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In this paper, we present a refinement method for cryo-electron
microscopy (cryo-EM) single-particle reconstruction, termed as
OPUS-SSRI (Sparseness and Smoothness Regularized Imaging). In
OPUS-SSRI, spatially varying sparseness and smoothness priors are
incorporated to improve the regularity of electron density map,
and a type of real space penalty function is designed. Moreover,
we define the back-projection step as a local kernel regression and
propose a first-order method to solve the resulting optimization
problem. On the seven cryo-EM datasets that we tested, the av-
erage improvement in resolution by OPUS-SSRI over that from
RELION 3.0, the commonly used image-processing software for
single-particle cryo-EM, was 0.64 Å, with the largest improve-
ment being 1.25 Å. We expect OPUS-SSRI to be an invaluable tool
to the broad field of cryo-EM single-particle analysis. The imple-
mentation of OPUS-SSRI can be found at https://github.com/
alncat/cryoem.

Cryo-EM | 3D reconstruction | ill-posed inverse problem | smoothness |
sparseness

Cryo-electron microscopy (Cryo-EM) single-particle analysis
is a powerful method for determining macromolecular

structures. The major advantages of cryo-EM over the traditional
X-ray crystallography are that it does not require crystallization
and is not plagued by the phase problem. However, there remain
many new challenges in this promising technique. The central
problem of cryo-EM single-particle analysis is the incomplete-
ness of experimental observations. More specifically, the infor-
mation of the relative orientations and translations of all
particles is missing. Furthermore, in a dataset with multiple
conformations (or substates), the membership of a specific class
needs to be defined. Moreover, the signal-to-noise ratio (SNR)
of a cryo-EM dataset is often very low since the electron expo-
sure of the sample needs to be strictly limited to reduce radiation
damage (1). Other problems often present in cryo-EM datasets
include the nonuniform angular sampling, which frequently results
in inadequate sampling or even no sampling in certain orientations
(2). Therefore, the problem of cryo-EM three-dimensional (3D)
reconstruction is an extremely ill-posed problem. To alleviate the
ill-posedness of this problem, prior assumptions must be incor-
porated into the reconstruction process to ensure the uniqueness
of solution and the objectivity of the final maps.
Two outstanding features of 3D density maps are sparseness

and smoothness. Specifically, since the atoms in macromolecules
only occupy part of the 3D maps, the macromolecular maps are
often sparse in space. On the other hand, because the atoms in
macromolecules are connected through chemical bonds, the
electron densities of macromolecules vary smoothly across the
space (3). Though sparseness is a popular prior in solving inverse
problems, it is a relatively novel notion to cryo-EM 3D recon-
struction. In contrast, the importance of smoothness prior is
widely recognized in cryo-EM 3D refinement. An early attempt
to enforce the smoothness of the density map was to apply the
Wiener filter (4). Later approaches improved upon the Wiener

filter by using Bayesian statistics (3). Scheres et al. assumed that
the Fourier components of the density map are distributed
according to Gaussian distributions (3) a priori and derived a
maximum a posteriori estimation for reconstruction. This ap-
proach, as implemented in REgularised LIkelihood Optimisa-
tioN (RELION) (5), is referred to as the traditional approach in
the context of this paper. Except for incorporating priors into the
reconstruction process, another line of efforts aims to enhance
cryo-EM 3D refinement by optimizing the defocus parameter
and class membership for each particle, as exemplified by
THUNDER (6). THUNDER has been shown to improve cryo-
EM refinement by providing more accurate contrast transfer
function and membership for each particle.
In this paper, we continued the direction used in RELION and

proposed an approach to regularize the 3D maps. Our approach,
named OPUS-SSRI (Sparseness and Smoothness Regularized
Imaging), focuses on imposing sparseness and smoothness priors
(i.e., l1 regularization) (7) and total variation (TV) (8). To en-
courage sparseness and smoothness of the density map while
suppressing bias, we proposed a nonconcave, nonsmooth, real-
space restraint by combining l1 regularization and TV norm.
Since such target function is difficult to optimize, we designed a
reweighted scheme to approximately optimize it with a sequence
of weighted l1 and TV problem. The major differences between
the traditional approach in RELION and our approach in
OPUS-SSRI are outlined in detail in the Materials and Methods
section. In essence, the traditional approach in RELION can be
viewed as applying a translation-invariant isotropic kernel to
smooth the 3D map, whereas OPUS-SSRI applies a spatially
varying anisotropic kernel. Another challenge of 3D map re-
construction in real space is the prohibitive computation cost as a
result of its ultrahigh dimensionality. For example, a common
512 × 512 × 512 3D volume contains hundreds of millions of

Significance

Three-dimensional refinement is a critical component of cryo-
EM single-particle reconstruction. In this paper, we report the
development of a computational method, OPUS-SSRI, and its
application to seven real cryo-EM datasets. Our data clearly
demonstrated that OPUS-SSRI can improve the final resolutions
and structural details in cryo-EM single-particle analysis.

