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Abstract

Skilled behavior often displays signatures of Bayesian inference. In order for the brain to

implement the required computations, neuronal activity must carry accurate information

about the uncertainty of sensory inputs. Two major approaches have been proposed to

study neuronal representations of uncertainty. The first one, the Bayesian decoding

approach, aims primarily at decoding the posterior probability distribution of the stimulus

from population activity using Bayes’ rule, and indirectly yields uncertainty estimates as a

by-product. The second one, which we call the correlational approach, searches for specific

features of neuronal activity (such as tuning-curve width and maximum firing-rate) which

correlate with uncertainty. To compare these two approaches, we derived a new normative

model of sound source localization by Interaural Time Difference (ITD), that reproduces a

wealth of behavioral and neural observations. We found that several features of neuronal

activity correlated with uncertainty on average, but none provided an accurate estimate of

uncertainty on a trial-by-trial basis, indicating that the correlational approach may not reliably

identify which aspects of neuronal responses represent uncertainty. In contrast, the Bayes-

ian decoding approach reveals that the activity pattern of the entire population was required

to reconstruct the trial-to-trial posterior distribution with Bayes’ rule. These results suggest

that uncertainty is unlikely to be represented in a single feature of neuronal activity, and

highlight the importance of using a Bayesian decoding approach when exploring the neural

basis of uncertainty.

Author summary

In order to optimize their behavior, animals must continuously represent the uncertainty

associated with their beliefs. Understanding the neural code for this uncertainty is a press-

ing and critical issue in neuroscience. Following a long tradition, some studies have inves-

tigated this code by measuring how average statistics of neural responses (like the tuning

curves) correlate with uncertainty as stimulus characteristics are varied. We show that this

approach can be very misleading. An alternative consists in decoding the neuronal

responses to recover the posterior distribution over the encoded sensory variables and
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using the variance of this distribution as the measure of uncertainty. We demonstrate that

this decoding approach can indeed avoid the pitfalls of the traditional approach, while

leading to more accurate estimates of uncertainty.

Introduction

Animal behavior can adapt efficiently in the face of uncertainty. For example, when sensory

stimuli are ambiguous, behavior is more variable and biased towards prior expectations than

for informative stimuli [1]. Therefore, neuronal activity must continuously represent how cer-

tain an animal should be about its beliefs, that is, at any given time, the response of neurons

must represent not only an estimate of the encoded variables, such as the direction of motion

of objects, or their color, but also the uncertainty around these estimates. How is this momen-

tary uncertainty represented? Answering this question is fundamental to understanding how

the brain is able to implement or approximate statistical inference. Indeed, knowing the

momentary uncertainty is critical to performing optimal multisensory integration, marginali-

zation of nuisance variables and, more generally, all basic operations of Bayesian inference

[2,3]. The specific format in which the uncertainty is represented thus constrains how these

key operations can be implemented in the brain.

Two main approaches have been suggested to determine how uncertainty is represented in

various brain regions. A first possibility consists in taking the perspective of a downstream

area that has to extract the information from upstream neuronal activity, which we term the

‘Bayesian decoding’ approach. This approach starts from the so-called Bayesian ideal observer,

whose goal is to compute the posterior probability distribution of the possible values of a sen-

sory stimulus given the observed sensory inputs [1], namely p(stimulus | sensory input).

According to this view, the activity of populations of sensory neurons should represent this

posterior, which can then be used to perform Bayesian inference [2,4,5]. Note that what we call

Bayesian decoding approach goes beyond previous applications of decoding methods that

decode only a stimulus value or an animal’s decision, as opposed to the full probability distri-

bution [6,7].

Although the Bayesian decoding approach does not specify the form of the neuronal repre-

sentation of the distribution, several possibilities have been considered with different implica-

tions for the form of the decoder. For instance, uncertainty might be encoded in the gain or

amplitude of the tuning curves, which is a specific instance of the more general theory of linear

Probabilistic Population Codes [8] (lPPC), according to which the logarithm of the distribu-

tion can be decoded simply by taking linear combinations of neuronal activity. Therefore, the

decoding approach could be used to test experimentally specific models for the representation

of momentary uncertainty, by decoding the distribution from the activity of sensory neurons

using the model under consideration, estimating its uncertainty (Fig 1A), and comparing this

estimate to the ideal observer uncertainty as well as to the experimentally measured behavioral

uncertainty. The difficulty in testing this approach experimentally is that it requires simulta-

neous recordings from a large population of neurons, which is not yet feasible in many

instances [9], although there is some initial evidence supporting this approach [10].

A second approach to studying the representation of uncertainty builds on the traditional

definition of tuning curves, and has also the advantage that it can be applied to single-neuron

recordings. Just like tuning curves are constructed by changing the value of a stimulus and

measuring the corresponding changes in the mean response of a neuron, the representation of

uncertainty has often been investigated by manipulating the information content of the
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Fig 1. Correlational and Bayesian decoding approaches to uncertainty. (A) In the Bayesian decoding approach, the posterior distribution over the stimulus values

(right panels) is decoded from the full pattern of neuronal activity in the population (left panels: each circle denotes the spike count of a neuron with preferred stimulus

indicated on the abscissa). This yields both an estimate of the stimulus and a measure of the uncertainty of this estimate. Uncertainty is defined operationally as the

variance of such posterior (red bars in the right panels). (B-D) In the correlational approach, it is assumed that a specific feature of neuronal activity, such as tuning curve

width (B) or gain (C), or noise correlations (D) encode sensory uncertainty. It is then possible to identify such a code by observing which features of neuronal activity

correlate with the information content of the stimulus.

https://doi.org/10.1371/journal.pcbi.1008138.g001
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stimulus while monitoring changes in specific features of neuronal responses. We will refer to

this as the correlational approach.

This approach is appealing because, under different theories, different features can be

related to uncertainty. For example, one could use the width of the tuning curves by setting

the width proportional to the uncertainty [11] (Fig 1B). The gain or amplitude of the tuning

curve could also play a role by being inversely proportional to uncertainty [8] (Fig 1C). Yet

another possibility would be to make use of noise correlations [9] (Fig 1D). Indeed, under

the right assumptions, uncertainty can be proportional to the overall level of noise correla-

tions [12]. Lastly, under the hypothesis that neuronal activity represents samples from the

target probability distribution [13], uncertainty would be reflected in the variance of the neu-

ronal activity over an averaging time window. Following this correlational approach, Caz-

ettes et al [14] recently found that, in the inferior colliculus (IC) of the barn owl, the

uncertainty over the location of a sound source correlates with the width of the tuning curves

better than with their gain, and suggested that therefore tuning width may encode uncer-

tainty. Other studies are also suggesting that the width of place fields in the hippocampus

encodes the uncertainty about the location of the animal [15], while in premotor cortex the

width of the tuning curves to movement direction encodes the uncertainty in arm movement

[16].

A key limitation of the correlational approach is that it has so far been only applied to

identify correlates of the information content of the stimulus, which is related to the uncer-

tainty averaged across trials, as opposed to the trial-to-trial, or momentary, uncertainty expe-

rienced by the animal. Indeed, this approach seeks correlations between the information

content and features of single neuron responses averaged across trials. For instance, in the

study of Cazettes et al, the average uncertainty of the location of an auditory stimulus is con-

trolled by a quantity known as the binaural correlation, or BC, a measure proportional to

information. They varied the BC across blocks of trials and reported that the width of the

tuning curves—obtained by averaging activity within a block—varies with BC across blocks.

However, the uncertainty experienced by the subject can vary even when the BC is fixed

from trial-to-trial due e.g. to variations in the auditory stimulus, noise in the cochlea or fluc-

tuations in the attentional level of the animal. These trial-by-trial variations are critical for

behavior and must be represented in neuronal activity. One might imagine that features that

correlate with average uncertainty also correlate well with momentary uncertainty, but this is

not necessarily the case as we will show in this study. In order to assess whether the correla-

tional approach is successful, it is essential to estimate the momentary uncertainty from the

feature(s) identified by the correlational approach, which, to our knowledge, has never been

performed on actual data.

To illustrate this, we compare these alternative approaches in a novel, biologically realistic

model of sound localization based on Interaural Time Difference (ITD): the difference in the

time it takes for a sound to reach the two ears. Our model implements a close approximation

to the Bayes-optimal solution to the localization task in the presence of noise in the sound

[11,14,17]. We show that that this model captures known features of the auditory pathway

physiology in both the IC and OT, as well as behavioral data, and confirmed that momentary

uncertainty can be accurately estimated by applying Bayesian decoding to the trial-by-trial

neuronal activity.

