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Abstract 
Calcium channel blockers (CCBs) are widely used to treat cardiovascular diseases such as hypertension, 

angina pectoris, hypertrophic cardiomyopathy, and supraventricular tachycardia. CCBs selectively inhibit the 
inward flow of calcium ions through voltage-gated calcium channels, particularly Cav1.2, that are expressed 
in the cardiovascular system. Changes to the molecular structure of Cav1.2 channels could affect sensitivity of 
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the channels to blockade by CCBs. Recently, extensive alternative splicing was found in Cav1.2 channels that 
generated wide phenotypic variations. Cardiac and smooth muscles express slightly different, but functionally 
important Cav1.2 splice variants. Alternative splicing could also modulate the gating properties of the channels and 
giving rise to different responses to inhibition by CCBs. Importantly, alternative splicing of Cav1.2 channels may 
play an important role to influence the outcome of many cardiovascular disorders. Therefore, the understanding 
of how alternative splicing impacts Cav1.2 channels pharmacology in various diseases and different organs may 
provide the possibility for individualized therapy with minimal side effects.

INTRODUCTION
Calcium ions play a critical role in muscle function. 

Voltage-gated calcium channels (VGCCs) govern the 
depolarization induced Ca2+ entry in many excitable 
cells, such as neurons, cardiac and smooth muscle 
cells[1]. Of the 10 known VGCCs, L-type Cav1.2 
channel is the most widely expressed channel in 
the cardiovascular system and is essential for the 
contraction of heart and arterial smooth muscles. 
The T type Cav3.1 and L type Cav1.3 channels are 
expressed in the sinus node cells and modulate 
pacemaker activity[2].

VGCCs are composed of multiple subunits. The 
pore forming α1 subunit is the basic structure of the 
channel, while the β, α2δ and/or γ subunits interact 
with the α1 subunit and play a modulatory role. 
Calcium channel blockers (CCBs) are widely used in 
clinical practice to treat cardiovascular disorders from 
hypertension to angina pectoris, arrhythmia, Raynaud 
syndrome, and cerebral vasospasm, etc. The basic 
effect of CCBs is to inhibit VGCCs by binding to the 
pore forming α1 subunit and the Cav1.2 channel is the 
major target of CCBs.

Three classes of small molecule CCBs are currently 
in clinical use:  1,4-dihydropyridines (DHPs), 
phenylalkylamines (PAAs), and benzothiazepines 
(BTZs). They all bind to the α1 subunit of Cav1.2 
channel[3,4]. After several decades of development, 
new generations of CCBs are more selective on target 
organs with fewer side effects. For example, the 
second- and third-generation of DHPs exhibit higher 
vascular selectivity with less negative inotropic effect 
and sympathetic activation compared with the first-
generation blockers. However, variable responses still 
exist among patients. One example is that elderly or 
black patients are more sensitive to CCBs than young 
and white patients[5,6]. Such effects could be due to the 
presence of variable drug metabolizing enzymes, drug 
transportation systems or drug targets.

Genetic factors determine drug response taking into 
consideration many other factors such as age, sex, 

body weight, and heath status. Pharmacogenomics 
provides information on the linkage of genetic factors 
to drug responses and may also provide the basis for 
the use of safer and more efficient medications to 
patients. In hypertension, genetic associations with 
antihypertensive response have been established 
for diuretics, beta-blockers, ACE inhibitors and 
angiotensin1 receptor blockers. However, most 
of the information is lacking in calcium channel 
b lockers .  Recent ly ,  th ree  s ingle  nuc leot ide 
polymorphisms (SNPs) of Cav1.2 channel were 
identified to link with antihypertensive outcome[7]. 
Although pharmacogenomics is a useful tool to help 
understanding the variable response of drug sensitivity 
among patients with different genetic background, 
it cannot address the issue about the changes of 
drug response during the progress of a disease or 
development of a new disease. The response to drug 
of a patient could be different when he/she is healthy 
or sick. The patient can also respond by changing 
from a drug sensitive state to an insensitive state.