Author contributions: Z.L., Q.W., and J.M. designed research; Z.L., A.A.C.-A., and L.L.
performed research; Z.L., Q.W., and J.M. analyzed data; and Z.L., Q.W., and J.M. wrote
the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).
1To whom correspondence may be addressed. Email: jpma@bcm.tmc.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2013756118/-/DCSupplemental.

Published January 5, 2021.

PNAS 2021 Vol. 118 No. 2 e2013756118 https://doi.org/10.1073/pnas.2013756118 | 1 of 8

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

https://orcid.org/0000-0002-3256-9088
https://github.com/alncat/cryoem
https://github.com/alncat/cryoem
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2013756118&domain=pdf&date_stamp=2021-01-05
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jpma@bcm.tmc.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013756118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013756118/-/DCSupplemental
https://doi.org/10.1073/pnas.2013756118
https://doi.org/10.1073/pnas.2013756118


variables. We addressed this challenge by leveraging a Compute
Unified Device Architecture (CUDA)-accelerated implementa-
tion. In addition, we cast the back-projection as a local kernel
regression problem, thus paving a way to promote the smooth-
ness of the 3D map (9). By applying it to seven real cryo-EM
datasets, we demonstrated that our OPUS-SSRI supports a sig-
nificant improvement over RELION 3.0 or THUNDER, espe-
cially for systems with significant flexibility.

Results
We tested OPUS-SSRI by performing 3D refinement on a total
of seven real datasets and comparing the refinement results with
those obtained using RELION 3.0 or THUNDER. The detailed
experimental process and optimal parameters are reported in the
SI Appendix.
According to the gold-standard Fourier shell correlation

(FSC) at 0.143, the final density maps reconstructed by OPUS-
SSRI clearly have higher SNRs compared to those generated by
RELION 3.0 in most resolution shells for β-galactosidase (10,
11) (Fig. 1A), 80S ribosome (12) (Fig. 1B), influenza hemag-
glutinin (HA) (13) (Fig. 1C), transient receptor potential mela-
statin (TRPM4) (14) (Fig. 1D), protein-conducting ERAD
channel Hrd1/Hrd3 complex (15) (Fig. 2A), transient receptor

potential vanilloid 5 (TRPV5) (16) (Fig. 3A), and calcium-acti-
vated chloride channel (TMEM16A) in nanodisc (17) (Fig. 4A).
The final maps refined by OPUS-SSRI have resolutions that are
0.15 to 1.25 Å better than those refined by RELION 3.0, with
averaged resolution improvement of 0.64 Å for all seven systems
(Table 1). The improvement of the density maps reconstructed
by OPUS-SSRI is also confirmed by the model versus map FSCs.
The postprocessed maps of OPUS-SSRI have much higher cor-
relations with respect to the corresponding rigid-body fitted
atomic models in most resolution shells than RELION 3.0 (SI
Appendix, Fig. S1). Overall, for the seven systems, the improve-
ments in resolution for the postprocessed maps of OPUS-SSRI
are in the range of 0.14 to 0.73 Å, with an average of 0.30 Å, over
those refined by RELION 3.0 (SI Appendix, Table S1).
THUNDER was also run on five of these seven systems (it

failed to execute on two datasets due to incompatibility with our
computing facility). According to the gold-standard FSC at
0.143, the improvements in resolution by THUNDER over
RELION 3.0 are in the range of −0.09 to 0.28 Å with an average
of 0.07 Å (Table 1). If judged by the model versus map FSCs at
0.143, the improvements in resolution of THUNDER over
RELION 3.0 are in the range of −0.18 to 0.17 Å with an average
of 0.07 Å on the five systems (SI Appendix, Table S1). Of these

Fig. 1. Gold-standard unmasked and masked FSC curves for the final 3D reconstructions refined by OPUS-SSRI (in red color) or RELION 3.0 (in blue color) for
(A) β-galactosidase, (B) 80S ribosome, (C) influenza hemagglutinin, and (D) TRPM4. In all panels, the dashed black line represents FSC = 0.143.
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five systems, OPUS-SSRI constantly outperforms THUNDER
on four systems and only slightly underperforms THUNDER on
one system (80S ribosome) as gauged by the gold-standard
FSC = 0.143 and model versus map FSC = 0.143. Overall,
OPUS-SSRI produces an average improvement of 0.47 Å in
resolution over THUNDER for all five systems if judged by the
gold-standard FSC = 0.143, with the largest improvement being
1.20 Å (Table 1 and SI Appendix, Fig. S2), and of 0.20 Å in
resolution if judged by the model versus map FSC = 0.143, with
the largest improvement being 0.63 Å (SI Appendix, Table S1 and
Fig. S3).
Fig. 2 shows some of the structural improvements for Hrd1/