In contrast, we report that the correlational approach can be greatly misleading: features

such as width of tuning curves, can be highly correlated with average uncertainty, while pro-

viding very poor estimates of momentary uncertainty. These results also suggest that momen-

tary uncertainty is unlikely to be encoded in a single feature of neuronal activity.
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Results

Ideal observer for auditory localization accounts for behavioral bias and

variability

We considered a specific behavioral task: localizing a sound source based on the ITD, that is,

the time delay between the arrival of the same sound to the left and right ears (Fig 2A; see

Methods Section “Uncertainty in the auditory localization task” for details). The objective is

for the observer to estimate the ITD, namely the offset in time of the signal in the left ear. Fol-

lowing classical experiments by Saberi et al. [17], we generated sounds with one common

white-noise process (the “signal”), plus independent white noise added to each ear (the

“noise”). Mathematically, denoting the signal in the right and left hears as sR,sL, we have:

sRðtÞ ¼ sSsðtÞ þ sNZRðtÞ þ s0nRðtÞ

sLðtÞ ¼ sSsðt � dÞ þ sNZLðtÞ þ s0nLðtÞ

(

1

Fig 2. Ideal observer reproduces owl localization behavior. (A) In the auditory localization task, the azimuth of the sound source has to be estimated using the ITD

(denoted by δ). (B) Barn owl head-turning responses at different levels of BC. Each curve corresponds to a different value of the true ITD. At low BC, head turns are on

average biased towards the front (0 deg). (C) Variability of the head-turning responses. Different symbols correspond to different true ITDs. The continuous line is an

exponential fit. At low BC, responses are more variable. (B,C) Replotted from Saberi et al (1998). Angles are measured with a precision of 4˚. (D,E) Same as (B,C) but for

the post-marginalization ideal observer. The true azimuth (values reported in the inset) is indicated by the dashed lines in (D).

https://doi.org/10.1371/journal.pcbi.1008138.g002

PLOS COMPUTATIONAL BIOLOGY Investigating the representation of uncertainty in neuronal circuits

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008138 February 12, 2021 5 / 30

https://doi.org/10.1371/journal.pcbi.1008138.g002
https://doi.org/10.1371/journal.pcbi.1008138


The two signals are offset by the ITD δ. s(t),ηR(t),ηL(t),νR(t),νL(t) represent five independent

white noise vectors. The parameters σS and σN control the relative size of the signal and the

noise. We further added another independent noise with fixed amplitude σ0 = 0.9, to model

internal noise which might be introduced, for example, at the level of hair cells in the cochlea.

This additional noise was necessary for the model to fit behavioral data. We controlled the

information content of the stimuli, and thus indirectly the average uncertainty about ITD, by

varying the relative size of the signal and external noise components. This is quantified by the

correlation between the sounds reaching each ear, or Binaural Correlation (BC; Eq 2; also

known as Interaural Correlation).

BC ¼
s2
S

s2
S þ s

2
N

2

Notice that the BC only depends on the external noise values, controlled by the experi-

menter, and does not take into account the internal noise. A value of BC close to 1 indicates

that the external noise is small relative to the signal and that estimation of the ITD is only lim-

ited by the internal sensory noise; conversely, BC equal to 0 means there is no information

about ITD. We will investigate the momentary uncertainty by assuming that it is identical to

that of an ideal observer which we describe next. This might differ from the perceptual

momentary uncertainty of animal subjects (see also Discussion). Perceptual momentary

uncertainty has not been measured directly for auditory localization to our knowledge, but, as

we show below, the ideal observer reproduces accurately other existing behavioral data.

The ideal observer computed the likelihood function of ITD given the sounds, and com-

bined it with prior information to obtain a posterior distribution over ITD p(δ|sR,sL). The

details of the derivation are given in Methods Sections “Pre-marginalization ideal observer for

known BC level” and “Ideal observer with marginalization of the BC level”. Note that, given

the finite size of the head, ITD can only take values in a limited range: therefore, we assumed

that the prior distribution of the ideal observer takes the form of a uniform prior, i.e. flat over

the allowed ITD range and zero outside (assuming instead a Gaussian prior [11] centered at 0

had little impact on our results; see S1 Text).

We started by considering the simple case for which BC is fixed and known to the subject.

The ideal observer is then able to compute the posterior distribution of conditional on the

value of BC p(δ|sR,sL,BC). In the following, we use the term “pre-marginalization” to refer to

perfect knowledge of BC as opposed to the “post-marginalization” ideal observer, which we

present in the next paragraph, which marginalizes out the unknown BC from the posterior dis-

tribution.

pðdjsR; sLÞ ¼
Z

pðdjsR; sL;BCÞpðBCÞdBC 3

In this case, it is straightforward to show that the pre-marginalization ideal observer should

simply compute the cross-covariance between the signals at the two ears, at a range of possible

ITDs, to obtain the log posterior distribution (Methods Section “Pre-marginalization ideal

observer for known BC level”). The cross-covariance is a function of offset which measures the

empirical covariance between sR(t) and sL(t+δ):

CCðdÞ ¼ CovðsRðtÞ; sLðt þ dÞÞ 4

Intuitively, this operation corresponds to evaluating the similarity between the right and

left ear signals for different relative offsets. Note that, even for fixed BC, the empirical cross-

covariance is random. The posterior width can thus vary on a trial-by-trial basis, causing the
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momentary uncertainty of the Bayesian ideal observer to fluctuate even in the absence of varia-

tion of the experimentally controlled information content.

However, in typical experiments, BC is varied randomly across trials and subjects are not

informed about the specific value used on each trial [17]. Therefore, BC acts as a nuisance vari-

able that the ideal observer has to marginalize out, as in Eq 3 (hence our terminology, pre- and

post-marginalization). To our knowledge, no closed-form solution existed for this problem.

We therefore developed a method to compute analytically a close approximation to the log

posterior. The resulting post-marginalization ideal observer needs to compute the cross-

covariance between the signals at the two ears CC(δ), divide it by a measure of their variance

V, and apply a specific nonlinearity h (Methods Eq 24).

pðdjsR; sLÞ ¼ h
CCðdÞ
V

� �

5

We then asked whether the owl behavior in the localization task was consistent with the

ideal observer. Saberi et al. [17] characterized the orienting behavior of barn owls presented

with stimuli at four different ITDs with randomly interleaved BC. For small values of BC, the

animal’s behavior exhibits a systematic bias towards central locations (Fig 2B) and becomes

increasingly more variable (Fig 2C). We found that the post-marginalization ideal observer

behaves in a qualitatively similar manner (Fig 2D and 2E; see S2 Text for comparison to the

pre-marginalization case). Specifically, for each simulated trial we generated noisy signals to

the right and left ears, then computed the log-posterior, and chose the ITD value that maxi-

mized the log-posterior to be the observer’s estimate (known as MAP, or maximum a posteri-
ori, estimate; Methods Section “Ideal observer behavior”). At high BC, the log-posterior was

narrowly peaked, with a MAP very close to the true ITD. Therefore, the behavior across trials

showed very little variability. At lower BC however, the log-posterior was broader (compare

the two example trials at low and high BC in Fig 3E and 3F, respectively) and its peak location

could change substantially across trials, producing behavioral variability. The bias at low BC

was simply a consequence of the uniform prior over the limited range of ITDs represented by

the ideal observer. For instance, in the simulations of Fig 3, since the ITD range is

[-250μs,250μs], if the true ITD were 150μs, an underestimation by 150μs, corresponding to a

reported ITD of 0μs, is possible, whereas an overestimation error of 150μs, corresponding to a

reported ITD of 300μs, would not be possible (see S3 Text). Note also that, for intermediate

BC, the perceptual bias of the ideal observer is larger for large eccentricities of the true ITD

(Fig 2D), consistent with the known stimulus-dependence of the perceptual bias [18]. We also

note that the data show some deviations from our ideal observer: first, there is an asymmetry

in the bias for left and right angles; this could be captured by changing the support of the uni-

form prior (see S3 Text), but could also reflect motor idiosyncrasies; second, the experimental

variability does not plateau to zero at high BC, but it should be noted that angles were mea-

sured with a precision of 4 degrees.

A similar explanation for the bias was proposed by Fischer and Pena [11], who designed a

neuronal model for which the population vector decoder closely approximates the MAP esti-

mate. In such model, a Gaussian prior for central locations induced the bias. Another possible

explanation for the bias is a cost proportional to head saccade amplitude, which could be easily

incorporated in the proposed framework. Discriminating between these different explanations

for the bias will require additional experiments explicitly designed for this purpose.
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Neuronal approximations of ideal observers match auditory pathway

physiology

Given that the ideal observer reproduced behavioral data accurately, we asked how it could

be implemented by a population of neurons (details in Methods Section “Neural implemen-

tations of the ideal observers”). Specifically, we asked which computations should be per-

formed on the raw sensory inputs such that the true log-posterior over ITD can be

reconstructed by a weighted sum of the neuronal activity across the population (Methods Eq

34). A population that satisfies this requirement is called a linear Probabilistic Population

Code (lPPC [19]). We designed two populations organized hierarchically, to mimic process-

ing in the IC and OT that approximated the ideal observers for known and unknown BC

respectively.