Alternative splicing is a post-transcriptional 
modification process. Multiple functional variants 
could be generated from a single gene. Recently, 
a large number of alternatively spliced exons 
have been identified within the pore-forming α1 
subunit of Cav1.2 channel[8-10]. In this review, we 
will discuss the dynamic regulation of alternative 
splicing of Cav1.2 channels under physiological and 
pathophysiological conditions and the influence 
of such changes on pharmacology. The proteomic 
structure of Cav1.2 channels could change under 
pathological conditions due to alternative splicing. 
The way we view individualized medicine in treating 
cardiovascular diseases may need to be expanded 
beyond pharmacogenomics.

ALTERNATIVE SPLICING AND CCB 
BINDING

The human Cav1.2 gene, CACNA1C, codes for the 
α1 subunit and contains 55 exons. At least 19 exons are 
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subjected to alternative splicing[8-10]. The distribution 
of the splice sites could be found in our previous 
review[9]. The number is increasing with reports of 
the discovery of new splice variants. Exon 34 was 
recently added to the list[11] and a novel exon 1C was 
reported to exist in rat arterial smooth muscles[12]. If 
there were a human exon 1C, total of 21 exons could 
undergo alternative splicing. Theoretically there will 
be 221 combinations. However, these splice variants 
are not expressed at the same level. Some alternatively 
spliced exons were found to be predominantly 
expressed in certain tissues[9,13-15].

The binding site for CCBs is mainly composed 
of the transmembrane segments 5 and 6 (S5 and S6) 
of domainsⅠto Ⅳ. By using photoaffinity labeling, 
antibody mapping, and chimeric study, DHPs were 
found to bind ⅢS5, ⅢS6 and ⅣS6 segments, while 
ⅢS6 and ⅣS6 are the binding sites for PAAs and 
DTZs[16,17]. ⅢS5 segment was also suggested to 
participate in PAA inhibition[18] and IS6 in DHP 
inhibition[15]. Of these regions, IS6 is encoded by 
alternatively spliced exons 8 and 8a[15], while the 
rest of the binding sites are encoded by constitutive 
exons[9]. Although other alternatively spliced exons 
are not involved in drug binding, they can affect 
the channel sensitivity to CCBs by altering gating 
properties[13,19].

T I S S U E  S P E C I F I C  S P L I C E 
VARIANTS CORRELATE WITH CCBS 
SENSITIVITY

The pharmacological effect of CCBs depends on 
their inhibition of Ca2+ influx through Ca2+ channels 
in cardiac and vascular smooth muscles. However, 
there exist variable responses to blockade of Cav1.2 
channels by CCBs within the two tissues. For 
example, vascular smooth muscles are more sensitive 
to DHPs than cardiac muscles. One obvious reason 
is that calcium channels in smooth muscle possess a 
higher binding affinity than in cardiac muscle[20]. The 
second reason is that vascular smooth muscles have 
a more depolarized membrane potential than cardiac 
cells[21,22] and as such more Cav1.2 channels are locked 
in an inactivated state which favors the DHP block[19]. 
Recently, the difference in the molecular structures 
within cardiac and smooth muscles generated by 
alternative splicing has emerged as a third determinant 
factor for CCBs block[13].

Cav1.2 channel is generally divided into a cardiac 
isoform (Cav1.2a) and a smooth muscle isoform 
(Cav1.2b). Cav1.2a channel is the predominant channel 
in heart while Cav1.2b channel in smooth muscles. 

Cav1.2a channel contains the combination of exons 
1a/8a/-9*/32/33[13,23], while the smooth muscle form 
(Cav1.2b) contained exons 1b/8/9*/32/33[24]. Exon 1b 
was named exon 1 in previous reports. Recently, an 
exon 1c was cloned from rat cerebral arteries and it 
was reported to be the predominant exon in smooth 
muscles[12]. However, the human exon 1c has not yet 
been discovered.

