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Abstract

Adequate modeling of mitochondrial sequence evolution is an essential component of mitochondrial phylogenomics
(comparative mitogenomics). There is wide recognition within the field that lineage-specific aspects of mitochondrial
evolution should be accommodated through lineage-specific amino-acid exchangeability matrices (e.g., mtMam for
mammalian data). However, such a matrix must be applied to all sites and this implies that all sites are subject to the same,
or largely similar, evolutionary constraints. This assumption is unjustified. Indeed, substantial differences are expected to
arise from three-dimensional structures that impose different physiochemical environments on individual amino acid
residues. The objectives of this paper are (1) to investigate the extent to which amino acid evolution varies among sites of
mitochondrial proteins, and (2) to assess the potential benefits of explicitly modeling such variability. To achieve this, we
developed a novel method for partitioning sites based on amino acid physiochemical properties. We apply this method to
two datasets derived from complete mitochondrial genomes of mammals and fish, and use maximum likelihood to estimate
amino acid exchangeabilities for the different groups of sites. Using this approach we identified large groups of sites
evolving under unique physiochemical constraints. Estimates of amino acid exchangeabilities differed significantly among
such groups. Moreover, we found that joint estimates of amino acid exchangeabilities do not adequately represent the
natural variability in evolutionary processes among sites of mitochondrial proteins. Significant improvements in likelihood
are obtained when the new matrices are employed. We also find that maximum likelihood estimates of branch lengths can
be strongly impacted. We provide sets of matrices suitable for groups of sites subject to similar physiochemical constraints,
and discuss how they might be used to analyze real data. We also discuss how the general approach might be employed to
improve a variety of mitogenomic-based research activities.
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Introduction

High throughput sequencing technology has led to renewed

interest in mitochondrial gene sequences as a means of inferring

species relationships. The greatly expanded sequencing capacity

makes feasible phylogenetic inference from complete mitochon-

drial genomes, or from the complete set of mitochondrially-

encoded proteins. Given that those data can be readily obtained

from most species, and that the genomes are typically non-

recombining and fast-evolving, mitochondrial-genome based

studies currently represent one of the most frequent forms of

phylogenomics (e.g., [1–3]). For the same reasons, mitochondrial

genomes are now being widely used for molecular dating of

divergence events (e.g., [4–6]). However, effective use of mito-

chondrial sequences for these tasks does pose some challenges;

with the most common one being loss of signal due to saturation of

nucleotide substitutions among the more divergent sequences [4].

Hence, deep-level mitochondrial phylogenomics ordinarily in-

volves analysis of amino acid variability.

Adequate modeling of the amino acid substitution process is

critical to inferring a phylogeny and to estimating divergence

dates. The most widely used approach is to accommodate

variability in replacement rates between different amino acids by

using empirical estimates derived from a large database of proteins

(e.g., [7,8]) and to model among sites variability in evolutionary

rate by using a parametric distribution such as gamma [9,10].

Empirical estimates of the 189 amino acid replacement rates are

used because it is difficult to reliably estimate so many parameters

from a single dataset, as well as being computationally very costly.

Recent attempts to improve models of protein evolution were

motivated by variability among sites in the ‘‘pattern’’ of amino

acid replacement rates (in addition to among sites rate variation),

presumably arising from site-specific structural interactions and

functional constraints (e.g., [11–13]). Several authors have modeled

such variation by permitting the equilibrium frequencies of the 20

amino acids to vary among sites (e.g., [14–17]). Additional

improvements were achieved by permitting exchangeability

parameters (sc. [7] and q.v. methods), as well as equilibrium
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frequencies and evolutionary rates, to vary among sites [18–19].

While such models have not yet been widely adopted in

phylogenomics, it appears that inadequate modeling of process

variability among-sites can be responsible for phylogenetic artifacts

such as long-branch attraction [16,17,19,20].

Le et al. [18] showed that a single matrix of amino acid

exchangeabilities was insufficient to fully represent the complexity

of among site variation in solvent exposure, secondary and tertiary

structure, and functional constraints. They achieved highly

significant improvements in fits to real data by constructing

mixture models that combine several different matrices of amino

acid exchangeabilities. Their matrices were estimated either for

pre-defined structural categories (based on solvent exposure or

secondary structure) or for partitions derived from an unsupervised

learning technique. The use of unsupervised matrices tended to

outperform matrices derived from structural categories, suggesting

that the pre-defined categories were not sufficient to capture the

full extent of among-sites evolutionary variation. However,

because their models mix for both the overall rate of evolution

and the amino acid exchangeabilities they incur a substantial

computational liability. To reduce this computation burden, Le et

al. [19] developed simpler models that extend among-sites mixture

model for rates (e.g., [9]) so that each rate class has a unique

exchangeability matrix. They [19] use a supervised and semi-

supervised procedure to estimate rate-class specific exchangeability

matrices. Their results corroborate the earlier finding [18] that

substantial improvements can be obtained by permitting ex-

changeabilities to vary among sites.

The empirical exchangeability matrices of [18] and [19],

although obtained by using a very large alignment database, are

intended for use with ‘‘generalized’’ globular proteins. It is well

known that such matrices will not be suitable for certain protein

groups (e.g., transmembrane or mitochondrial proteins) or domains

of life (e.g., viruses). Indeed, for mitochondrial proteins it seems

that unique exchangeability matrices are best estimated for specific

lineages (e.g., mtMam [21], mtArt [22], mtPan [23], mtZoa [24]).

We predict that even these linage-specific mitochondrial matrices,

which are applied as a single matrix to all sites, might be

insufficient to fully represent the complexity of mitochondrial

amino acid evolution.

The focus of this paper is to investigate the extent to which the

process of amino acid evolution varies among sites of mitochon-

drial proteins. We formally present (1) a new unsupervised

learning method for partitioning sites based on amino acid

physiochemical properties, and (2) sets of empirical exchangeabil-

ity matrices derived from partitions identified by the new method.

We apply our new method to two large datasets derived from

complete mitochondrial genomes of mammals and fish. The

significance of these results are assessed via noise-analysis and

cross-validation procedures. Lastly, we discuss how several

different mitogenomic-based research activities could be improved

by better modeling of the natural variability in evolutionary

processes among sites of mitochondrial proteins.