For the case of a fixed and known BC, model neurons simply needed to compute the

cross-covariance of the signals from the two ears at different time lags (Methods Section

“Pre-marginalization ideal observer for known BC level”). This is equivalent to the tradi-

tional model of the early auditory pathway [20] (Fig 3A). The signals were first decomposed

in narrow frequency bands at each ear, mimicking cochlear processing, yielding the filtered

Fig 3. IC and OT models approximate the ideal observers. (A) Schematic model of IC. Sounds reaching the two ears are first convolved with bandpass filters, then

delayed, then cross-correlated at several delays, and lastly rectified to obtain tuning curves to ITD. (B) Average KL divergence between the posterior distribution computed

by the ideal observer and the posterior decoded from the model population activity before (dashed line) and after (continuous) rectification. KL was normalized to the KL

between the ideal observer posterior and the priors. Shaded areas represent s.e.m. Note that the pre-rectification KL divergence differs from 0 purely due to the fact that we

cannot exactly decode from a finite amount of training examples. (C) Schematic model of OT. Outputs of the IC model are first combined across frequency bands and

divided by the signal energy. Then, the outputs are passed through a static nonlinearity, filtered and rectified; these operations are equivalent to a non-linear filtering stage.

The color of the units indicates their frequency preference (low: red, mid: blue, high: green). (D) Same as (B) but for the OT model activity, after rectification. (E) Example

posterior distribution in one trial with true ITD = -145 and BC = 0.1, for the post-marginalization ideal observer (dashed pink line) and the reconstruction from the output

of the OT model population (continuous black). (F) Same as (E), but with BC = 0.4. Note that the small secondary peak around ITD = 200 is present only in the

reconstruction, not in the ideal observer’s posterior.

https://doi.org/10.1371/journal.pcbi.1008138.g003
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signals:

~sn;R ¼ F>n � ðF
>

n � sRÞ

~sn;L ¼ F>n � ðF
>

n � sLÞ:
6

where the subscript n refers to the frequency of the filter and the symbol � denotes the convo-

lution operator. Next, frequency-specific cross-covariances were computed between the two

filtered signals at a range of ITDs, producing the neuronal activity of a neuron tuned to a

given ITD δ and frequency band n:

rn;d ¼ Covð~sn;RðtÞ;~sn;Lðt þ dÞÞ: 7

Such tuning has been indeed observed in the nuclei of IC of the barn owl [21] and in the

Medial Superior Olive of mammals [22,23].

This model is such that the log-posterior of the pre-marginalization ideal observer can be

reconstructed by linear combinations of the neuronal activities. Indeed, this log-posterior is

proportional to the cross-covariance across all frequencies, which can be reconstructed by

summing the frequency-specific cross-covariances (Methods Section “Neural implementations

of the ideal observers”, Eqs 31–32):

LLðdÞ / CovðsRðtÞ; sLðt þ dÞÞ ¼
X4

n¼1

Covð~sn;RðtÞ;~sn;Lðt þ dÞÞ ¼
X4

n¼1

rn;d 8

This population thus implements the pre-marginalization ideal observer in lPPC format.

Note that we have designed this population to only encode the log-likelihood of values of δ
which have non-zero prior probability. It thus encodes the prior implicitly.

However, neuronal firing rates cannot take negative values, thus we introduced a rectifying

nonlinearity. We considered half-rectification (but see S4 Text for other nonlinear functions),

and evaluated how well the log-posterior could be reconstructed from a linear combination of

neural activities. In practice, the reconstruction weights used in the linear combination have to

be learned from experience (for a downstream area) or from experimental data (for an experi-

menter). In this study we used multiclass logistic regression, a classification method that

assumes neuronal activity is an lPPC, and searches for the weights that provide the best classifi-

cation on a training dataset (see Methods Section “Decoding uncertainty from population

activity”). Specifically, we used, on each trial the neuronal population activity as predictor and

the true log-posterior distribution as the target. Importantly, if the population is a lPPC, then

linear decoding coincides with Bayes’ rule and reconstructs the full log-posterior distribution

over classes. Note this use of multiclass logistic regression is different from the more traditional

approach, in which the target is the Dirac delta distribution at one specific class value (see

Methods “Decoding uncertainty from population activity”). In experimental applications,

training should be performed with this more traditional approach using the true stimulus as

the target instead of a distribution, and the assumption that all the information is present in

non-linear features of the activity should be checked [24–27]. We did not use regularization

because the training set was larger than the number of weights by a factor of 100 (Methods Sec-

tion “Decoding uncertainty from population activity”), but we used cross-validation, i.e. we

evaluated the reconstructed log-posterior on a separate set of trials. We quantified the recon-

struction quality by the Kullback-Leibler divergence (KL), a natural measure of dissimilarity

between probability distributions: KL is zero for two identical distributions, and increases for

increasingly different distributions. We further normalized the KL by dividing it by the KL

between the true posterior and the prior, and expressed the result as a percent information loss
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[24]. If the model population indeed implemented the ideal observer with a lPPC, and we had

infinite data for training, then the percentage information loss should be 0. However, the per-

centage information loss was not exactly zero for the pre-rectification model at low BC values

(Fig 3B dashed-line), even though the pre-rectification model is optimal. In this case, the mini-

mal information loss (less than 1%) is purely the result of using training dataset with a finite

size.

Adding the rectification only had a marginal impact on the performance of the model. Fig

3B (solid line) shows that the reconstruction was almost perfect for large values of BC, whereas

its quality decreased at low BC values, where the effects of the rectifying nonlinearity became

more prominent. Nonetheless, the cross-covariance model provided a good approximation of

the ideal observer overall, with only 3% loss of information at extremely low BC (BC = 0.1,

note that, as we have just seen, one third of this information loss is likely due to a finite data set

as indicated by the dashed line).

So far, we have shown that the popular cross-covariance model of the early auditory path-

way closely approximates the pre-marginalization ideal observer in a lPPC. However, this

relied on the assumption that BC was known exactly. More precisely, knowledge of BC was

required because a different set of reconstruction weights had to be learned for each BC. As

explained earlier, in typical experiments BC is not known to the subject, and has to be margin-

alized out through a complex nonlinearity. Therefore, we built a neuronal population that

implemented a close approximation of that non-linearity, followed by an additional rectifica-

tion step. Because the log-posterior can be decoded from this population with the same decod-

ing weights regardless of BC level, this population is said to implement an invariant lPPC, or i-

lPPC[28]. We then compared its response properties to those of OT, an area that lies down-

stream of the IC and contains a multimodal map of space used by owls for orienting [29].

As we have described, the post-marginalization ideal observer requires computing the

cross-covariance, normalizing it and applying a specific non-linearity. These operations can be

implemented in a neuronal model. As illustrated in Fig 3C, our model involved, first, fre-

quency convergence, to compute the frequency-independent cross-covariance of sR,sL; second,

divisive normalization to obtain the cross-correlation; third, the static nonlinearity (Methods

Eq 24). Lastly, we included a linear filtering stage to obtain a distributed code, and a rectifying

nonlinearity to produce the spike count of the OT model neurons. This model closely approxi-

mated the ideal observer with BC marginalization as expected (Fig 3D and 3F). Similar to the

pre-marginalization case, the larger information loss (1%) at low BC was due mainly to the last

rectification step, and partly because we used a finite data set.

We found that the model neuronal tuning curves for ITD qualitatively matched those

observed in OT of barn owls [17], exhibiting a main peak at the preferred ITD and smaller side

peaks (Fig 4A and 4B). Furthermore, when BC was decreased, the height of the peak decreased

in the model in a way consistent with the physiology (Fig 4C and 4D). Although our final step

of filtering the log-posterior to obtain a distributed code has several degrees of freedom, we

found that a basic smoothing yielded an excellent qualitative match with the data. Therefore,

we did not optimize this step any further, even though these free parameters can be tuned to

improve this fit. The only notable free parameter is the level of internal sensory noise in Eq 1,

which we kept fixed to the same value for both behavior (Fig 2) and neuronal activity (Fig 4)

fits. The tuning curve shape and dependence on BC are largely independent of this parameter:

it mostly affects the relative height of the central and side peaks. Note also that we have not

tried to capture in detail response variability and covariability in IC or OT since very little

experimental data is available for these quantities (but see [30]) and in particular for the frac-

tion of this variability that strongly limits information [9]. Crucially however, noise in the sen-

sory inputs induces response variability in our model, and such variability is shared between
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Fig 4. Comparison of OT model and data. (A) Tuning curve for ITD of a neuron recorded in owl’s OT. Each panel corresponds to a

different BC. (B) Peak response as a function of BC. Thin lines represent individual neurons, thick line is the population average.