Hrd3 complex in more detail. Clearly, compared to the density
map reconstructed by RELION 3.0 (Fig. 2B), the density map
from OPUS-SSRI is much sharper and cleaner (Fig. 2C). In fact,
out of the seven systems studied, OPUS-SSRI refinement on
Hrd1/Hrd3 complex results in the largest improvements in res-
olution (Table 1 and SI Appendix, Table S1). For instance, in the
density map from RELION 3.0, there is a gap in the main-chain
density between residues 147 and 148 (Fig. 2D). However, in the
density map from OPUS-SSRI, the density in this region
becomes continuous and strong (Fig. 2E).
Similarly, for TRPV5, comparing to the final map obtained by

RELION 3.0 (Fig. 3B), the density map from OPUS-SSRI
becomes much sharper with improved SNRs (Fig. 3C). Most
impressively, the density map from OPUS-SSRI even allows
retracing of the structural model in the region of residues 374 to

380 that was out of the density map in the original structure
(highlighted in dashed red circle in Fig. 3D). After the manual
adjustment in the crystallographic object-oriented toolkit COOT
(18) and structural refinement using Python-based Hierarchical
ENvironment for Integrated Xtallography (PHENIX) (19), the
match between the model and map is substantially improved
(highlighted by dashed red circle in Fig. 3E).
In addition, for TMEM16A, in contrast to the density map

from RELION 3.0 (Fig. 4B), the density map obtained by OPUS-
SSRI (Fig. 4C) shows sharper and smoother densities with less
noise throughout. The improvement from OPUS-SSRI is high-
lighted for two helices in the regions of residues 408 to 440
(Fig. 4 D and E) and 848 to 884 (Fig. 4 F and G). Most im-
pressively, in the density map refined by OPUS-SSRI, the den-
sities for side chains of residues F412, M416, W419, and F423
(Fig. 4E) and F863, I865, F867, and N869 (Fig. 4G) become very
well separated, in marked contrast to the blobs of densities from
RELION 3.0 in Fig. 4 D and F, respectively.

Discussion
In this paper, we proposed OPUS-SSRI, a 3D refinement
method for cryo-EM single-particle analysis. The improvement
of our method in gold-standard FSC of the final reconstructions
is the most noticeable, which can be largely attributed to the
superior denoising effect of the sparseness and smoothness pri-
ors that we introduced. By setting relatively small components in
the 3D map to zero and filtering components to be more

Fig. 2. Refinement of Hrd1/Hrd3 complex. (A) Gold-standard unmasked and masked FSC curves calculated from two independent reconstructions by OPUS-
SSRI or RELION 3.0. The dashed black line represents FSC = 0.143. (B) Final reconstructed cryo-EM map using RELION 3.0. (C) Final reconstructed cryo-EM map
using OPUS-SSRI. The red rectangle defines a region of the EM map to be enlarged in D for RELION 3.0 and E for OPUS-SSRI for residues 142 to 175, re-
spectively. The EM density is represented in mesh (blue), and the atomic model is shown in a ribbons diagram with side chains in stick presentation. Both
density maps are contoured at the same level.
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consistent with their neighbors, the sparseness and smoothness
restraints can suppress the noisy densities that do not belong to
the molecules in the map, thus producing cleaner reconstruc-
tions. The cleaner map in turn leads to more accurate pose es-
timation for each particle. These improvements brought about by
our method result in an overall much-improved final recon-
struction. Furthermore, the relatively large improvements for
structures with heterogenous flexibility such as Hrd1/Hrd3 and
TMEM16A confirm the theoretical difference between the tra-
ditional smoothness prior in RELION and our smoothness prior
in OPUS-SSRI. For structures with heterogeneous flexibilities in
different regions, the traditional approach in RELION enforces
translation-invariant isotropic smoothness to the 3D maps, thus
smearing the rigid regions and creating large biases in the re-
constructions. In contrast, OPUS-SSRI can adapt to different
flexibilities in different regions in the maps, thus greatly reducing
biases and improving the final reconstructions. Another ap-
proach we explored to promote smoothness is by casting the
back-projection as a local kernel regression problem. This for-
mulation enables us to embed the 3D maps in a reproducing
kernel Hilbert space (RKHS) with specific smoothness.
Although our method introduces five more parameters, their