Results and Discussion

Application of a single rate matrix, such as mtMam [21], to all

mitochondrial protein-coding genes implies that all those sites are

subject to the same evolutionary constraints. This assumption is

too simplistic; proteins fold into three-dimensional structures that

impose different chemical environments on individual amino acid

residues and thereby impose different evolutionary constraints on

the acceptability of different amino acids. Here, we assume that

sites belong to one of several groups subject to different

evolutionary constraints, leading to similarities in the physiochem-

ical properties only among the predominant amino acids within

the same group. We present a novel method for transforming each

site within a multiple sequences alignment (MSA) according to the

physiochemical properties of its amino acids and then clustering

them into discrete groups. Rather than fix the number of groups a

priori, gap-statistics are used to determine the ideal number of

groups for the data in hand. The original amino acid states

corresponding to each site within a group are used to estimate a

matrix of instantaneous substitution rates specific to that group.

Both a noise-analysis and cross-validation are employed to

evaluate the significance of the differences between rate matrices.

The methods are applied to two large mitochondrial datasets.

A novel method for transformation and clustering of sites
according to the physiochemical properties of the amino
acids

Starting with a MSA of amino acids, in the standard alphabetic

format, the first step is to transform each site (column) in the MSA

into a vector of numerical information representing the physio-

chemical properties of the amino acids at that site. This is done by

replacing the alphabetic designation of each amino acid state with

its corresponding value on a particular physiochemical scale. At a

given site, each amino acid present is replaced by the m different

measures of physiochemical properties for that amino acid. The

mean of each of the m measures is computed for the column vector

corresponding to each site in the MSA. This yields, for each site, m

different mean values for the m physiochemical properties, and

these are assembled into a new n6m matrix where n is the number

of sites in the MSA (see Figure 1 for an overview).

There are well over 100 different scales for measuring the

physiochemical property of an amino acid. Moreover, many of

these are not independent, as they represent alternative measures

of the same scale (e.g., there are 4 measures of hydrophobicity in

the APDbase [25] and 34 in the AAindex database [26]). Kidera et

al [27] used multivariate statistical methods to reduce a set of 188

different measures of physiochemical property to a set of nine,

largely orthogonal, property scales. We employed these nine

measures to transform our data as described above. Hence m = 9

hereafter, with one property measuring bulk (P1), two measuring

hydrophobicity in free amino acids (P2, P3), one measuring

hydrophobicity in proteins (P4), two measuring the preference of

an amino acid for b-structures (P5, P6), one measuring preference

for a-helices (P7), and two measuring a preference for forming a

bend-structure (P8, P9). The value of each of the 20 amino acids

on each of the above 9 measurement scales is provided in table 1.

To identify groups of sites having similar constraints on the

physiochemical properties of their amino acids, we apply a K-

means clustering algorithm to the n6m matrix of mean physio-

chemical properties. Recall that the columns of this matrix are site-

specific physiochemical property vectors. To start, these vectors

are assigned at random to k different groups (clusters). Based on

this random assignment, an initial physiochemical-centroid is

computed as the point within the group that minimizes the

distances of all the sites in that group to the point. The algorithm

then iteratively moves the site-specific column vectors among

groups until the distances among member data points and a

physiochemical-centroid are minimized. Note that after sites have

been moved, k new centroids are re-calculated; hence, a stopping

criterion for the algorithm can be the point when the

physiochemical-centroids no longer change. As the application

of this algorithm to a random initialization could lead to a local

minimum, we apply the algorithm to 1000 different random initial

assignments.

Site-Class Specific Exchangeability Matrices
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We let the signal in the data decide the optimal number of k

groups by using an approach based on the ‘‘gap’’ method [28].

The gap measures the distance from the within-cluster dispersion

to that expected under an appropriate reference null distribution.

The error is measured as the pooled within-cluster sum of squares

around the cluster means, and the basic idea of the gap statistic is

to compare the error measure with its expectation under a null

reference distribution for the data. The optimal number of clusters

is found at the point where the value of the error measure for k falls

the farthest below the reference curve. The reference null

distribution is an appropriate uniform distribution, which takes

the shape of the data into account. We use the " 1-standard-error’’

rule to select k. See the methods section for additional details.

We applied the methods described above to two mitochondrial

datasets. The ‘‘mammal dataset’’ is comprised on 12 mitochon-

drial proteins (3580 MSA sites) from 143 lineages of mammals and

is provided in table S1. The ‘‘fish dataset’’ is comprised of 11

mitochondrial proteins (3370 MSA sites) from 75 lineages of fish

and is provided in table S1. Further details about these datasets are

provided in the methods section as well as methods S1. MSAs for

each dataset were transformed into physiochemical property

matrices (Mammal dataset: 358069; Fish dataset: 337069), and

are provided as supplementary information (denoted PmatrixS1

and PmatrixS2).

Analysis of the physiochemical property matrix for the mammal

dataset using the ‘‘1-standard-error’’ rule of [28] indicated three

groups of sites. Table 2 provides the gap(k) and Sk statistics for the

clustering under k = 2 to k = 4 groups of sites. At k = 3, the groups

contain 1750, 1025 and 805 amino acid sites. Amino acid

frequencies within each group are shown in Figure 2. Presumably,

these groups represent subsets of sites evolving under unique

physiochemical constraints, as they have substantially different

empirical frequencies; group 1 (1750 sites) is dominated by leucine

and isoleucine, group 2 (1025 sites) is dominated by alanine and

threonine, and group 3 (805 sites) is almost completely comprised

of just four amino acids (glycine, proline, serine and asparagine).

Examination of the centers of the groups suggests the following

physiochemical signatures; group 1 amino acids tend to be bulky

and hydrophobic, and are amenable to alpha helices and beta

structures; group 2 amino acids tend to be more hydrophilic and

Figure 1. Schematic overview of the transformation of a matrix of sequence data to a physiochemical property matrix. The original
matrix is a multi-sequence alignment (MSA) of amino acid sequences having n columns (sites). Each amino acid is converted to a numerical value on a
particular physiochemical scale. To capture the complexity of the physiochemical effects, we employed m = 9 different physiochemical scales in this
study (see Table 1). Thus nine different transformations of the MSA were carried out. The data are then condensed into a single n6m matrix by
computing the mean for each property at each site and constructing a column vector having m = 9 different mean values for each site. Thus the final
matrix has n alignment sites and m physiochemical properties.
doi:10.1371/journal.pone.0055816.g001

Site-Class Specific Exchangeability Matrices
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are amenable to helical structures; group 3 amino acids tend to be

less bulky, and disfavor alpha helices in favor of bends. Figure 3

summarizes the pattern of the physiochemical centers of each

group of sites. The analysis of the fish-dataset also indicated a k of

3, and split the data into 1607, 999, and 764 amino acid sites. The

properties of these groups were very similar to the mammal groups

of similar size (Figures 2 and 3).