Data replotted from Saberi et al.. (C,D) Same as (A,B) but for a model neuron.

https://doi.org/10.1371/journal.pcbi.1008138.g004

PLOS COMPUTATIONAL BIOLOGY Investigating the representation of uncertainty in neuronal circuits

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008138 February 12, 2021 11 / 30

https://doi.org/10.1371/journal.pcbi.1008138.g004
https://doi.org/10.1371/journal.pcbi.1008138


neurons, thus inducing so-called differential noise correlations [9] as we have shown previ-

ously for visual orientation processing [31]. Such differential correlations are the primary

source of uncertainty, but current experimental data do not allow to estimate them in vivo.

In summary, we have shown that neuronal responses in IC and OT are qualitatively well

reproduced by neuronal models that closely approximate lPPCs for known and unknown BC,

respectively. Given that this approach based on ideal observer models provided a unified

account of behavior and neuronal activity in the auditory localization task, we next asked what

can be learned from it about the neuronal representation of momentary uncertainty.

Estimating momentary uncertainty from neuronal activity

In the previous section we have shown that the true posterior distribution over ITD can be

decoded accurately from neuronal activity in the models on a trial-by-trial basis. Here we

focus instead on a specific aspect of the posterior distribution, namely its variance. This has

proven to be a popular choice in the past literature [2,32] because it is a natural measure of

uncertainty and, for Gaussian distributions, it provides the optimal weights for cue combina-

tion (S8 Text). Another natural measure of uncertainty is the posterior entropy, which also

quantifies posterior spread and is less susceptible to small secondary peaks in multimodal

distributions. We verified that all the results shown below also hold using this alternative

measure (S5 Text). Note that much previous work has often relied on Fisher information to

relate neural activity to uncertainty. Here, however, we focus on momentary uncertainty,

while Fisher information can only be measured on average across repetitions of the same

stimulus.

We first verified that the momentary uncertainty estimated from the decoded posterior

reflected accurately the true momentary uncertainty of the ideal observer. We found that that

is indeed the case: the variance of the approximate posterior estimated from the neural

responses closely matched the variance of the posterior of the ideal observer (R2>0.95 for the

log-variances at all BC levels, both pre- and post-marginalization; Fig 5, black). We then stud-

ied whether the correlational approach could be used to recover the trial-by-trial fluctuations

of uncertainty. To this aim, we considered features of neuronal activity that have been shown

to correlate with average stimulus information, and derived single-trial estimators of uncer-

tainty that are consistent with the hypothesis that uncertainty is encoded in those features.

More precisely, for each feature f we defined a scalar quantity qf(r) derived from single-trial

population activity r, and then used linear regression to obtain an optimal linear estimator of

the uncertainty of the ideal observer of the stimulus based on qf(r):

logðvÞ ¼ b0 þ
X

f

bf q
f ðrÞ 9

where v is the posterior variance of the ideal observer, and {βf} a set of coefficients on a training

set comprising half of the trials. Estimation quality was measured by the cross-validated R2

computed on the other half of the data not used for training. The linear fit was optimized sepa-

rately for every BC level for the IC model, and across all BC levels for the OT model. We first

focused on the tuning curve width [14–16], and defined the following single-trial predictor

(corresponding to the width of the population hill of activity):

qwðrÞ ¼
X

n

~rnðdn �
X

m

~rmdmÞ
2

~rn ¼
rnX

m

rm

10
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where δn is the preferred stimulus value of the n-th neuron. Second, we considered tuning

curve gain [8], and defined the total activity across the population as predictor:

qgðrÞ ¼
X

n

rn 11

We verified that both tuning curve width and gain correlated with BC (i.e. with average

stimulus information; see S4 Text). For the IC model, we computed width and gain for differ-

ent subpopulations corresponding to different preferred temporal frequencies, and used each

subpopulation as a separate predictor, because simply summing the responses across

Fig 5. Uncertainty estimation quality from IC and OT neuronal activity. (A) Tuning cuve width and inverse gain as a function of BC, expressed as a percent change

from the value measured at the highest BC. Gray symbols: models. Blue: data from Cazettes et al. [14]. (B) Performance of different estimators as a function of BC. The

estimators used IC neuronal activity to estimate the uncertainty of the pre-marginalization ideal observer. Quality was measured by the cross-validated R2 between the

ideal observer’s posterior log-variance and estimated log-variance. Black: uncertainty of the reconstructed posterior. Blue: uncertainty estimated by a linear fit to single

neuron activity. Red: uncertainty estimated by a linear fit to the total neuronal activity. Green: uncertainty estimated by a linear fit of the width of population activity. Line

width represents 95% c.i. (C) Same as (B), but using OT neuronal activity to estimate the uncertainty of the post-marginalization ideal observer. In this case performance

is still split by BC, but the linear fits were performed by combining trials across all BC (i.e. the estimators, as well as the ideal observer, had no knowledge of the true BC

value).

https://doi.org/10.1371/journal.pcbi.1008138.g005
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frequency bands (as in models of ICx that include frequency-convergence) before computing

the predictors reduced the quality of the estimates.

Lastly, we considered a generalization of gain, that uses each neuron’s activity as a predictor

qggn ðrÞ ¼ rn 12

and therefore estimates uncertainty as a weighted sum of the population activity, with weights

optimized to fit the uncertainty of the ideal observer. While generalized gain (Fig 5, blue lines)

performed better than pure gain (Fig 5, red) or width (Fig 5, green), all features provided poor

estimates. We verified that this was also true for other, nonlinear features that combined gain

and width or that used neuronal correlations explicitly (S5 Text).

The particularly poor performance of the gain-based estimates might seem at odds with

the fact that the log-posterior could be reconstructed nearly perfectly with a linear estimator

(Fig 3) thus suggesting that the output layer of our model encodes ITD with lPPCs. Linear

PPCs are sometime confused with codes in which uncertainty is proportional to the gain, but

this is in fact not the case. In a lPPC, the log posterior distribution can be recovered via a lin-

ear combination of activity [19], but estimating the uncertainty, i.e., the width of the poste-

rior distribution, may require a nonlinear operation. The uncertainty is linearly recoverable

only if the weights used to recover the log posterior are quadratic functions of the encoded

stimulus [19]. For instance, in Fig 5A, the performance of the optimal linear estimate

decreases as BC increases because the weights are no longer a simple quadratic function of

ITD.

Using a model of IC neurons similar to the one we used (i.e. frequency specific filtering, fol-

lowed by cross-covariance and a static nonlinearity), Cazettes et al. [14] followed the correla-

tional approach and reported that tuning-curve width was a major factor for uncertainty

coding. However, they simply reported a correlation between the width of the tuning curves

and average uncertainty. As our results show, this correlation does not imply that the behav-

iorally-relevant momentary uncertainty can be linearly estimated from the width of the popu-

lation activity. However, another obvious difference between the two models is the choice of

the static nonlinearity: half rectification in our case, versus exponential in Cazettes et al. [14]

which provides a good fit to intracellular recordings in the external nucleus of IC. We therefore

tested whether our conclusions where due to the specific non-linearity we used. In models

with a sigmoid or exponential non-linearity, we found that reconstruction based on tuning

curve width was as poor as for half-rectification (however, the sigmoid non-linearity might be

a slightly improved fit to the physiology; see S4 Text). In such models, linear decoding of the

posterior was furthermore impossible since these populations are not linear PPCs anymore.

The approximate posterior obtained by linear decoding was thus completely incorrect, leading

to bad uncertainty estimates. Therefore, our analysis illustrates the limitation of the correla-

tional approach: even if a feature of neuronal activity correlates with average uncertainty, it

might not capture momentary uncertainty accurately. We further address in Discussion the

relevance of this observation for understanding perceptual behavior.

Comparison to other models of OT and experimental predictions

The neuronal model we have proposed for OT, which assumes that this region represents the

log-posterior of the post-marginalization ideal observer, requires a very specific nonlinearity, i.

e, a form of divisive normalization (Fig 3C). To test the robustness of the approach, we first

asked whether the log-posterior and its uncertainty could be accurately reconstructed using

approximations to the exact nonlinearity, achieved by a cascade of simpler nonlinearities. We

then compared new predictions of our model to previous descriptive models of OT.
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We first verified that the precise implementation of the OT non-linearity was not critical.