optimal values can be easily determined. First of all, we can set e

to the level of density values corresponding to molecular content
in the 3D volume. This level can be easily obtained from the
intermediate volumes generated by the refinement using
RELION 3.0. The optimal values of α, β, γ, and e′can be found by
grid search as detailed in SI Appendix, Experiment process and
exemplified in SI Appendix, Fig. S4. The parameters were
searched in the order α→ β→ γ→ e’. The complexity of the grid
search depends linearly on the number of parameters. The
ranges of parameters where optimal settings were found in our
tests are summarized as follows: α are in the range of
[0.4,   0.8]‖AHDy‖2e, β are in the range of [0.5,   4]‖AHDy‖2e, γ are
in the range of [0.05,   0.2]N(n), and e′ are in the range of [13,   2]e.
These ranges can serve as useful guidance for future applications
of OPUS-SSRI to other systems. In practice, a reasonable set of
parameters can be obtained with just a few trials.
It is worth noting that OPUS-SSRI focuses on improving ac-

curacies of pose parameters for each particle in the maximization
step, which is complementary to the approach explored by
THUNDER that targets other latent variables, such as defocus
parameters and class membership. Hence, these two approaches
can be readily combined. In fact, accurate determination of pose
parameters are the prerequisites for a better per-particle defocus

Fig. 3. Refinement of TRPV5. (A) Gold-standard unmasked and masked FSC curves calculated from two independent reconstructions by OPUS-SSRI or RELION
3.0. The dashed black line represents FSC = 0.143. (B) Final reconstructed cryo-EMmap using RELION 3.0. (C) Final reconstructed cryo-EMmap using OPUS-SSRI.
The red rectangles in B and C define a region of the EM map to be enlarged in D for RELION 3.0 and E for OPUS-SSRI for residues 374 to 409, respectively. The
dash red circles highlight a region in the model before (D) and after (E) the manual adjustments in COOT and structural refinement using PHENIX. The EM
density is represented in mesh (blue), and the structural model is represented by a ribbons diagram with side chains in stick presentation. Both density maps
are contoured at the same level.
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parameter refinement. This is exemplified by the limited im-
provement of THUNDER on the highly noisy dataset Hrd1/
Hrd3, in which the pose of each particle was of large errors (SI

Appendix, Figs. S2 and S3), yielding inaccurate reference two-
dimensional (2D) projections and adversely affecting the per-
particle contrast transfer function (CTF) refinement. Therefore,

Fig. 4. Refinement of TMEM16A in nanodisc. (A) Gold-standard unmasked and masked FSC curves calculated from two independent reconstructions by
OPUS-SSRI or RELION 3.0. The dashed black line represents FSC = 0.143. (B) Final reconstructed cryo-EM map using RELION 3.0. (C) Final reconstructed cryo-EM
map using OPUS-SSRI. The dashed red rectangles in B and C define a region of EMmap to be enlarged in D for RELION 3.0 and E for OPUS-SSRI for residues 408
to 440, respectively. The solid red rectangles in B and C define a region of the EMmap to be enlarged in F for RELION 3.0 and G for OPUS-SSRI for residues 848
to 884, respectively. The EM density is represented in mesh (blue), and the structural model is represented by a ribbons diagram with side chains in stick
presentation. Both density maps are contoured at the same level.

Table 1. Comparison of the final reconstructions refined by RELION 3.0, THUNDER, or OPUS-SSRI

Proteins

Gold-standard FSC = 0.143

RELION THUNDER OPUS-SSRI

Resolution (Å) Resolution (Å) ΔÅ over RELION* Resolution (Å) ΔÅ over RELION* ΔÅ over THUNDER†

β-galactosidase (EMPIAR-10017) 4.16 4.25 −0.09 3.93 0.23 0.33
80S ribosome (EMPIAR-10002) 4.08 3.80 0.28 3.93 0.15 −0.13
Hemagglutinin (EMPIAR-10097) 4.19 4.11 0.08 3.77 0.42 0.34
TRPM4 (EMPIAR-10126) 3.48 / / 2.74 0.74 /
Hrd1/Hrd3 (EMPIAR-10099) 4.80 4.75 0.05 3.55 1.25 1.20
TRPV5 (EMPIAR-10254) 3.12 3.09 0.03 2.47 0.65 0.62
TMEM16A (EMPIAR-10123) 3.90 / / 2.84 1.06 /
Average improvement 0.07 0.64 0.47

/ indicates that the comparison was unavailable in two cases in which THUNDER failed to execute due to computer incompatibility.
*The value in negative indicates the resultant resolution is worse than that from RELION, while the value in positive indicates the resultant resolution is better
than that from RELION.
†The value in negative indicates the resultant resolution is worse than that from THUNDER, while the value in positive indicates the resultant resolution is
better than that from THUNDER.
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our OPUS-SSRI might enhance the per-particle CTF refinement
on some noisy datasets by improving the pose determination of
these datasets.
Finally, our tests of OPUS-SSRI on seven real datasets sup-

port that OPUS-SSRI can greatly improve the resolution of the
final density map, thus allowing more accurate building of atomic
models. We expect OPUS-SSRI to be an invaluable tool to the
general field of cryo-EM single-particle analysis.