ML estimation of amino acid exchangeabilities
If the groups identified above represent sites subject to different

physiochemical constraints, then the dynamics of amino acid

evolution should differ among those groups. To investigate this for

each group of sites identified, we estimate a matrix of amino acid

exchangeabilities (R) for the original protein sequences corre-

sponding to each group of sites identified by K-means clustering

on their physiochemical properties. The parameters of the R

matrix, along with branch lengths, are estimated by maximum

likelihood using the codeml program of PAML [9] under a fixed

tree topology. Here, two different methods are used to estimate the

R matrices, with each method initiated from several different sets

of values for the amino acid exchangeabilities (see the methods

section for additional details). Different methods sometimes

Table 1. The value of each amino acid according to 9 different physiochemical property scales.

Amino acid P1 P2 P3 P4 P5 P6 P7 P8 P9

Ala A 21.44 20.47 0.11 0.32 20.51 20.86 1.35 21.29 20.6

Arg R 1.16 20.57 21.52 21.07 20.28 20.13 20.16 0.28 20.03

Asn N 20.34 21.25 20.6 20.96 21 21.19 20.97 1.19 1.27

Asp D 20.54 20.75 21.74 21.07 21.17 21.72 20.06 0.74 1.39

Cys C 20.75 0.06 0.63 1.5 0.6 1.14 20.53 1.18 20.19

Gln Q 0.22 21.24 20.46 21.05 0.19 20.42 0.57 20.14 20.12

Glu E 0.17 20.62 21.65 21.03 21.74 21.78 1.96 21.21 20.27

Gly G 22.16 21.02 20.19 20.03 20.84 20.99 21.72 1.43 1.73

His H 0.52 20.46 20.18 20.13 20.56 20.1 0.59 20.27 20.27

Ile I 0.21 1.37 0.97 1.52 1.91 1.27 0.06 21.3 21.49

Leu L 0.25 1.06 1.01 1.14 0.69 0.02 0.93 21.36 21.14

Lys K 0.68 20.16 21.62 21.76 20.86 21.19 0.71 0.4 0.15

Met M 0.44 0.2 0.72 1 0.45 0.24 1.39 21.24 21.29

Phe F 1.09 1.46 1.24 1.16 0.88 0.48 0.37 20.46 20.75

Pro P 20.71 0.9 0.21 20.72 21.26 0.86 21.72 1.03 1.98

Ser S 21.21 21.19 20.33 20.46 20.54 0.22 20.99 0.74 1.02

Thr T 20.67 20.97 0.01 20.36 0.57 0.86 20.68 0.11 0.14

Trp W 2.08 2.06 1.55 0.67 0.61 0.42 0.23 0.83 20.52

Tyr Y 1.34 1.16 1.04 20.07 1.02 1.21 21.25 0.94 0.3

Val V 20.34 0.42 0.77 1.38 1.84 1.66 20.09 21.63 21.32

Physiochemical property scales are from [27]. P1: bulk; P2–P4: hydrophobicity; P5–P6: b-structure preference; P7: a-helix preference; P8–P9: bend-structure preference.
doi:10.1371/journal.pone.0055816.t001

Table 2. Gap(k) and Sk statistics for the mammal and fish mitochondrial datasets.

Mammal dataset

Number of partitions Gap(k) Sk Gap(k)-Sk

k = 2 0.5980 0.0087 0.5893

k = 3 0.6371 0.0073 0.6298

k = 4 0.6209 0.0066 0.6142

Fish dataset

Number of partitions Gap(k) Sk Gap(k)-Sk

k = 2 0.5109 0.0087 0.5021

k = 3 0.5789 0.0067 0.5722

k = 4 0.5618 0.0070 0.5548

The gap is a measurement of the difference between the error within a group and its expected value under a reference (null) distribution. Sk is the standard deviation of
the log of distance vectors of the reference data for k clusters Gap(k). The value of k is chosen as the smallest k where Gap(k) $ Gap(k+1)2Sk+1 and is shown in bold.
doi:10.1371/journal.pone.0055816.t002
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yielded different R matrices. In such cases, the matrix having the

highest likelihood score is taken as the best estimate of R. Bubble-

plots are used to visualize the R matrices, where the size of a

bubble is proportional to the inferred substitution rate and is

comparable across different matrices (Figure 4).

First we estimated an R matrix jointly for all sites in the

mammal dataset. This matrix is similar to the published mtMam

matrix in that it also implies that all sites are subject to the same

evolutionary constraints. Our estimate of such a matrix (denoted

as mtMamR0) was very similar to mtMam (see Figure S1), which

is not surprising given that our sample of data covers the breadth

of mammalian diversity sampled by [21]. Our sample differs by

including more lineages, which does not appear important to the

estimate of R in this case. All subsequent comparisons will be made

with the previously published matrix, mtMam.

Figure 4A presents the R matrix for mtMam, and for the three

sets of sites grouped according to their physiochemical properties.

Hereafter the R matrix for the large group (1750 sites) will be

referred to as mtMamR1, the R matrix for the medium group

(1025 sites) as mtMamR2, and the R matrix for the small group

(805) as mtMamR3. Each matrix is provided as supporting

information (RmatricesS1). Figure 4A clearly illustrates that

substantial differences exist both between the group-specific R

matrices and mtMam, suggesting that such a joint R matrix is

insufficient to represent the site-specific physiochemical constraints

that impact substitution dynamics. Likelihood scores presented in

table 3 support this interpretation. For example, mtMamR1 is a

substantially better fit to group-1 sites than mtMamR2,

mtMamR3, or mtMam. However, mtMam did outperform

mtMamR2 and mtMamR3 for group-1 sites. Indeed, this pattern

of results was also observed for group-2 and group-3, suggesting

that mtMam might be the best alternative R matrix in the absence

of a group-specific R matrix. This finding is not surprising because

mtMam represents an aggregation of information about amino

acid exchangeabilities over all three groups.

Results for the fish dataset were very similar to those obtained

for the mammals (Figure 4B). In this case there is no published

fish-specific R matrix, so we provide ours as supporting

information (RmatricesS2), and hereafter refer to this matrix as

mtFishR0. The mtFishR0 is estimated under the tree topology

estimated from the mitochondrial data in hand. However, the

phylogenetic relationships for the fish lineages are somewhat more

controversial [29]. To investigate the impact of this uncertainty on

the estimate of mtFish matrices we estimated the exchangeabilities

under an alternative topology derived from published analyses of

morphological characters [30]. The resulting R matrices are

similar but not identical (see RmatricesS2). Since the impact of

topology was small, we present the results inferred under the

topology estimated from the data in hand (Figure 4B). As with the

mammalian dataset, the group-specific R matrices provided a

substantially better fit than the alternatives, with the matrix

mtFishR0 always the second best likelihood score (table 3).

