes and 93 edges (rank 1; score 7.36), one
cluster included 35 nodes and 123 edges (rank 2; score
7.235), one cluster included 6 nodes and 14 edges (rank 3;
score 5.6), and one cluster included 14 nodes and 30 edges
(rank 4; score 4.615).
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of Log,(FC) from red to blue (with white in the middle).
The size of the nodes is described in ascending order of
degree value.

3.3. GO and KEGG Analyses. To ascertain the link between
core genes and IMN, we used the WebGestalt database to
conduct GO and KEGG analyses on core genes. BP is mainly
associated with the response to endogenous stimuli and the

enzyme-linked receptor protein signaling pathway. CC is
mainly associated with cell surface and receptor complexes.
MF is mainly associated with binding to signaling receptors
and protein-containing complexes. The KEGG signaling
pathway includes proteoglycan in cancer, PI3K-Akt, MAPK,
and other signaling pathways (Figure 7).

3.4. CMap Prediction of Potential Medications. We uploaded
the core genes to the CMap database, screened small molecule
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compounds with P values and specificity scores, sorted them
according to the mean CMap score, and selected the top 10
small molecule compounds. These compounds may be able
to reverse the observed IMN gene expression patterns and
may be the most promising potential therapeutic agents
(Table 1).

4. Discussion

Membranous nephropathy is a common pathological type of
nephrotic syndrome, and its prevalence is growing in China.
A study covering 282 cities and 938 hospitals in China
showed that among 71,151 kidney biopsy patients from
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2004 to 2014, MN accounted for 23.4%, becoming the sec-
ond most common pathological type of glomerular disease.
Furthermore, the prevalence of MN has grown by 13% every
year, whereas the proportion of other major glomerular dis-
eases has remained constant [26]. The 2021 KDIGO practice
guidelines recommend 2 treatment regimens: alternating
rituximab or cyclophosphamide with corticosteroids and
calcineurin inhibitor-based therapy [9]. In clinical practice,
it was found that the two treatment options had more side
effects and were associated with higher recurrence rates after
medications withdrawal. Therefore, there is an urgent need
for effective and safe medications for the treatment of

IMN. In addition, the economic burden of medications on
patients and society should also be considered. As a result,
we used bioinformatics analysis methods to screen the key
pathogenic genes of IMN and combined them with informa-
tion from the CMap database to discover potential medica-
tions for the treatment of IMN.

MN is a glomerular disease. We screened 1157 DEGs
through IMN glomerular whole-genome sequencing data
and obtained 113 core genes after topological analysis. The
WebGestalt database carried out the KEGG signaling path-
way enrichment analysis of core genes, and core genes were
mainly related to signaling pathways such as proteoglycan in
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TaBLE 1: The 10 most negatively correlated small molecule compounds screened from the CMap database.

Rank CMap name Dose Cell line Mean CMap score P value Specificity
9 Naringin 7 uM PC3 -0.832 0.0298 0.0777
23 Mexiletine 19 uM PC3 -0.782 0.03681 0.0235
34 Prestwick-1080 15 uM MCEF7 -0.765 0.00147 0
36 PHA-00851261E 10 uM PC3 -0.761 0.01169 0.0412
50 Pyrantel 11 uM HL60 -0.739 0.02017 0.0324
52 Pyrimethamine 16 uM PC3 -0.738 0.01232 0.0467
80 Retrorsine 11 uM PC3 -0.715 0.03728 0.0769
85 Mecamylamine 20 uM MCEF7 -0.708 0.00096 0
91 Bisoprolol 9uM HL60 -0.703 0.02037 0.0055
101 PHA-00851261E 1 uM MCEF7 -0.694 0.01169 0.0412

cancer, PI3K-Akt, and MAPK. The PI3K-Akt and MAPK
signaling pathways are closely related to MN. Regulation of
autophagy through the PI3K/AKT/mTOR pathway can alle-
viate MN progression in rat passive Heyman nephritis [27].
Inhibition of the PI3K/AKT/mTOR pathway in human
podocytes helps protect podocytes from apoptosis and exerts
renal protection. sSPLA2-IB can promote podocyte injury by
downregulating autophagy by activating the p38 MAPK/
mTOR/ULK1 (Ser757) pathway [28]. Single-cell sequencing
analysis of renal tissue from healthy individuals and PLA2R-
positive IMN patients revealed that differentially expressed

genes in renal parenchymal cells lead to MN through path-
ways such as MAPK [29].

Naringin is a disaccharide derivative that acts as an anti-
tumor agent and an anti-inflammatory agent. The mean
CMap score of naringin ranked first and was statistically sig-
nificant, and naringin was associated with a variety of kidney
diseases. In rat renal interstitial fibrosis, naringin attenuates
renal interstitial fibrosis [30]. Renal interstitial fibrosis plays
an important role in end-stage renal disease (ESRD), and
approximately 1/3 of IMN patients will eventually progress
to ESRD; thus, naringin may be beneficial to the long-term
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prognosis of IMN patients. Ischaemia/reperfusion is the
main cause of acute renal failure, and naringin can attenuate
the expression of Nrf-2 in renal tissue after renal ischemia/
reperfusion injury, thereby exerting a renal-protective effect
[31]. Naringin attenuates gentamicin-induced renal dys-
function and structural damage in rats through multiple
pathways [32]. In streptozotocin- (STZ-) induced diabetic
nephropathy rats and high-glucose-induced podocytes, nar-
ingin attenuates renal function damage and inhibits podo-
cyte apoptosis in diabetic nephropathy rats by inhibiting
NADPH oxidase 4 and in vitro reactive oxygen species levels
[33]. Naringin can be used to prevent methotrexate-induced
nephrotoxicity by reducing serum creatinine, blood urea
nitrogen, and IL-6 [34]. In addition, naringin can reduce
nickel-induced nephrotoxicity [35]. In conclusion, naringin
has a role in a variety of kidney diseases and has great poten-
tial as a medication candidate for the treatment of IMN.

To date, many scholars have verified the reliability of
GEO and CMap data mining results through a variety of
methods. Zhang et al., through weighted gene coexpression
network analysis and the CMap and GEO databases, found
that valproic acid and lovastatin may be useful in the treat-
ment of gastric cancer, and the eflicacy of the two drugs
was verified experimentally [36]. Sirota et al. predicted
cimetidine as a candidate drug for the treatment of lung ade-
nocarcinoma and demonstrated its efficacy in vitro and
in vivo using mouse models [16].

This research has a few drawbacks. First, the sample size
of this study was limited, as there were only 44 IMN patients
and 6 healthy people with gene expression data. In addition,
no experimental validation or clinical research was con-
ducted on the potential drugs that were the focus of this
study. In conclusion, we used the glomerular whole-
genome sequencing data of IMN patients, combined with
the CMap database, and with the help of bioinformatics
analysis methods, we screened the key pathogenic genes of
IMN and identified medications with potential therapeutic
effects. Animal experiments and clinical trials can be utilized
to validate the efficacy of the medications in this
investigation.
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