Materials and Methods
We clarify some notations here. For a vector x ∈RN, we use ‖x‖p to represent

the lp norm of the vector x, which is defined as ‖x‖p = (∑N
i=1

|xi |p)1=p. Z repre-

sents the set of integers, while R stands for the set of reals. We use x to
represent the 3D map, V to represent the Fourier transform (FT) of x, and Xi

to represent the FT of the ith image. For simplicity, we often use vector
representation for multidimensional data (i.e., a point with multidimen-
sional index [i, . . . , k] is mapped to the hth component xh of x).

Introduction to Cryo-EM Refinement. Formally, the FT of 3D map V to be
reconstructed in cryo-EM refinement can be defined as the maximizer of the

penalized log marginal likelihood function (3) ∑N
i=1

log P(Xi |V) − J(x), where

P(Xi |V) is the marginal probability (see SI Appendix, Log marginal likelihood
for derivation) of Xi given map V by marginalizing over all hidden variables,
such as orientation and translation (pose), and J(x) is the penalty for x, which
serves to reduce overfitting and guarantee the feasibility of solution.

As 3Dmolecular maps are both sparse and smooth, in order to incorporate
these priors into refinement, a mathematical formulation for them must be
developed. Conventionally, the smoothness of a function is associated with
the norm of its gradient, and sparseness is referred to as the number of zeros
in the values of function (20). In the following subsections, we will formulate
different smoothness priors and reveal their differences. The key equations
illustrating the effects of the traditional smoothness restraint and our
smoothness restraint are Eqs. 2 and 5, respectively.

Traditional Smoothness Prior. The traditional method (5) enforces smoothness
by applying a quadratic restraint on the magnitudes of FTs based on the
assumption that they are distributed according to Gaussian. Since the tra-
ditional method is an instance of Wiener filtering (21), the restraint strength
depends on the SNR. The 3D map reconstructed by the traditional method
can be defined as the maximizer of

∑N
i=1

log P(Xi |V) −∑
hkl

N(r)
SNR(r)|Vhkl |2, [1]

where r = ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h2 + k2 + l2

√
is the modulus of the spatial frequency vector of the

Fourier coefficient Vhkl, N(r) is the average of weights N([h,   k,   l]) in Eq. 8,
and SNR(r) is the SNR estimated by gold-standard FSC (22).

To understand the effect of the smoothness restraint of the traditional
method, we consider the role of the restraint in the gradient ascent iteration,
which is of the form

V ’
hkl = Vhkl + η(∑N

i=1

∂
∂Vhkl

log P(Xi |V) − λ(r)Vhkl), [2]

where λ(r) = N(r)
SNR(r) is the damping weight for Vhkl, and η> 0 is the learning

rate. The gradient of the traditional prior λ(r)Vhkl can be viewed as a
smoothed map in real space. By convolution theorem, let the inverse FT of
λ(r) be K(‖u‖2), which is a radial function. The gradient of traditional prior
x′(u) is a convolution in real space, namely, x’(u) = ∫

R3

K(‖u − v‖2)x(v)dv,
which represents a map smoothed by the translation-invariant isotropic
kernel K(‖u − v‖2). At each step, the old solution is modified by a linear
combination of the gradient of log marginal likelihood function and the
radial-kernel–smoothed old solution. We thus postulate that the traditional
method in RELION biases the solution toward the 3D map with homogeneous
smoothness across space.

Sparseness and Smoothness Priors in OPUS-SSRI. Sparseness resembles the idea
of masking in the calculation of masked FSC, where the voxels which are
below a certain threshold are setting to 0. The similar effects can be achieved
by restraining the sum of the absolute values of densities, namely, the l1 norm

of the density map (7) during reconstruction. Hence, we can encode the
sparseness using the l1 norm (7) and the smoothness of 3D map using the TV
norm (8). Though these two priors can effectively guarantee both sparseness
and smoothness of the map, they also introduce biases to the final solution
(23). In particular, l1 regularization tends to underestimate true nonzero
elements (23) since the corresponding soft-threshold operator shrinks the
volume by a global threshold. Fan et al. discovered that nonconcave penalty
can prevent true nonzero elements from being overly shrunk while pre-
serving sparseness (23). Therefore, we employ a nonconcave penalty log
norm (24) to reduce biases in the solution. The penalized log likelihood
function in OPUS-SSRI has the form

∑N
i=1

log P(Xi |V) −∑L
j=1

(α log(⃒⃒xj ⃒⃒ + e) + β log(⃦⃦∇xj⃦⃦
2
+ e′)), [3]

where α and β are positive, and e and e′ are positive parameters to guard
against the singularity of logarithm function at zero.