Matrices mtFishR1 (1607 sites), mtFishR2 (999 sites) and

mtFishR3 (764 sites) are provided on-line as supporting informa-

tion (RmatricesS2).

The above analyses were performed without requiring consis-

tency among branch lengths estimated for the three groups of sites.

An alternative approach is to constrain the optimized branch

lengths so that they are proportional among groups. To achieve

this we fit via ML a branch-length scale parameter to each data

partition relative to the branch lengths estimated under a joint R

matrix (R0). The effect is that the branch lengths at a site will be

proportionally lengthened or shortened according to the value of s

for the group to which a site belongs; i.e., site-group 1 has

s1(PR1); site-group 2 has s2(PR2); and site-group 3 has

s3(PR3). Results were similar to those obtained previously. In

both the mammalian and fish datasets, the group-specific R

matrices provided a substantially better fit than the alternatives

(table S2). Because one of our objectives is to explore how branch

lengths might be differently impacted within a partition, we chose

to base our subsequent analyses on the unconstrained approach to

Figure 2. Amino acid composition of groups of sites resolved by K-means clustering on physiochemical properties. The amino acid
frequencies in the mammal (A) and fish (B) datasets differ substantially among the groupings. The mammal dataset is comprised of 3580 MSA sites
from 143 mitochondrial genomes and the fish data is comprised of 3370 MSA sites from 75 mitochondrial genomes. Amino acid frequencies are
shown for each group of sites.
doi:10.1371/journal.pone.0055816.g002

Site-Class Specific Exchangeability Matrices
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branch length estimation. We note, however, that considerable

computational savings can be achieved with the constrained

estimation approach.

Noise analysis
We have assumed that differences in selective constraints on

physiochemical properties leads to different evolutionary dynamics

within different groups of sites. However, lacking any biological

basis for the observed variation in amino acid frequencies among

sites, our separation of sites into groups could reflect statistical

noise. In a case where groups were separated completely by noise,

the group-specific R matrices are expected to show some variation

in pattern. To investigate if the observed R matrices have more

structure than expected we carried out a noise analysis.

The original MSA can be randomly partitioned into three

groups of size equal to those inferred by clustering the

Figure 3. Physiochemical centroids for three groups of sites resolved by K-means clustering. Panel (A) shows results for the largest
group of sites (1750 for mammals and 1607 for fish). The intermediate group (B) was compromised of 1025 sites for mammals and 999 sites for fish.
The smallest group (C) was compromised of 805 sites for mammals and 764 sites for fish. The physiochemical properties of each of these groups were
very similar for mammals and fish.
doi:10.1371/journal.pone.0055816.g003

Site-Class Specific Exchangeability Matrices

PLOS ONE | www.plosone.org 6 January 2013 | Volume 8 | Issue 1 | e55816



physiochemical property matrix. This random partitioning was

repeated 50 times for a given dataset. An R matrix was then

estimated from every random partition, providing a baseline of

results based solely on ‘‘noise’’. In the methods section we describe

a simple measure of the distance between two matrices, and we use

this to measure the distance of each random matrix to a reference

matrix (in this case, the R matrix estimated jointly for all sites in

the data). We also measure the distance of non-random R matrices

(e.g., mtMamR1, mtMamR2 and mtMamR3) to a reference

matrix (e.g., mtMamR0). Results (table 4) allow the use of the one-

sample t-test to assess if the distance of the non-random matrix

from the reference matrix is consistent with random partitioning of

sites into groups. In both the mammal and fish datasets the

distance of the group-specific matrices is significantly larger than

expected if the data had been separated completely by noise

arising by sampling errors (table 4).

To visualize the pattern that arises from a random partition we

constructed heat maps of the difference between matrices on an

element-by-element basis. Each element in a given heat map

(Figure 5) represents the difference between an amino acid

exchangeability estimated for a partition and the same exchange-

ability in the reference matrix (mtMamR0 or mtFishR0). The

upper triangle of each matrix gives the difference between the

reference matrix and the matrix for a physiochemically-defined

group, and the lower triangle gives the difference between the

same reference matrix and the matrix for the random grouping of

sites of equal size. These heat maps clearly indicate that random

partitioning of sites into groups leads to R matrices that are very

similar to the reference matrix (R0), whereas the unsupervised

grouping according to physiochemical properties leads to matrices

that have unique differences from R0 (Figure 5).

Cross validation
As expected, the group-specific R matrices provide a substantial

improvement in explanatory power. However, some improvement

in likelihood is expected even if there were no biological basis to

the partitioning, as we fit a very parameter rich model (189

exchangeability parameters) to each group of sites. Hence, we

employ cross validation to assess if the gains in likelihood

associated with each of the partition-specific matrices (table 3)

are also obtained if we apply the models to independent data. The

procedure is a 50% cross validation of the likelihood score. The

three clusters are randomly split into two equally sized subsets that

are subsequently treated as training (T) and validation (V) sets.

Typically, with k = 3 groups, the data can be paired according to

the three groups (i.e., [T1,V1], [T2,V2], and [T3,V3]), and the R

matrices are estimated from Ti via maximum likelihood and

applied to Vi. In this case we use cross validation to confirm the

overall pattern we observe in table 3, so we apply all three training

matrices (RT1, RT2, and RT3), as well as the independently

estimated R for the complete data (mtMamR0 or mtFishR0) to

each validation dataset (Vi). This is a computationally costly

procedure due to the estimation of the exchangeability parameters

in each Ti. For this reason we carry out 10 replications of the cross

validation procedure.

Results for both the mammal and fish datasets are very similar.

For a given replication, the fit of the various matrices to the

validation sets has the same pattern as in table 3; i.e., the partition-

Figure 4. Plots of empirically estimated rate matrices (R) for complete and partitioned sets of (A) mammalian and (B) fish
mitochondrial sequences. Exchangeability parameters of the rate matrices were estimated by maximum likelihood. These parameters are plotted
as circles within a 20620 matrix, where the diameter of the circle is proportional to parameter value.
doi:10.1371/journal.pone.0055816.g004
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specific matrix out performs all the other matrices, with the joint R

matrix (mtMamR0 or mtFishR0) providing the second best fit to

each group of sites. Table 5 provides an example from one

replication of the cross validation procedure, and table 6 provides

the mean difference and standard deviation in likelihood scores

over all 10 replicates. Note that this is not the standard use of cross

validation, as the placement of sites into groups was derived from

an analysis of the complete dataset prior to training. However, in

this setting we are interested in the complete data estimate of the

rate matrices (R1, R2, and R3) because we are supplying these as

the best estimates of empirical matrices intended for use with other

data sets (such as mtMam, mtArt, mtZoa and others are currently

being used by the wider community). These results indicate that

future analyses of either fish or mammal will likely benefit from the

use of these matrices, as the joint R matrices do not represent the

variation in physiochemical constraints among the sites of

mitochondrial proteins.