The Cav1.2b channel is more sensitive to DHP 
block than Cav1.2a channel which is similar to the 
observations in native heart and blood vessels[15,25,26]. 
The molecular component for drug sensitivity was 
shown to be determined by the inclusion or exclusion 
of the mutually exclusive 8 and 8a exons that encode 
the IS6 transmembrane segment. Cav1.2 channels 
containing exon 8 is more sensitive to isradipine 
than channels containing exon 8a[15]. An early report 
showed that IS6 region is important for channel 
inactivation properties[27]. However, both Cav1.2a 
and Cav1.2b channels share similar activation and 
inactivation properties[15,25]. Thus, exons 8 and 8a were 
believed to affect DHP sensitivity through altering 
binding affinity rather than changing the inactivation 
properties of the channels[15]. Besides Cav1.2b 
channel, there exists a small population of channels 
in blood vessels named Cav1.2SM channel with 
exon 33 deletion. The altered inactivation property 
of Cav1.2SM channel directly affects the channel's 
sensitivity to DHP[13].

Cav1.2 channel activity is also regulated by 
phosphorylation[1,28-30]. The N-terminal region of 
Cav1.2 channel is the target for protein kinase C[1,31,32]. 
Exon 1a from cardiac isoform Cav1.2a channel 
contains two threonine sites at 27 and 31, and they are 
not present in smooth muscle Cav1.2b channel. There 
also exists a potential protein kinase A site within the 
alternatively spliced exon 9* within Ⅰ-Ⅱ loop[33]. 
However, it is unknown whether phosphorylation of 
the putative serine/threonine kinase sites found in the 
alternatively spliced exons might affect the sensitivity 
of cardiac or smooth muscle Cav1.2 channels to CCBs.

Although there exist predominant Cav1.2 channels 
in heart and blood vessels, numerous splice variants 
are found to be expressed in cardiovascular system[34]. 
The presence of splice variants with lower expression 
could be of particular importance in physiology and 
pharmacology. For example, the deletion of exon 33 
in a small population of Cav1.2 channels in arterial 
smooth muscles relates with the left shifted window 
currents recorded in native smooth muscles[13,35]. The 
DHP sensitivity was altered due to the changes of 
gating properties[13]. Other alternative spliced exons 
could also exhibit various CCB sensitivities. Mutually 



　184 P.Liao et al. / Journal of Biomedical Research, 2010, 24(3): 181-186

exclusive exon 31 at IVS3 region is more sensitive 
to DHPs block than exon 32[36]. Mutually exclusive 
exon 21 encoding ⅢS2 segment is less sensitive to 
DHP block than 22[36,37]. The results from 65 human 
heart samples showed the presence of a large number 
of alternative spliced exons within individual heart 
tissues[38]. Two human hearts expressed unusually high 
level of exon 8 instead of exon 8a. This information 
is of particular importance as exon 8 determines the 
higher sensitivity of blood vessels to DHP block. 
Abnormal expression of exon 8 in heart will generate 
critical side effect in heart if DHPs are used to treat 
hypertension in these patients. This data therefore 
underlies the importance of understanding the splicing 
profiles in individual patients.

A LTER N AT IVE SP LICIN G  A N D 
CARDIOVASCULAR DISORDERS

Cav1.2 channels are crucial for cardiovascular 
functions as deletion of the gene in mouse leads 
to embryonic lethality[39]. Alternative splicing of 
Cav1.2 channels was linked to many diseases[40]. 
Mutations of Cav1.2 gene was reported in Timothy 
syndrome, a disorder characterized by dysfunction 
in multiple organ systems, including heart, skin, 
eyes, teeth, immune system and brain[41,42]. Patients 
usually die at an early age from lethal arrhythmia. The 
mutations are found at the mutually exclusive exons 
8 and 8a and two mutations were found: G406R and 
G402S. Patients with G406R at exon 8 have a milder 
symptoms compared with patients with G406R and/
or G402S at exon 8a. It should be noted that the 
exons 8/8a mentioned in the above two papers refer 
to exons 8a/8 respectively in other reports[9]. Channel 
inactivation properties are impaired by the mutations. 
As a consequence, a continuing influx of Ca2+ ions 
will result in the lengthening of action potential, 
leading to cardiac arrhythmia and sudden death. The 
levels of expression of exon 8 and 8a is different in 
various organs and tissues and thus the location of 
the mutations in exon 8 or 8a would determine the 
severity of the symptoms and the involvement of 
other organs. CCBs are ideal to treat the patients by 
reducing the Ca2+ influx from mutant channels.