Optimization Methods in OPUS-SSRI. This subsection presents the algorithm to
optimize the penalized log likelihood in Eq. 3. First, the log marginal like-
lihood function can be optimized by the expectation–maximization method
(25) (see SI Appendix, Expectation maximization for derivation). The re-
construction process alternates between the expectation step in which the
distribution of pose parameters for each particle is determined and the
maximization step in which the 3D map is reconstructed. Secondly, to ad-
dress the nonconcavity of log norm, we approximate the logarithm function
by concave function and iteratively improve the approximation (24) at each
maximization step (see SI Appendix, Weighted approximation for deriva-
tion). Lastly, to average 3D maps reconstructed in consecutive maximization
steps, we consider leveraging implicit gradient ascent (26), which is a widely
used technique to improve the stability of optimization method. The implicit
gradient ascent restrains the Euclidean distance between the new solution

and the 3D map of previous maximization step xk−1. These choices yield a
target function in Eq. 4 by optimizing which can improve Eq. 3 (24). For-
mally, at the i + 1th iteration of the kth maximization step, let the solution
obtained in the previous iteration be xi. We approximate Eq. 3 with the
expected log likelihood (the first term in Eq. 4) and the weighted l1 and TV
norms and define the solution at iteration i + 1 as the maximizer of the
following equation:

max
x

∑N
l=1

∑
ϕ

− P(ϕ|Xl ,   Vk−1)
⃦⃦
Xl − CTFlP

ϕV
⃦⃦2

2
−∑L

j=1
(α

⃒⃒
xj
⃒⃒

⃒⃒
xij
⃒⃒
+ e

+ β

⃦⃦
∇xj

⃦⃦
2⃦⃦

∇xij
⃦⃦
2
+ e′

)
− γ

2

⃦⃦
x − xk−1

⃦⃦2

2
,

[4]

where P(ϕ|Xi ,   Vk−1) is the conditional probability of the pose parameters
given the observation Xi and the map Vk−1 from the previous maximization
step, and γ > 0 is the weight of the implicit gradient ascent penalty. The
effect of log norm becomes evident after converting it to the weighted
norm in Eq. 4. Reweighting each voxel yields a spatially varying threshold
(Eq. 6), which can reduce the bias of prior. Next, we will demonstrate that
the gradient of TV norm enforces heterogenous smoothness to the 3D map,
and the l1 norm achieves sparseness by the soft-thresholding rule while
presenting the optimization algorithm.

Though TV norm is nondifferentiable at zero, we can approximate its
gradient by Nesterov smoothing (27). The approximate gradient of TV norm
at a voxel [i,   j,   k] (see SI Appendix, Nesterov smoothed TV norm for deri-
vation) is of the form

∇fμ(x)ijk = c(i, j, k)x[i, j, k] − ∑3
a=1

c’(i,   j,   k)±Δa
x[(i,   j,   k) ± Δa], [5]

where Δa is a 1 × 3 vector with 1 on the ath entry and zeros elsewhere,

c|i,   j,   k| = 3‖∇x[i,   j,   k]‖−1μ + ∑3
a=1

‖∇x[(i,   j,   k) + Δa]‖−1μ ,

c’(i, j, k)−Δa
= ‖∇x[i,   j,   k]‖−1μ and c’(i, j, k)+Δa

= ‖∇x[(i,   j,   k) + Δa]‖−1μ , where

‖∇x[i,   j,   k]‖μ = (
⃦⃦
∇xi(i,j,k)

⃦⃦
+ e′)max(‖∇x[i,   j,   k]‖,   μ), and μ is the Nesterov

smoothing parameter. The gradient of the smoothed TV norm at the voxel
[i,   j,   k] depends on the gradients at this voxel and its neighboring voxels
[(i,   j,   k) ± Δa]. Specifically, the voxel on the direction with smaller gradient
has a larger contribution to the gradient of TV norm. We can write the
continuous form of Eq. 5 as x′(u) = ∫

R3

K(u,   v)x(v)dv, where the kernel K(u,   v)
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depends on the voxel u and its neighboring voxel v simultaneously. There-
fore, the weighted TV norm smooths the map by a spatially varying aniso-
tropic kernel K(u,   v), which adapts to heterogenous smoothness in the
3D map.