Examination of the branch length differences between the

estimated matrices and the mtMam for mammal data or

mtFishR0 for the fish data showed variation throughout the tree.

As applied to the appropriate sites, branch lengths estimated under

R1 and R2 were generally shorter than when the overall matrix

(mtMam or mtFishR0) was applied to the same group of sites. R3

gave different results, with some branches being longer when R3

matrix was used. This was more prominent in the fish than in the

mammal dataset with many more branches affected. These

findings are difficult to visualize given the large number of

branches in the full datasets. To aid visualization of this result, we

assembled two reduced datasets (22 taxa for the mammals, figure

S2A, and 21 taxa for the fish, figure 6A). Results for the reduced

datasets are similar to the full data and are shown in figure 6B (fish

dataset) and figureS2B (mammal dataset). Interestingly the

branches that seemed to be affected the most were internal

branches (figure 6B and figureS2B).

Results presented in figure 6B and figure S2B isolate the impact

of the exchangeabilities, as the reference set of branch lengths

(from R0) were separately estimated by using the empirical amino

frequencies for each site-group (i.e., the frequencies were not miss-

specified in R0). However, R0 would normally be applied using

frequencies averaged over the complete data. To investigate

complete data estimates of branch lengths, we mixed the MLEs of

branch lengths under R1, R2, and R3 according to the frequencies

of the three site-groups in the data and compared them to the

complete-data estimates of branch lengths under R0 + average

frequencies. As expected, there was a greater tendency for branch

lengths to be smaller under a very simple model (R0 + average

frequencies), as compared to the mixed-estimates (figure 6C and

figure S2C). Although less prominent than in previous analyses,

the impact on branch lengths was variable throughout the tree.

Conclusions

We employed our new method to identify three large groups of

sites evolving under unique physiochemical signatures. Interest-

ingly, results were similar for both of the datasets examined in this

study. Gap-statistics suggested k = 3 in both cases, and although

the physiochemical signatures differed between groups of sites

within a dataset, the group-specific signatures were similar

between mammals and fish. We clustered sites into groups

according to similarities in the physiochemical properties because

we assumed that sites within a group were subject to unique

evolutionary constraints. This notion was supported by the ML

estimates of amino acid exchangeabilities for the different groups

of sites. The noise-analysis indicated that the observed differences

in amino acid exchangeabilities are significant. Although joint

Table 3. Likelihood of full dataset and three partitions based on a rate matrix estimated from the complete data (R0) and three
partition-specific rate matrices (R1, R2 and R3).

Mammal dataset (3580 sites)

Subset of data

(no. of sites)

Group 1 Group 2 Group 3

R matrix Full data (1750) (1025) (805)

mtMamR0 2216607.19 2119282.36 276399.18 235438.41

mtMamR1 2333153.29 2106238.09 2109937.12 246677.37

mtMamR2 2256105.56 2137415.88 263583.77 240892.74

mtMamR3 2274537.25 2140685.03 296717.46 228146.37

Fish dataset (3370 sites)

Subset of data

(no. of sites)

Group 1 Group 2 Group 3

R matrix Full data (1607) (999) (764)

mtFishR0 2110263.36 258780.87 239944.41 219350.11

mtFishR1 2177238.67 252027.87 251906.35 224749.97

mtFishR2 2137331.88 267316.29 232627.99 223242.22

mtFishR3 2148474.98 274164.24 247841.31 215173.94

The best likelihood score is shown in bold.
doi:10.1371/journal.pone.0055816.t003
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matrices such as mtMam and mtFishR0 perform reasonably well

because they aggregate information over all sites, we found that

they did not adequately represent the natural variability in the

evolutionary processes among sites of mitochondrial proteins.

Indeed, cross-validation indicated that models for mitochondrial

protein data are significantly improved by the addition of site-class

specific exchangeability matrices.

The most immediate application of this work is in the field of

mitochondrial phylogenomics. Phylogenetic analysis of genomic

data is commonly carried out under a ‘‘partition model’’, although

usually at the DNA sequence level (e.g., [31–33]). In a partition

model, the data are divided a priori into subsets, typically whole

genes, and independent model parameters are employed for the

different partitions. Users of partition models are assuming (1) that

there are significant differences among groups of sites in the

evolutionary process, and (2) that they know which sites belong to

which group with little or no error (but see [33] for an alternative

approach). Partition models are attractive because they are

computationally less costly than mixture models [32]. Unlike

other empirical models for amino acid data, our set of site-class

Table 4. Tests of the hypothesis that group-specific R matrices have more structure than expected by chance (noise analysis).

Mammal dataset

i = 1 (large) i = 2 (medium) i = 3 (small)

d Ri -R0ð Þ 1.7299 1.1334 1.3230

Mean d(R�i,j{R0) 0.1412 0.2140 0.2982

SDd(R�i,j{R0) 0.0177 0.0295 0.2094

t-statistic 255.24 250.67 28.85

p-value 5.25e-13 1.40e-12 5.0e-06

pBonf 3.15e-12 6.84e-12 2.94e-05

Fish dataset

i = 1 (large) i = 2 (medium) i = 3 (small)

d Ri -R0ð Þ 1.7109 1.2853 1.1510

Mean d(R�i,j{R0) 0.1795 0.2682 0.3117

SDd(R�i,j{R0) 0.0205 0.0444 0.0406

t-statistic 260.82 241.85 253.68

p-value 2.21e-13 6.33e-12 6.79e-13

pBonf 1.33e-12 3.80e-11 4.07e-12

i is an index for three partitions (groupings) of the data based on amino acid physiochemical properties. d Ri -R0ð Þ is the observed distance between a ith group-specific
rate matrix (Ri) and the rate matrix for the complete data (R0). d(R�i,j{R0)is the distance between a the jth random partition (denoted by *) of the complete data and the

and the rate matrix for the complete data (R0). j is an index of 50 different random partitions of the data. The t-statistic is for a one-sample t-test. pBonf is the Bonferroni
adjusted p-value.
doi:10.1371/journal.pone.0055816.t004