We trained a feedforward network with a simple rectifying non-linearity (a well-known uni-

versal approximator [33]). We found that the posterior could accurately be reconstructed from

the final layer of this network, and that the decoding approach was once more the only way

that uncertainty could be recovered (S6 Text). However, this network did not qualitatively

match the increase in neuronal response gain with BC found in vivo (Fig 4B), possibly hinting

that divisive normalization plays a key role in OT activity.

Besides this important computational role for divisive normalization, our model of OT

makes two other distinctive predictions. First, the linear decoding of OT responses which we

have considered so far should reconstruct the marginalized log-posterior as well as any nonlin-

ear decoder. This is because the small information loss (Fig 3B and 3D) indicates that the neu-

ronal responses are an lPPC, for which all the information available can be extracted linearly.

This decoding is furthermore invariant: no additional information about BC is required.

Clearly, testing all possible nonlinear decoders is not feasible. Instead, to test this prediction in

our model, we trained a deep network (which in principle can approximate any nonlinear

decoder) on the OT outputs. We found that the information loss was indistinguishable from

that of Fig 3D. A similar approach could be used to assess linearity in experimental recordings

of neuronal activity in the OT, but it requires simultaneous recording from a large population

of neurons.

A second prediction that could be tested more readily comes from a comparison with

descriptive models. For instance, Saberi et al. [17] developed a descriptive model of OT that

accounts for the data of Fig 4. In their model, IC is described as computing the cross-correla-

tion between filtered versions of the sound reaching the two ears, and OT activity is given by a

linear weighting of IC activity (S7 Text). The model of Saberi et al. differs from ours in two

critical ways: first, there is no nonlinear mapping between IC and OT, and second, there is a

separate normalization in each frequency band. Both our model and that of Saberi et al. predict

qualitatively similar OT tuning curves and dependence of neuronal responses on BC. How-

ever, due to the difference between the operations required by the ideal observer and those

postulated in the model of Saberi et al., we found that in the latter the linear reconstruction of

the log-posterior was poor (Fig 6A), and thus uncertainty could not be estimated accurately

(Fig 6B). Is it possible to further distinguish the two models?

Intuitively, neuronal activity in our model should be modulated by any manipulation of the

input stimuli that influences the log-posterior, because this is the quantity represented by the

neuronal activity. By contrast, the descriptive model of Saberi et al. was designed to fit exclu-

sively neuronal responses to changes in BC, and it is by design sensitive only to the correlations

in the different frequency bands in the stimulus. Therefore, we can distinguish the two models

by using stimulus manipulations that modify the log-posterior without modifying the correla-

tions within each frequency band. To illustrate this point, we considered stimuli with a shorter

duration than those in the experiments of Saberi et al. Shorter stimuli are less informative

about ITD. Correspondingly, in our model, OT activity was scaled down compared to the full-

length stimuli (Fig 6C and 6D). Second, we changed the frequency content of the stimulus.

When we presented a stimulus with only low-frequency components, model responses were

scaled down and the side peaks of the tuning curves moved further away from the main peak

(a form of tuning widening; Fig 6E), whereas when we presented a stimulus with only high-fre-

quency components we observed the opposite pattern (Fig 6F). As expected, the descriptive

model was not sensitive to any of those changes in the stimuli (Fig 6G–6J). This is because the

mean correlation inside each frequency band is identical between all the separate conditions.

However, the variability across trials of the neuronal responses changed in the different condi-

tions, for instance being larger for short than long stimuli.
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Fig 6. Modulation of OT activity by stimulus reliability. (A,B) Average KL divergence (A) and performance of different estimators of uncertainty (B) from the

population activity generated by the model of Saberi et al. [17]. Same conventions as in Fig 3B and Fig 5, respectively. Because this population is not a linear PPC,

reconstruction of the uncertainty through linear decoding fails in this example, leading to negative R-square. The corresponding curve was thus removed. (C-F) ITD

tuning curves of our OT model for different stimuli. (C) Original stimulus. Tuning curve replotted from Fig 4C-top. (D) Shorter stimulus duration, 5msec vs. 10msec for

the original stimulus. (E) Low-passed filtered stimulus. (F) High-pass filtered stimulus. (G-J) Same as (C-F) but for the model of Saberi et al. [17].

https://doi.org/10.1371/journal.pcbi.1008138.g006
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In summary, the advantage of the proposed model of OT over descriptive models is that, by

postulating a functional goal for OT, it achieves much better generalizability and allows one to

make predictions for new experiments. The specific predictions of Fig 6 could be readily tested

with current experimental techniques.

Discussion

We have derived a new ideal observer model of the auditory localization task, and a neural

implementation based on lPPCs, that recapitulate several experimental observations on percep-

tual bias and variability (Fig 2) and on neuronal activity in the auditory pathway (Fig 4). Using

this model, we have compared two popular approaches to studying neuronal representations of

momentary uncertainty, the Bayesian decoding approach and the correlational approach. Our

results highlight a major limitation of the correlational approach. Although specific features of

neuronal activity such as tuning width and gain may correlate with stimulus information con-

tent and thus with the average uncertainty, they provide poor estimates of momentary uncer-

tainty (Fig 5). This conclusion is robust to model details such as the specific neuronal

nonlinearity, which could be optimized to quantitatively fit neuronal or behavioral data.

The Bayesian decoding approach is at the core of a successful theory of probabilistic com-

putation in neuronal populations [8,19,34] and has been applied to estimate the information

available in neuronal populations about a stimulus of interest [25–27, 35] and more recently to

value-based decision making [36]. Related methods have been proposed recently to identify

which directions in population activity space have most influence on behavioral variability

[37]. Note that we used the word ‘Bayesian decoding’ in a general sense to not only refer to

strictly Bayesian approaches, which invert the true likelihood function through Bayes rules,

but also to approximate methods, which invert an approximate likelihood function, as was the

case for the lPPC approach. Here we have shown that this Bayesian decoding approach can be

used to accurately estimate the sensory uncertainty from the trial-by-trial neural activity. We

have also found that the code for uncertainty relies on multiple features of neural activity.

In contrast, the correlational approach partly relies on the intuition that uncertainty should

be related to a single feature (or possibly a handful of features) of the neuronal activity, so as to

provide a simple code for momentary uncertainty. However, the Bayesian decoding approach

argues against this intuition. In order to perform computations that are important for Bayesian

inference such as marginalization and multisensory integration, the critical factor is the repre-

sentation of the posterior distribution, not the uncertainty per se. In that respect, lPPCs, from

which the log posterior can be recovered linearly, greatly simplify further inference.

Ultimately, however, a complete comparison of the decoding and correlational approaches

has to come from simultaneous measurements of the activity of large neuronal populations

and behavioral reports of perceptual uncertainty. Such experiments have yet to be performed.

So far, the correlational approach has only been used to demonstrate a correlation between a

particular encoding feature (e.g. tuning width) and the experimental variable that controls the

average stimulus uncertainty (e.g. BC). The key issue will be to determine whether reports of

momentary perceptual uncertainty are related to simple features of neuronal responses, as sug-

gested by the correlational approach, or better predicted by the kind of decoding techniques

we have explored here. Note that the correlation approach is not the right way to approach this

question, even if it were somehow extended to momentary uncertainty. Indeed, this approach

can only identify correlates of momentary uncertainty and might fail to recover how it is

decoded in the brain.

Because the data required for such an analysis are not currently available, we have instead

followed a normative approach that starts from deriving the ideal observer, namely computing
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the ground truth posterior distribution for a given sensory stimulus, and using the width of

this distribution as an idealized proxy for perceptual uncertainty. This is a standard approach

in psychophysics, which has proven helpful by setting an upper bound on what the animal

might accomplish [38]. It is possible that the posterior of the ideal observer might not reflect

the subjective uncertainty of an animal, and that instead the correlational approach might pro-

vide a better approximation of this subjective uncertainty. However, for simple perceptual

decision making tasks, it is currently believed that the information available in cortical areas is

of the same order as the information available in the behavior, which is to say that the animal’s

performance approaches the ideal observer’s performance [12,39]. If future experiments iden-

tify a discrepancy between ideal and animal observers, the decoding framework we have illus-

trated here could provide guidance in identifying the processing stages that are responsible for

the discrepancy.