The differentiable function with l1 penalty can be optimized by a
joint application of gradient ascent and soft-thresholding operator (28).
Denote the implicit gradient-restrained expected log likelihood

−∑N
i=1

P(ϕ|Xi ,   Vk−1)
⃦⃦
Xi − CTFiPϕV

⃦⃦2 − γ
2

⃦⃦
x − xk−1

⃦⃦2

2
as h(x)and the weight

1⃒⃒
xij

⃒⃒
+e

as wj, and let the learning rate be η for the jth component of x at i + 1

iteration. Eq. 4 can be optimized by the following equation:

xi+1j =
⎧⎨⎩

0,
⃒⃒
xi′j ’

⃒⃒
<ηαwj

xij ’ − ηαwjsign(xij ’),
⃒⃒
⃒xij ’

⃒⃒
⃒ ≥ ηαwj

, [6]

where xi ’ = xi + η(∇h(xi) − β∇fμ(xi)) is the 3D map updated by gradient as-
cent, and sign() extracts the sign of a voxel value. Eq. 6 is referred to as the
soft-thresholding operator. The sparseness of the volume is preserved by the
soft-thresholding operator since it sets the voxels with relatively small values
to zeros. Moreover, the threshold ηαwj is inversely proportional to the
strength of the voxel. Therefore, the voxels with small values are more likely
to be shrunk to 0 s. Since the values of electron densities for molecules are
often higher than the background noises, this soft-thresholding operator
can suppress noises while leaving the electron densities of molecules intact.
We hence demonstrate how our l1 restraint yields an unbiased cleaner
3D map.

In summary, Eq. 6 is applied iteratively in the maximization step. The
gradient of the TV norm enforces spatially varying smoothness in gradient
ascent, while the soft-thresholding operator induced by the weighted l1
norm guarantees the sparseness of the 3D map. In all of our experiments,
convergences were achieved in a maximization step after 100 iterations.

Back-Projection as Local Kernel Regression. To reconstruct the 3D map, cryo-
EM researchers introduced a back-projection operator, which puts the 2D FT
of the image into the 3D map. As the inverse of slice operator Pϕ (SI Ap-
pendix, Eq. S2), back-projection puts the data with 2D index [i,   j] to the 3D

index n(ϕ) according to n(ϕ) = R−1
ϕ [i,   j,   0]T , where R−1

ϕ is the inverse of the

rotation matrix parameterized by orientation parameter ϕ. Back-projection
prompts us to create a 3D volume to store the data on nonintegral indices

[h,   k,   l]∈R3 if the orientation ϕ is randomly sampled, while the indices of
the 3D map operated in computer memory are integral, namely,

[h,   k,   l]∈Z3. Therefore, the limitation of computer memory prevents us
from storing the voxel of the back-projected 2D slice P−ϕXi in the 3D map V.
Nonparametric regression can be leveraged to eliminate this discrepancy by
storing weighted back-projected data on integral grids (29). Using local
kernel regression (see SI Appendix, Local kernel regression for derivation),
the expected log likelihood can be written as

−∑
hkl

∑N
i=1

∑J
j=1

∑
ϕ

P(ϕ|Xi ,   Vk−1)K(nj(ϕ),   n)⃦⃦Xij − CTFijV
⃦⃦2

n
, [7]

where K is the kernel, nj(ϕ) is a voxel back-projected with parameter ϕ, and

n = [h,   k,   l]∈Z3 is the voxel storing the kernel-weighted back-projected
data. Hence, in contrast to the first term in Eq. 4, this new formula-
tion decouples the slice operator from V and has variables Vhkl on
integral grids.

OPUS-SSRI used Gaussian kernel, which is of the form

K(nj(ϕ),   n) = exp( − (hj−h)2+(kj−k)2+(lj−l)2
σ2 ). We set the bandwidth σ of the

Gaussian kernel to be
̅̅̅
2

√
in our implementation of OPUS-SSRI. For practical

consideration, a Fourier coefficient nj(ϕ) cannot be scattered to every voxel.
Since the Gaussian kernel is quickly diminishing, we let 〚 ·〛 be the round
operator, and we consider storing Xij with the index [hj ,   kj ,   lj] on the
neighboring voxels [hj + Δh,  〚kj〛 + Δk ,  〚lj〛 + Δl], where Δa = ±1  or  0.
In the original implementation of RELION (5), they chose a kernel with tri-
linear interpolation–like weight. Using the formalism introduced before,
their kernel functions are of the form K(nj(ϕ),   n) = w(hj ,   h)w(kj ,   k)w(lj ,   l)
with w(xj ,   x) = {Δx + 1 − xj ,   x ≤ xj

Δxj + 1 − x,   x > xj
, and x ∈ [⌊xj⌋, Øxj⌉], where ⌊ · ⌋ and Ø · ⌉ are

the floor and ceiling operator, respectively. Hence, a Fourier coefficient is

scattered to eight neighboring voxels in the original implementation of
RELION (5).