Alternative splicing of Cav1.2 channels has identified 
to be altered in cardiovascular disorders. Mutually 
exclusive exons 31 and 32 are developmentally 
regulated[43] and reemergence of fetal exon was found 
in hypertrophied or failing hearts[44,45]. Gidh-Jain et al[44] 
reported the switch to a fetal exon in the hypertrophied 
rat hearts 21 days post myocardial infarction. Yang et 
al[45] reported the increased expression of fetal exon 

in human failing hearts. Furthermore, a number of 
exons were found to be altered in vascular smooth 
muscles of patients with atherosclerosis[11]. Exon 9* 
was absent in blood vessels from patients while exon 
21 was expressed in healthy arteries, but in patients a 
switch in expression to the mutually exclusive exon 
22 was observed in almost all atherosclerotic arteries 
examined. Exon 41a was also expressed exclusively 
in normal arteries. In another report, alternative 
splicing profiles underwent changes in rats with 
hypertension. Such changes occurred at multiple 
splicing sites generating many splice variants[46]. We 
recently reported the alternative splicing of a number 
of exons was remodeled in a rat model of myocardial 
infarction[47]. The remodeling mainly occurred in 
the infarct area. In contrast to the predominant 
channels expressed in normal heart, channels with 
novel combinations of exons appeared in heart with 
myocardial infarction. Importantly, the alteration 
of channels in myocardial infarction, hypertension, 
and atherosclerosis exhibited channel properties 
changes by electrophysiology studies[11,46,47]. Such 
changes would potentially have great impact on CCBs 
sensitivity.

PERSPECTIVES AND CHALLENGES
The progress in the study of alternative splicing 

of Cav1.2 channels highlights a novel way towards 
individualized medication. Besides SNPs, post 
transcriptional modification produces Cav1.2 channels 
with huge variability both in structure and function. 
Each person could express slightly different splice 
variants in different tissues. But the functional impact 
could be enormous. Furthermore, under pathological 
conditions, the splice patterns can be altered. Such 
alteration could be variable at different stages of 
the disease. Thus, each patient could express a 
signature pattern of Cav1.2 channels generated by 
alternative splicing. This provides possible targets for 
individualized medication. However, many questions 
need to be addressed first and chief of which is 
how the splicing profile from different organs of a 
patients can be achieved. The nature of alternative 
splicing makes it impossible to get such information 
simply from blood. Also the length of the gene and 
multiple splicing sites makes it difficult to determine 
combinatorial profiles for the expression of the many 
alternatively spliced exons in the full length Cav1.2 
channel transcripts. The next obstacle is to select 
suitable splice variants as targets for drug discovery 
and development. Most of the current CCBs in use 
are not designed against one splice variant without 
affecting others. The understanding of alternative 
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splicing of Cav1.2 channels is far from complete. One 
example is the hemichannels generated by misspliced 
exons[48]. Hemichannels in other channels were 
found to relate with congenital disease[49]. The role of 
hemichannels or aberrant channels in Cav1.2 channels 
remains mostly unclear.

In this review, we discussed the progress in 
relating alternative splicing of Cav1.2 channels to 
cardiovascular pharmacology and pathophysiology. 
However, the knowledge in other organs and systems 
are mostly lacking. For example, the splicing pattern 
in nervous system is not well studied. Considering 
the higher expression of Cav1.2 channels in neurons, 
CCBs in treating nervous system disorders could 
attract more attention if neuronal specific CCB is 
discovered one day in the future. In conclusion, we 
presented another consideration for the development 
or discovery of drugs against Cav1.2 channels that may 
be efficacious in the management of cardiovascular 
disorder.
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