Using the normative approach for ITD processing, we have first shown that a neuronal

population of cross-correlation units, commonly used in auditory processing models, provides

a close approximation to the true posterior (Fig 3). Note that our model is a variation of the

energy models which have been applied to several visual features such as orientation, motion

or disparity [40]. It is therefore likely that our conclusions would readily generalize to these

other cases. For instance, the standard motion energy model describes the response of a neu-

ron by a pair of spatio-temporal linear filters applied to the visual stimulus, followed by a qua-

dratic nonlinearity applied to each filter’s output, and a linear combination of the results [40].

It has been shown that a suitable linear combination of motion energy units amounts to com-

puting the log-likelihood of the speed of visual motion for a given visual input [41]. This is

because the generative model in [41] assumed that the visual input is corrupted by white noise

of constant amplitude, thus resulting in a Gaussian likelihood. Similarly, recent work on visual

disparity [42] and speed [43] estimation in natural stimuli, used Gaussian likelihoods and thus

derived neuronal population representations of the log likelihood using quadratic units (with

filters optimized for the specific task). These studies did not address trial-by-trial uncertainty,

but given the similarity of the operations involved in the computation of the log likelihood in

those models to our pre-marginalization model, a comparison of the decoding and correla-

tional approaches in those models would lead to similar results.

Furthermore, in this work we also went beyond the cross-correlation model, and derived a

new and more realistic model of the processing of the ITD cue, which correctly accounts for

marginalization of nuisance variables. Besides showing that existing behavioral and neuronal

data are well captured by our model (Figs 2 and 4), we have illustrated that by specifying the

computational goal for a given neuronal population (in our case, representing the log-poste-

rior in a lPPC), it is possible to generate distinctive predictions about nonlinear response prop-

erties of single neurons (Fig 6), which could be readily tested with current recording

technologies.

Importantly, our approach also departed from most previous modeling studies of popula-

tion coding, which start from response statistics that qualitatively match the data, e.g. Bell-

shaped tuning curves and limited-range noise correlations [12,44,45]. Such models based on

synthetic tuning curves and response variability can lead to unrealistic information content

[46], because they may fail to model information-limiting correlations (a.k.a. differential cor-

relations [9]). These correlations are shaped by the statistics of the sensory input [31] and by

the computations performed by neural circuits, and are the primary factor influencing infor-

mation in large neuronal populations. We built instead a circuit that can achieve near optimal

performance based on actual sensory input. Such a model may not contain all the correlations

found in vivo, such as the ones caused by large common fluctuations [47–50] but, unlike previ-

ous models, it is guaranteed to contain information-limiting correlations induced by the input
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noise (as in [31]). Understanding the neural code for momentary uncertainty requires that

these correlations be taken into account.

Our models of IC and OT lack several biological details. For instance, it is known that the

topology of IC and OT receptive fields is not uniform: neurons representing the front are

more densely packed, and are sensitive to higher frequencies than neurons representing the

periphery [51]. This organization of receptive fields might be related to the statistics of natu-

ral sounds [52,53]. Here we have ignored this level of detail of the biological system, but an

immediate consequence of incorporating such details in our model is that it would lead to a

loss of information about ITD, since the neuronal population would be effectively ignoring a

range of frequencies that are present in the stimulus. However, the loss of information might

be less important when considering sounds with more realistic frequency spectra, as well as

the fact that they are filtered by the facial ruff and ear canal before reaching the sensory

organ.

Indeed, extending our approach to ITD coding in natural sounds is an important future

direction. The statistics of natural sounds support the assumption of independent noise at the

two ears [53], thus justifying to some extent the use of white noise stimuli in the experiments

we considered. However, sound sources in the natural environment are far from white noise

and the auditory localization task involves marginalizing over the unknown frequency spectra

of the signal and noise. This problem is computationally intractable, but could be addressed

using techniques for approximate inference, such as Expectation Propagation [54,55] or Belief

Propagation [56].

Methods

Uncertainty in the auditory localization task

We considered the task of localizing a sound source based on the Interaural Time Delay (ITD)

δ between the sound reaching the left ear and the right ear. More precisely, the task consists of

inferring the value of the ITD δ given the sounds reaching the two ears: sR,sL. Following classi-

cal experiments [17], we considered a stimulus composed of one common white-noise process

(the “signal”), plus independent white noise added for each ear (the “noise”). The signal com-

ponent is offset in the left ear by the ITD (−σ):

sRðtÞ ¼ sSSðtÞ þ sNZRðtÞ þ s0nRðtÞ

sLðtÞ ¼ sSSðt � dÞ þ sNZLðtÞ þ s0nLðtÞ

(

13

Where s(t),ηR(t),ηL(t),νR(t),νL(t), represent five independent white noise vectors. The

parameters σS and σN control the relative size of the signal and the noise, thus modulating the

information content of the stimulus about δ. We further added another independent noise

with fixed amplitude σ0 = 0.9, to model internal noise which might be introduced, for example,

at the level of hair cells in the cochlea.

Following Saberi et al, 1998, we measure information content using the Binaural Correla-

tion (BC):

BC ¼
s2
S

s2
S þ s

2
N

14

BC = 1 means that the ITD could be estimated perfectly, if not for the internal noise,

whereas BC = 0 means there is no information at all about ITD.
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We further defined the input, or sensory, uncertainty v as the variance of the posterior dis-

tribution over δ given observation of the sounds reaching the ears sR,sL:

v ¼ varðdÞpðdjsR ;sLÞ 15

Note that this quantity varies on a trial-by-trial basis due to variations in sR,sL.
Below, we show how we computed the posterior distribution first in the case that the BC

value is known (pre-marginalization ideal observer), and then in the case that BC is unknown

(post-marginalization ideal observer).

For all simulations, the input stimuli were sampled at 48 kHz, and then low-pass filtered

with a high frequency cutoff of 8 kHz, representing the fact that owls are receptive only to a

finite frequency range. This specific value does not modify our conclusions. For construction of

the tuning-curves in Fig 4, input stimuli lasted 9 msec (as in Saberi et al.). For KL and R-square

plots, input stimuli lasted instead 1 msec since this decrease of stimulus information led to pos-

terior distributions that were less peaked. We used values σN = 0.25,0.77,0.9,0.95 while keeping

s2
S þ s

2
N ¼ 1, and varied δ from -250 to +250 μsec in steps of 20 μsec. We generated 6,000 stim-

ulus repetitions for each combination of BC and δ. Simulations were coded in Matlab.

Pre-marginalization ideal observer for known BC level

We assume discrete time and use vector notation sR = (sR(1),sR(2),. . .,sR(T)) and similarly for

sL. We further assume that σS and σN are known, hence we call this ideal observer the pre-mar-

ginalization. In practice, an observer would not know in advance the relative levels of the signal

and the noise and would have to infer them: we treat this more complex case later.

To perform inference on ITD, the ideal observer needs first to compute the log-likelihood

of the inputs as a function of δ, and then combine this with the prior in order to compute the

posterior. The value for the log-likelihood is:

LOðd; sN ; sSÞ ¼ logpðsR; sLjd; sN ; sSÞ

¼ �
1

2
ðsR; sLÞ

>
S� 1

d
ðsR; sLÞ �

1

2
logðdetðSdÞÞ þ constant

16

where Sδ is the covariance matrix of the signals (the subscript highlights its dependence on δ).

If we introduce the symbol Pδ for the permutation matrix that performs the temporal shift by

δ, namely (PδsL)(t) = SL(t−δ), then we can write the covariance matrix as follows:

Sd ¼
ðs2
S þ s

2
NÞIT s2

SPdIT
s2
SP
>

d
IT ðs2

S þ s
2
NÞIT

 !

17

where IT is the T×T identity matrix and the off-diagonal terms are the cross-covariances

between the two signals. The inverse covariance is then (applying the formula for inverse of

block matrices):

S� 1

d
¼

s2
S þ s

2
N

s4
N þ 2s2

Ss
2
N

IT �
s2
S

s4
N þ 2s2

Ss
2
N

P>
d
IT

�
s2
S

s4
N þ 2s2

Ss
2
N

P
d
IT

s2
S þ s

2
N

s4
N þ 2s2

Ss
2
N

IT

0

B
B
B
@

1

C
C
C
A

18

This leads to the following expression for the log-likelihood:

LOðd; sN ; sSÞ ¼
s2
S

s4
N þ 2s2

Ss
2
N

s>RP
>

d
sL þ KðsN ; sSÞ 19
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where K comprises terms that are independent of δ. Note that ðP>
d
sLÞðtÞ ¼ SLðt þ dÞ. As

expected, the log-likelihood is highest on average when δmatches the true ITD. Therefore, for

known σS and σN, the ideal observer simply needs to compute the cross-covariance between

the input signals (namely, CCðdÞ ¼ s>RP
>

d
sL) at all possible relative ITDs, and scale it by

s2
S

s4
Nþ2s2

Ss
2
N
.