Eq. 7 has a closed form solution,

Vn = ∑N
i=1∑J

j=1∑ϕP(ϕ|Xi ,   Vk−1)K(nj(ϕ),   n)CTFijXij

N(n) , [8]

with N n( ) = ∑N
i=1

∑J
j=1

∑
ϕ
P ϕ|Xi ,   Vk−1( )K nj ϕ( ),   n( )CTF2ij. Ignoring regularization

terms, local kernel regression estimates the value of a voxel [h,   k,   l] by an
integral between the kernel K and neighboring experimental data
Vh′k′l′ = P(ϕ|Xi ,   Vk−1)CTFijXij, Vhkl = Π ∫

h′k′l′
K(n,   n′)Vh′k′l′dh′dk′dl′, where Π is

the normalizing factor. This convolution projects V ’
hkl into the RKHS associ-

ated with the given kernel according to the representer theorem (9), thus
enforcing Vhkl to exhibit the smoothness of the RKHS induced by that kernel.

OPUS-SSRI Implementation. The implementation of OPUS-SSRI is based on
RELION. The 3D refinement program in RELION consists of two modules,
expectation and maximization. We implemented our method as a new
routine in its maximization module. Therefore, when performing refine-
ment, the expectation steps of RELION (5) and OPUS-SSRI use exactly the
same settings. The gradient calculation and soft-thresholding operators are
implemented with CUDA, thus allowing fast maximization.

Gold-Standard FSC. The gold-standard FSC is the FSC between two inde-
pendently refined half maps F and G (22). The gold-standard FSC of Fourier

coefficients at shell k relates to the SNR through FSC(k) = SNR(k)
SNR(k)+1, as noises

inside two maps are independent (30). The frequency where the gold-
standard FSC passes through 0.143 is denoted as the estimated resolution of
the reconstruction. A high-resolution noise substitution method is often
used to correct effects of masking in the masked FSC (30).

Model versus Map FSC. If there exists a high-resolution atomic structural
model, we can validate the cryo-EM map by comparing it to this atomic model.
The first step in calculating the model versus map FSC is fitting the atomic model
into the cryo-EM density map. The model map is constructed from the fitted
atomic model by sampling on the same grid as the experimental map. The
model versus map FSC (31) is the correlation between the FT of the model map
and the FT of cryo-EM map. The point where the model versus map FSC ap-
proaches 0.143 can be regarded as the resolution of the experimental map.

Refinement Protocol. The single-particle datasets used in this paper were
obtained from either the deposited particle stack or the coordinate files. In
all experiments, we built the initial maps ab initio in RELION 3.0 and refined
those initial maps using the three methods to be compared. The initial map
building began with one round of 2D classification in RELION 3.0. The par-
ticles belonging to the major classes were then selected to build the initial
map ab initio using the 3D classification procedure in RELION 3.0. The same
low-pass–filtered initial maps were subsequently supplied into the three
methods, RELION 3.0, THUNDER, and OPUS-SSRI, for refinement. For the
datasets with specific symmetry, the symmetry was enforced throughout the
refinement process. For RELION 3.0 and OPUS-SSRI, we also used the same
convergence criteria [i.e., no resolution improvement and pose changes for
the last two iterations (5)]. In THUNDER, the particle grading and CTF search
options were set as “True” for better results. Finally, the gold-standard FSC
calculations and density map postprocessing of the refinement results of all
methods were carried out in RELION 3.0. In the postprocessing step, the mask
was created from the final reconstruction using all particles in the 3D refinement
procedure. Using relion_postprocess (30), we obtained gold-standard FSCs and
the postprocessed map from independent maps by correcting the modulation
transfer function of the detector and sharpening with automatically estimated
B-factors. We then compared the postprocessed map with respect to the cor-
responding published atomic model(s) by calculating model versus map FSC us-
ing Phenix.Mtriage (32). Before comparison, the atomic model was fitted into
the postprocessed density maps reconstructed by different methods using the
rigid-body fit in Chimera (33).

Data Availability. The implementation of OPUS-SSRI can be found at GitHub
(https://github.com/alncat/cryoem). All other study data are included in the
article and supporting information.
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