Figure 5. Heatmaps showing the difference between the group-specific rate matrices (R1, R2, R3) and the rate matrix estimated from
the complete dataset (R0). The upper right triangle gives the difference between a partition derived from K-means clustering of the mammal data
and mtMamR0. The lower left triangle gives the difference between a random grouping of mammalian sites and mtMamR0. Random groupings were
constrained to the same size as the groups obtained by using K-means clustering. Panel (A) is for group 1 (1750 sites). Panel (B) is for group 2 (1025
sites). Panel (C) is for group 3 (805 sites).
doi:10.1371/journal.pone.0055816.g005
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specific matrices will permit amino acid level analysis of

mitochondrial data without having to assume an identical amino

acid exchangeabilities for all sites. To facilitate this, we provide on-

line (table S1), a map of our site-class specific matrices to the sites

in our MSAs. Thus, if a new sequence can be aligned to one of our

aligned sequences, the appropriate exchangeability matrix can be

identified for each site in that new sequence. In addition to

specification of a site-class specific matrix, we suggest that partition

models should also include group-specific empirical amino acid

frequencies and a branch length scale parameter. Programs such

as RAxML [34] can be adapted to this purpose and then used to

search tree space.

An alternative, and more computationally costly, approach to

phylogenomics is to use a mixture model. Here the user is still

assuming that there are significant differences among groups of

sites in the evolutionary process, but they are no longer willing to

assume they know which sites belong to a given group within the

model. Recent models for amino acid sequences mix at both the

level of the matrix and the level of the evolutionary rate [17,18],

but they have not yet been widely adopted. In those models, the

likelihood of the data is computed as a weighted average over a set

of matrices (or amino acid frequency profiles) and over the

standard rate categories of a gamma model [9,10]. Using the

analytical framework developed by [17] or [18], mixture models

could be constructed for mitochondrial data by employing our set

of site-class specific matrices in place of the matrices used in their

models. Because these models average over matrices (and rate

categories), a user will not be required to specify which site belongs

to a given matrix within the model as is the case with the partition

models.

Table 5. Results from one replicate of the 50% cross-validation of the likelihood score for alternative rate matrices (Ri).

Mammal dataset

V1 V2 V3

R0 258806.87 239349.27 215983.35

R1 252753.04 255574.13 221695.61

R2 268451.01 233077.13 218441.30

R3 270395.13 250302.24 212783.96

Fish dataset

V1 V2 V3

R0 229642.99 220263.32 29210.31

R1 226511.69 225587.05 210915.49

R2 233793.48 216537.54 211009.97

R3 238222.13 223863.04 27367.60

Each group of sites was randomly divided into a training (Ti) and a validation subset (Vi). The likelihood score for Vi were obtained by using MLEs estimated from Ti. The
procedure was carried out for 10 replicates, results are provided above from one replicate as an example. The best likelihood scores are shown in bold.
doi:10.1371/journal.pone.0055816.t005

Table 6. Mean and standard deviation (in parentheses) of difference in log-likelihood between group-specific and alternative rate
matrices (RTi) as applied to the validation datasets (Vi) of the cross validation procedure.

Mammal dataset

RTi

Group-

Vi Data Specific R R0 RT1 RT2 RT3

V1 RT1 6087 (298) - 15000 (730) 17415 (754)

V2 RT2 6238 (290) 22985 (1279) - 17040 (965)

V3 RT3 3561 (235) 9522 (688) 6374 (429) -

Fish dataset

RTi

Group-

Vi Data Specific R R0 RT1 RT2 RT3

V1 RT1 3074 (119) - 7528 (695) 14533 (3607)

V2 RT2 3436 (287) 10477 (1272) - 7437 (612)

V3 RT3 1900 (101) 4411 (621) 3957 (433) -

R0 is the rate matrix estimate from a complete set of real amino acid sequences. RTi is a rate matrix estimated from a group-specific training dataset. The cross validation
procedure was based on 10 replicates of 50% cross validation.
doi:10.1371/journal.pone.0055816.t006
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There is a wide range of other mitogenomic-based research

activities that could benefit from improved modeling. Phylogeny-

based approaches for estimation of divergence dates, or the

intensity of functional divergence, are particularly noteworthy.

Mitochondrial data are often used to infer divergence dates (e.g.,

[4–6]). Partition models, again usually applied to DNA level

analyses, are becoming widely recognized as important (e.g.,

[35,36]). Because we found that inadequate modeling of

mitogenomic data can negatively impact ML estimates of branch

lengths, we expect that estimation of deeper divergence times from

such data could likewise be negatively impacted. Mitogenomic

data are also the focus of analyses for functional divergence (e.g.,

[37,38]). Recent work on model-based methods to test for

functional divergence have begun to employ amino acid

exchangeability matrices as a means of improving the involved

statistical tests [39,40]. However, those methods employ a single

matrix to model the effect of physiochemcial properties on the

amino acid replacement rate. A possible negative outcome of this

modeling strategy is that un-modeled variation among sites could

be incorrectly ‘‘soaked up’’ by some of the other parameters in

those models, and this could impact tests that depend on reliable

estimates of parameter values [41]. Although the site-class specific

matrices estimated in this study are suitable only for mitochondrial

data, the underlying modeling issues are relevant to the analysis of

other types of data.

The impact of site-class specific matrices on phylogenomic

inference, divergence date estimation, and studies of functional

divergence are important directions for further research, but are

beyond the scope of this study. Within the context of those

activities, it will be interesting to explore the effect of clustering

according to alternative measures of physiochemical properties.

Furthermore, we expect that site-class specific exchangeability

matrices will differ among the more divergent lineages of

metazoans (e.g., cnidarians, arthropods, lophotrochozoans), as

has been observed among joint matrices (e.g., [20–22]). Beyond the

more practical benefits to these research activities, clustering of

sites and estimating exchangeabilities can be used to directly

investigate questions of molecular evolution. For example, the

approach could shed some light on the relative importance of the

genetic code versus physiochemical constraints in explaining the

differences observed between the more divergent lineages of

metazoans. Because the adequacy of an evolutionary model is

central to so many different research activities, we predict that our

general approach to grouping sites for the purpose of estimating

exchangeabilities could have value beyond mitogenomic datasets.