Ideal observer with marginalization of the BC level

We consider now the more realistic case, in which BC is varied across trials and the subject

does not have access to the exact BC value on each trial. In this case σS and σN play the role of

nuisance variables. To perform inference on ITD, the ideal observer needs to compute the log-

likelihood of the inputs as a function of δ by marginalizing out σS and σN:

LMðdÞ ¼ log½
Z

expfLOðd; sN ; sSÞgpðsN ; sSÞdsNdsS� 20

Therefore, we first need to expand Eq 20 and write down explicitly the full log-likelihood

(up to terms independent of δ,σS,σN):

LOðd; sN ; sSÞ ¼ �
1

2
ðsR; sLÞ

>
S� 1

d
ðsR; sLÞ �

1

2
logðdetðSdÞÞ

¼ �
1

2

s2
S þ s

2
N

s4
N þ 2s2

Ss
2
N

ðs>R sR þ s>L sLÞ þ
s2
S

s4
N þ 2s2

Ss
2
N

ðs>RP
>

d
sLÞ �

T
2
logðs4

N þ 2s2

Ss
2

NÞ

21

We now show that the above is the logarithm of the product of two Gamma distributions.

First, we define the following terms:

b1 ¼
s2
S þ s

2
N

s4
N þ 2s2

Ss
2
N

; b2 ¼
s2
S

s4
N þ 2s2

Ss
2
N

CCðdÞ ¼ s>RP
>

d
sL ; V ¼

s>R sR þ s>L sL
2

22

Finally, by completing the terms in Eq 21, we obtain:

LOðd; sN ; sSÞ ¼ � ðb1 � b2Þ
V þ CCðdÞ

2

� �

� ðb1 þ b2Þ
V � CCðdÞ

2

� �

þ
T
2
logðb1 � b2Þ þ

T
2
logðb1 þ b2Þ

¼ log Gam b1 � b2;
T
2
;
V þ CCðdÞ

2

� �

Gam b1 þ b2;
T
2
;
V � CCðdÞ

2

� �� �

¼ log Gam b1 � b2;
T
2
;V

1þ CCðdÞ=V
2

� �

Gam b1 þ b2;
T
2
;V

1 � CCðdÞ=V
2

� �� �

23

where the second equality holds up to terms independent of β1,β2. Gam denotes the unnorma-

lized density of a Gamma random variable.

By combining Eq 20 and Eq 23, we thus find that the log-likelihood of δ, and thus also the

log-posterior, can be expressed as a complex non-linear transformation of the cross-

PLOS COMPUTATIONAL BIOLOGY Investigating the representation of uncertainty in neuronal circuits

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008138 February 12, 2021 21 / 30

https://doi.org/10.1371/journal.pcbi.1008138


correlation C(δ)/V, up to terms constant in δ:

LMðdÞ ¼ log
Z

b1 ;b22½0;1½
Gam b1 � b2;

T
2
;V

1þ CCðdÞ=V
2

� �

Gam b1 þ b2;
T
2
;V

1 � CCðdÞ=V
2

� �� �

¼ log h
CCðdÞ
V

� �� � 24

Now the integral in Eq 20 can be (approximately) solved in closed form if we assume an

uniform prior on for β1−β2 and β1+β2. Let us first compute the integral over all values of β1, β2:

log
Z

b1 ;b22�� 1;1½

Gam b1 � b2;
T
2
;
V þ CCðdÞ

2

� �

Gam b1 þ b2;
T
2
;
V � CCðdÞ

2

� �� �

¼ �
T
2
log 1 �

CCðdÞ2

V2

� �

25

However, this does not completely solve the problem since, by definition, β1 and β2 must

respect the fact that they are both positive quantities. The integral in Eq 20 thus has a second

term corresponding to p(β1�0^β2�0) when β1+β2 and β1−β2 both have Gamma random

distributions.

The computation of logp(β1�0^β2�0) cannot be done in closed form. However, we can

approximate it. Indeed, noting gþb1þb2
and g� ¼b1 � b2

, we have:

pðb1 � 0&b2 � 0Þ ¼ pðg þ � g � Þ 26

Then for any constant c:

pðgþ � g� Þ � pðgþ � cÞpðc � g� Þ 27

which is an analytical value we can express using the lower and upper incomplete gamma

functions (or the ‘gamcdf’ function in Matlab). This approximation ignores the following two

terms: p(γ+�γ−�c) and p(c�γ+�γ−). We can thus upper-bound the error of the approxima-

tion with: p(γ−�c)+p(c�γ+).

For the value of c, we have used the average of the means of γ+ and γ−:

2c ¼
T

V þ CCðdÞ
�

T
V � CCðdÞ

¼
2TCðdÞ

V2 � CC2ðdÞ
28

We find that the log-likelihood function of δ after marginalization is approximately (up to

constant terms):

LMðdÞ ¼ �
T
2
log 1 �

CCðdÞ2

V2

� �

þ logpðgþ � cÞ þ logpðc � g� Þ 29

This approximation is good if both T and C(δ) are big to ensure the precision of the approx-

imation, i.e., the approximation will be correct around the values for which C(δ) is the highest

which corresponds to the maximal values of the posterior.

Any Gamma prior on β1+β2 and β1−β2 would also be conjugate and would just slightly

change the values for T,C(δ) in this formula. The uniform prior we have considered is mis-

specified, in that it cannot be normalized. It corresponds to an improper prior on σS, σN with

PLOS COMPUTATIONAL BIOLOGY Investigating the representation of uncertainty in neuronal circuits

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008138 February 12, 2021 22 / 30

https://doi.org/10.1371/journal.pcbi.1008138


density:

pðsS; sNÞ ¼
sS

s3
Nðs

2
N þ 2s2

SÞ
30

However, note that the specific form of the prior we use does not influence excessively Eq

29. This is because the stimulus is quite long and thus quite informative about BC. Prior infor-

mation thus has low influence.

Ideal observer behavior

In order to compare the ideal observer models to the behavioral data of Saberi et al [17], we

used the following model of the ideal observer behavior. Since the posterior distribution tends

to be multimodal, the mean of the posterior tends not to be very representative of the poste-

rior. Instead, we used the maximum a posterior (MAP) estimator. Given a posterior p(δ), the

MAP is given by:

dMAP ¼ argmaxðpðdjsR; sLÞÞ 31

This gives a point estimate of the ITD. In order to transform this value into a head-turn

angle, we used the relationship given by Saberi et al to approximate the transformation

between ITD and angle θ:

d ¼ AsinðoyÞ 32

With A = 260μs and ω = 0.0143(˚)−1.

Neural implementations of the ideal observers

We aimed to build models of neuronal populations that closely approximate the ideal observ-

ers, while also incorporating known aspects of auditory physiology.

First, to mimic early auditory processing, we convolved the input signals through a bank of

bandpass filters, with four logarithmically spaced center frequencies ranging from 0.5 to 12

kHz. These four filters were built using formulas from Simoncelli et al, 1992 [57] so that they

were self-invertible.

A self-invertible family is a family of filters / vectors Fn such that the sum of their squared

Fourier transforms sums up to 1 at all frequencies (beneath some cut-off frequency). Invertible

families have two useful properties: first, for any input s with no frequency content above the

cut-off of the highest filter (12 kHz), we can decompose this input by filtering it (convolving it)

with every member of the family, and reconstruct the original signal by convolving a second

time:

s ¼
X4

n¼1

F>n � ðF
>

n � sÞ: 33

Second, we can also construct the covariance between two signals by summing the covari-

ance of the filtered signals:

XT

t¼0

sRðtÞsLðtÞ ¼
XT

t¼0

X4

n¼1

ðF>n � sLÞðtÞðF
>

n � sRÞðtÞ 34

These two properties are specific to invertible families. For other families of filters, correc-

tion terms would have to be added.
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Armed with such filters, we then introduced a range of possible delays (between -250 and

250) in the left ear signals, and computed the cross-covariance between the filtered, shifted

signals at the two ears, within each frequency band and at each relative delay. Finally, we rec-

tified these signals to produce positive firing rates, thus modeling neuronal activity in the

IC. Note that the output of the convolution of the inputs with each filter is a vector with as

many dimensions as there are samples in the input signal (480, see Section “Uncertainty in

the auditory localization task”). Therefore, we had a population of 21,120 neurons (4 fre-

quencies × 11 delays × 480 time samples). To reduce the memory requirements, we summed

the responses across time points, and verified that this did not change substantially any of

the results. In conclusion, the response of an IC neuron with preferred delay δn and filter Fn

was:

rICn ðsR; sLÞ ¼
XT

t¼0

bðF>n � P
>

dn
sLÞðF

>

n � sRÞcþðtÞ 35

Note that this model does not include Poisson variability, such as that due to the spiking

mechanism or stochastic network dynamics. Such variability would not affect our results, as it

can always be averaged away in neuronal populations that are large enough [50].