Figure 6. Comparison of branch lengths estimated under group-specific matrices and an overall matrix. Reduced datasets were used to
investigate the impact of model-choice on branch lengths. A. A phylogenetic tree for 21 fish taxa. B. A plot showing differences between branch
lengths estimated under partition-specific matrices and the mtFishR0 matrix. C. A plot showing the differences between the corrected branch lengths
under a mixture of the partition specific matrices and mtFishR0 for the whole data. Differences between branch lengths (Bl) are measured as (Bl_Ri/
Bl_R0) – 1, where Bl_Ri denotes branch lengths obtained using a partition specific matrix, and Bl_R0 denotes branch lengths obtained using the
reference matrix (mtFishR0). This measure centers the difference between branch lengths on 0, with values above 0 indicating branches that were
larger under the partition-specific matrix and values below 0 indicating branches that were shorter under the partition-specific matrix. A value of zero
indicates no difference between branch lengths.
doi:10.1371/journal.pone.0055816.g006
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Methods

Data sets
All analyses are carried out on two datasets. The mammalian

dataset is comprised of the amino acid sequences from 12

mitochondrially-encoded genes sampled from 143 lineages. The

fish dataset is comprised of 11 mitochondrially-encoded genes

sampled from 75 lineages of Actinopterygians (ray-finned fishes). A

list of all the organisms, and the accession numbers for their

complete mitochondrial genomes, is provided in table S3. All the

protein-coding genes were parsed from the genome sequence and

the sequences of the 12 genes encoded on the heavy strand were

translated and aligned by using the program t-coffee [42].

Alignments (table S1) were visually inspected and regions having

questionable positional homology were either adjusted manually

or removed from the MSA. Those few amino acids that are

encoded by overlapping reading frames also were removed from

the MSA. Additionally, ATPase 8 was removed from the fish

dataset because most of its sites overlap with the sites of adjacent

genes. The resulting MSA for the mammal and fish datasets were

comprised of 3580 and 3370 amino acid sites respectively.

Additional alignment details are provided supplemental methods

S1.

K-means clustering and gap statistics
K-means [43] is a relatively simple procedure for unsupervised

learning, having the advantage of a very fast operation time. We

employed the Hartigan and Wong algorithm [44], as implemented

in the program R [45]. We employ this algorithm for the purpose

of grouping sites in a MSA according to similarities in their

physiochemical properties. The algorithm is applied to vectors

containing nine different physiochemical property values that

correspond to the mean values of the amino acids at a specific site

in a MSA. As K-means is a hill-climbing algorithm, we use 1000

different random initial assignments and the results that minimized

the Euclidean distance of each member of a group from the

physiochemical centroid of that group are taken as the best result.

To determine the best number of groups for the data in hand we

used a gap statistic. The gap is a measurement of the difference

between the error within a cluster (denoted as Wk) and its expected

value under the reference, or null, distribution. The first step is to

create a uniform distribution on the results of a singular value

decomposition of the matrix. The reference distribution is then

obtained by transforming this uniform back to the original

dimensions [28]. Monte Carlo samples are drawn from the

reference distribution such that the gap can be measured as:

Gap(k)~(1=B)
X

b

log(W �
kb){log(Wk)

where k = 1, 2, 3 … K groups, or clusters, and b = 1, 2, 3, … B

reference features derived from the reference distribution from

which log (Wk) is estimated. Thus (1=B)
P
b

log(W �
kb) is an estimate

of the expected value of log (Wk). The value of k is then chosen to

be the smallest k where Gap(k) 3 Gap(k+1)2Sk+1 is satisfied. Where

Sk is the standard deviation of the log of the distance vectors of the

reference data under k clusters, and Gap(k) is based on B = 100.

This, selection of k follows the ‘‘1-standard-error’’ rule of [28].

ML estimation of amino acid exchangeabilities
The substitution rate matrix for amino acids (Q) contain the

instantaneous rates of change from amino acid i to amino acid j

(qij), where i and j index the 20 different amino acids. The off-

diagonal elements of matrix Q is described by the product of a

symmetric matrix of amino acid exchange-rate parameters

(R~frijg) and a diagonal matrix of equilibrium frequencies

(P~diagfp1,p2,:::,p20g); thus Q~RP . We follow Whelan and

Goldman [7] by referring to the rij
0s as exchangeability

parameters for pairs of amino acids (i, j).

All 189 parameters from the matrix, R, were determined under

a maximum likelihood (ML) framework using the computer

program codeml from the PAML package [9]. ML estimation of R

was carried out using a fixed tree topology. The topology was

estimated from the same data (but excluding third codon positions)

by using a neighbor-joining analysis of pairwise distances

computed under the HKY85+discreteGamma model. In the case

of the fish dataset, ML estimation was also carried out under a

topology derived from morphological characters [30]. All tree

topologies are provided on-line as supplementary information in

the nexus format (TreefileS1 and TreefileS2). Two different

techniques were used to estimate the exchangeability parameters.

The first involved jointly estimating the 189 parameters at the

same time as the estimation of the branches lengths for the tree

(284 branch length parameters for the mammal tree and 184 for

the fish tree). This represents a large computational burden. The

second method cycled iteratively between two phases of optimi-

zation. In the first phase, branch lengths were estimated under a

fixed set of exchangeability parameter values, and in the second

phase the exchangeability parameter values were estimated under

a fixed set of branch lengths. The second method cycled between

the two phases until convergence. Both methods require the

optimization to start from a set of initial parameter values, and we

found that the optimization could be sensitive to the initial values

of the exchangeability parameters in some cases. Hence every

matrix was estimated by using both methods and multiple sets of

initials for the exchangeability values (the empirical matrices

mtMam, mtRev24, Grantham, JTT, and WAG were used as

different sets of initial values). The results from each run were

examined and the best set of exchangeabilities was determined

according to the likelihood score. Analyses were performed using a

20 node dual core Opteron 270, 2.2GHz, 4GB system running

freebsd. The time required to obtain a rate matrix varied based on

size of partition and method used. Smaller partitions required half

a day to complete using method 1, to a week using the second

method. The large partition took 2 weeks using the first method

and a month with the second method.

Noise analysis
K-means clustering with gap-statistics yields k subsets of an

original MSA, and ML is used to infer an R matrix specific to each

subset. Noise analysis is carried out here to assess if differences

between R matrices estimated for the k subsets of the data differ

from a reference R matrix in excess of what would have been

observed if the sites had been randomly partitioning among the k

subsets. If the k subsets possess N1, N2, … Nk sites separately, then S

replicates of random subsets having sizes N1, N2, … Nk are

generated for the noise analysis. Due to heavy computational cost

of analyzing the random subsets of the data we employ S = 50

replicates, leading to 506k subsets for which we must estimate an

R matrix via ML as described above. Such matrices are denoted as

R�i,j , with i indexing 1, 2, 3, … k subsets of the data, and j = 1, 2, 3,

…50 replicates. Each R�i,j is compared to a reference R matrix

denoted as R0. Hence, we measure a distance denoted d(R�i,j{R0)

for each of 506k random subsets of the MSA and this serves as a
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baseline to which we compare d(R1{R0), d(R2{R0), …,

d(Rk{R0).
We employ the following distance statistic to measure the

difference between a particular subset-specific matrix (eitherRi or

R�i,j ) and a reference matrix (R0):

P190

i~1

bi{aij j

P190

i~1

ai

where ai is the ith entry in the reference matrix and bi is the

corresponding entry in the subset-specific matrix. For a given

subset of the MSA and S = 50 replicates, we compute 51 values of

this distance; one for d(Ri{R0)and 50 for d(R�i,j{R0). A one-

sample t-test is used to determine if the mean of the d(R�i,j{R0)0sis

less than d(Ri{R0).

Supporting Information

FigureS1 Similarity between mtManR0 and mtMam
matrices of amino acid exchangeabilities. The mtMam

matrix contains the amino acid exchangeabilities for mammalian

mitochondrial sequences estimated by [21]. The mtMamR0

matrix contains the amino acid exchangeabilities for mammalian

mitochondrial sequences estimated in this study. Both matrices

aggregate evolutionary process information over all sites. The

estimated exchangeabilities are very similar between mtMam and

mtMamR0.

(PDF)

Figure S2 Comparison of branch lengths estimated
under group-specific matrices and an overall matrix.
Reduced datasets were used to investigate the impact of model-

choice on branch lengths. A. A phylogenetic tree for 22 mammals.

B. A plot showing differences between branch lengths estimated

under partition-specific matrices and the mtMam matrix. C. A

plot showing the differences between the corrected branch lengths

under a mixture of the partition specific matrices and mtMam for

the whole data. Differences between branch lengths (Bl) are

measured as (Bl_Ri/Bl_R0) – 1, where Bl_Ri denotes branch

lengths obtained using a partition specific matrix, and Bl_R0

denotes branch lengths obtained using the reference matrix

(mtMam). This measure centers the difference between branch

lengths on 0, with values above 0 indicating branches that were

larger under the partition-specific matrix and values below 0

indicating branches that were shorter under the partition-specific

matrix. A value of zero indicates no difference between branch

lengths.

(PDF)

TableS1 The multiple sequence alignments (MSAs) for
the mammal and fish datasets. The MSAs for the mammal

and fish datasets are 3580 and 3370 amino acid sites respectively.

These MSAs are provided as separate worksheets within a single

excel file. The second line of each MSA is a column-specific

indicator variable that gives the assignment of each site in the

MSA to a group-specific R matrix; 1 = large group (1750 in

mammals or 1607 in fish); 2 = medium (1025 in mammals or 999

in fish); 3 = small (805 in mammals or 764 in fish).

(XLSX)

Table S2 Likelihood of full dataset and three partitions
based on a rate matrix estimated from the complete

data (R0) and three partition-specific rate matrices (R1,
R2 and R3). The original branch lengths for the analysis are

fixed to those obtained from the total data using R0 and then a

scaling factor is applied

(DOCX)

TableS3 List of the GenBank accession numbers for the
complete mitochondrial genomes of all organisms used
in this study. The mammalian dataset is comprised of amino

acids from the mitochondrial genomes of 143 linages of mammals.

The fish dataset is comprised of amino acids from the mitochondrial

genomes of 75 linages of Actinopterygians (ray-finned fishes).

(XLSX)

PmatrixS1 Physiochemical property matrices for the
mammal dataset. The matrix is a numerical representation of

the mean physiochemical properties of the amino acids at each site in

the mammal MSA. The matrix is n6m, because m different mean

physiochemical properties are computed for n different sites in the

original MSA. This matrix is for the mammal dataset and is 358069.

(TXT)

PmatrixS2 Physiochemical property matrices for the
fish dataset. The matrix is a numerical representation of the

mean physiochemical properties of the amino acids at each site in

the fish MSA. The matrix is n6m, because m different mean

physiochemical properties are computed for n different sites in the

original MSA. This matrix is for the fish dataset and is 337069.

(TXT)

RmatricesS1 Matrices of amino acid exchangeabilities
specific for groups of sites in mammalian mitochondrial
proteins having different physiochemical constraints.
Three matrices were estimated for three groups of sites that were

identified by K-means clustering according to mean physiochem-

ical properties (PmatrixS1). The R matrix for the largest group

(1750 sites) is called mtMamR1. The R matrix for the medium

sized group (1025 sites) is called mtMamR2. The R matrix for the

smallest group (805 sites) is called mtMamR3.

(RTF)

RmatricesS2 Matrices of amino acid exchangeabilities
specific for fish mitochondrial proteins. Three matrices were

estimated for three groups of sites that were identified by K-means

clustering according to mean physiochemical properties (PmatrixS2).

A fourth matrix was jointly estimated from all sites. Due to

disagreements in the phylogenetic relationships of fishes, these four

matrices were estimated under two alternative tree toplogies, one

based on molecular data (designated by ‘‘mol’’) and one based on

morphological data (designated by ‘‘morph’’). Thus, this file contains

eight matrices of amino acid exchangeabilities. The R matrix for the

largest group (1607 sites) is called mtFishR1. The R matrix for the

medium sized group (999 sites) is called mtFishR2. The R matrix for

the smallest group (764 sites) is called mtFishR3. The fourth matrix

contains exchangeabilities jointly estimated for all sites in the dataset

(3370) and is called mtFishR0. The labels ‘‘mol’’ or ‘‘morph’’ indicate

the tree topology used to estimate the matrix.

(RTF)

MethodsS1 Sequence alignment methods. This supple-

mental methods section provides a detailed description of the

protocol for sequence alignment. In addition, the method of post-

alignment filtering of sites is described and a list of sites excluded

from subsequent analysis is provided.

(PDF)

TreefilesS1 Mammal tree topology in nexus file format.
Phylogenetic tree topology estimated from the full alignment of
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3580 amino acid sites from 143 linages of mammals (supplemen-

tary TableS2).

(TXT)

TreefilesS2 Fish tree topologies in nexus file format.
This file contains two nexus-formatted tree topologies. The first is

the phylogenetic tree topology estimated from the full alignment of

3370 amino acid sites from 75 lineages of fish (supplementary

TableS2). The second is an alternative topology for these same

lineages derived from morphological data [30]. The morpholog-

ical and molecular topologies differ in two places. One is the

relationship between gars, sturgeons, and amiids. The other is the

position of anguilliforms and osteoglossiforms.

(TXT)
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