We then considered what additional operations should be performed by downstream popu-

lations to implement the ideal observers. Specifically, we required that the log-posterior,

log½pðdjsR; sLÞ�, can be linearly reconstructed from the neuronal population activity:

log½pðdjsR; sLÞ� ¼
X

n

hnðdÞrnðsR; sLÞ þ const 36

The terms hn(δ) are the (stimulus-dependent, i.e. δ-dependent) reconstruction weights, and

it is the task of a downstream area to learn such weights in order to correctly read out the pop-

ulation activity (see Section “Decoding uncertainty from population activity”). When Eq 36 is

satisfied exactly, the population is said to implement the ideal observer in a linear Probabilistic

Population Code (lPPC).

For the pre-marginalization ideal observer, Eq 19 implies that such a lPPC is obtained by

computing the frequency-independent cross-covariance between the input signals at all possi-

ble ITDs. Because we used invertible filters, our IC population model, prior to rectification,

would implement a lPPC simply by summing across frequencies with the correct weights (see

Eq 33). However, due to the rectification, the IC population is not exactly a lPPC, and we

quantified its deviation as described in Section “Decoding uncertainty from population

activity”.

For the ideal observer with unknown BC, Eq 29 shows that additional computation needs

to be performed on the outputs of the IC model, to obtain a lPPC of the ideal observer. This

computation involves the steps illustrated in Fig 3C: summing the cross-covariance terms

across frequencies, divisive normalization to obtain the cross-correlation, and the nonlinearity

of Eq 29. This would lead to a so-called delta-kernel lPPC, where each neuron enters Eq 36

with weight 1 for its preferred δ and 0 otherwise. We considered an additional filtering stage,

using invertible, shift-invariant filters to obtain smooth tuning curves to ITD. For mathemati-

cal convenience, we did this using a pair of self-invertible filters F1, F2. The neuronal activity

given the pre-marginalization log-posterior logp(δ|sR,sL) is given by convolving this function

with the self-invertible pair. Our model is thus separated between two sub-populations with

slightly different tuning-properties. Note that this separation in two sub-populations is done

purely for mathematical convenience and should not be interpreted as a prediction for neuro-

nal activity in vivo. Indeed, there are many alternate possibilities for representing the log-
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posterior in neuronal activity that might give quantitatively more accurate accounts of

electrophysiological data. Namely, the filters that transform the log-likelihood into neuronal

activity could be optimized to fit the activity of neurons recorded experimentally.

Finally, we added a rectification step to enforce positive firing rates. To summarize, the

response of an OT neuron with preferred delay δn was modeled as:

rOTn ¼
X

d

LM ðdÞHnðdÞ
� �

þ ðtÞ 37

whereHn is the filter for neuron n. By construction, this model, prior to rectification, would

implement the marginalized ideal observer in a lPPC: LM can be computed simply by inverting

the filter matrixH (which, since the filters are once again self-invertible, isH itself). We quanti-

fied the deviation from the ideal observer due to the rectification as explained in Section

“Decoding uncertainty from population activity”.

Decoding uncertainty from population activity

We defined the decoding approach as the problem of reconstructing the posterior distribution

over δ from the activity of a neuronal population. In this approach, there is then a natural defi-

nition of the uncertainty as the posterior variance. We then asked whether it is possible to esti-

mate the uncertainty on a trial-by-trial basis from neuronal recordings.

As explained above, we assumed that the log-posterior could be obtained through weighted

sums of neuronal responses (Eq 36). To estimate the decoding weights, we trained a multino-

mial logistic regression model (using the ‘maxent’ Matlab library [58]) with predictors frICn g or

frOTn g, and discrete classes labeled by discretized values of δ (25 values spanning the [−250μs,
250μs] range; 21μs between successive values). The most common usage of multiclass logistic

regression is to provide only the class labels (not the full distribution over classes) for the train-

ing examples, and define as objective function the cross-entropy between the Dirac delta distri-

bution at the true class label and the predicted distribution over classes. This is also equal to

the Kullback-Leibler (KL) divergence between those distributions. Here instead we define as

objective function the KL divergence between the true posterior (Eqs 19 and 29, for the pre-

and post-marginalization cases, respectively) and the reconstructed posterior. This is some-

times referred to as training with probabilistic feedback [59]. Note that, if a neuronal popula-

tion is a lPPC, then multinomial logistic regression gives the optimal decoder if supplied with

a sufficient amount of training examples. Here we optimized the weights on a training set

comprising 3,000 trials for each value of δ and BC, and then evaluated the reconstruction qual-

ity on an independent, equally sized test set. Note also that for the IC model population, a dif-

ferent set of weights was learned for each value of BC. For the OT population, a single set of

weights was learned across all values of BC.

For the evaluation, we computed the KL divergence between the true posterior p(δ|sR,sL)
computed by the ideal observer, and the reconstruction. A value of KL close to zero means that

the neural responses are close to a lPPC implementation of the ideal observer. We further nor-

malized the KL by dividing it by the KL between the true posterior and the prior, and

expressed the result as a percent information loss [50].

In addition, in order to provide a direct comparison between the decoding and correla-

tional approaches, we investigated whether the variance of the reconstructed posterior could

be used to estimate the ideal observer’s uncertainty. We quantified estimate quality by the R2

on the test set.
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S1 Fig. Difference in behavior caused by multiple manipulations. (A,B) mean and standard

deviation of the Maximum A Posteriori (MAP) estimate of the angle of the sound source for

the post-marginalization ideal observer with a box prior (reproduced from main text Fig 2).

Four different values of the true angle are shown (dashed lines). At low BC, the behavior is

strongly biased towards 0, the center of the prior belief of the observer, whereas at high BC it

correctly recovers the correct value. (C,D) behavior of the post-marginalization ideal observer

when the box prior is replaced with the Gaussian prior of Fischer and Pena, 2011. The mean

behavior is almost identical, while the standard deviation of the behavior is reduced at low val-

ues of BC (E,F) behavior of the pre-marginalization ideal observer with the Gaussian prior of

Fischer and Pena 2011. At low values of BC, the pre-marginalization ideal observer mostly

ignores the data, resulting in stronger bias of the mean behavior and lower standard deviation

at low values of BC. At high values of BC, the post-marginalization ideal observer correctly

estimates BC and both observers have very similar behavior.

(TIF)

S2 Fig. Effect of prior range on behavioral bias. (A,B) The mean behavior of the Bayesian

ideal observer (post-marginalization) is biased at lower values of BC. This bias is towards the

center of the prior: in the realistic case, 0, (box prior over [−250μs, 250μs] range; panel A), and

towards 100 for an unbalanced prior (box prior over [−250μs, 500μs]; panel B).

(TIF)

S3 Fig. Comparison of different nonlinearities in the IC model. Each column correspond to

a different model, with the static nonlinearity indicated at the top. (A) Width (top row) and

inverse gain (bottom) of the tuning curves, as a function of BC, expressed as a percent change

from the value measured at the highest BC. Gray symbols: models. Blue: data from Cazettes

et al.. (B) Average KL divergence between the posterior distribution computed by the ideal
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observer and the posterior decoded from the model population activity. Same conventions as

in Fig 3B. (C) Performance of different estimators of uncertainty. Same conventions as in Fig

5A. Notice how, even in the sigmoid model in which there are large changes of width across

different values of BC, the width gives poor reconstructions of the uncertainty.

(TIF)

S4 Fig. Additional comparisons of the decoding and correlational approaches with addi-

tional neuronal activity features. A. Comparison in the auditory model (as in Fig 3D), with

two additional features: all products of neuronal activity (as a surrogate of neuronal correla-

tions), and the gain/width ratio of the neuronal activity. Uncertainty is defined as the log-vari-

ance as in the main text. The optimal bilinear estimate overfits at the largest value of BC thus

leading to a negative R-square value. B. Same as A but uncertainty is defined as the posterior

log-entropy instead.

(TIF)

S5 Fig. A trained feedforward network performs BC marginalization. (A) Schematic of the

deep network architecture. The marginal posterior is approximated from the IC model activity

by four layers of neurons implementing a rectifying nonlinearity. The weight matrices W are

trained to achieve the best approximation. (B) Average KL divergence between the posterior

distribution computed by the ideal observer and the posterior decoded from the model popu-

lation activity. Same conventions as in Fig 3B. (C) Performance of different estimators of

uncertainty. Same conventions as in Fig 5.

(TIF)
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