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Nodes-and-connections RNAi knockdown screening:
identification of a signaling molecule network involved
in fulvestrant action and breast cancer prognosis
N Miyoshi1, BS Wittner1, K Shioda1, T Hitora2,4, T Ito2, S Ramaswamy1, KJ Isselbacher1, DC Sgroi3 and T Shioda1

Although RNA interference (RNAi) knockdown screening of cancer cell cultures is an effective approach to predict drug targets
or therapeutic/prognostic biomarkers, interactions among identified targets often remain obscure. Here, we introduce the
nodes-and-connections RNAi knockdown screening that generates a map of target interactions through systematic iterations of
in silico prediction of targets and their experimental validation. An initial RNAi knockdown screening of MCF-7 human breast cancer
cells targeting 6560 proteins identified four signaling molecules required for their fulvestrant-induced apoptosis. Signaling
molecules physically or functionally interacting with these four primary node targets were computationally predicted and
experimentally validated, resulting in identification of four second-generation nodes. Three rounds of further iterations of the
prediction–validation cycle generated third, fourth and fifth generation of nodes, completing a 19-node interaction map that
contained three predicted nodes but without experimental validation because of technical limitations. The interaction map
involved all three members of the death-associated protein kinases (DAPKs) as well as their upstream and downstream signaling
molecules (calmodulins and myosin light chain kinases), suggesting that DAPKs play critical roles in the cytocidal action of
fulvestrant. The in silico Kaplan–Meier analysis of previously reported human breast cancer cohorts demonstrated significant
prognostic predictive power for five of the experimentally validated nodes and for three of the prediction-only nodes.
Immunohistochemical studies on the expression of 10 nodal proteins in human breast cancer tissues not only supported their
prognostic prediction power but also provided statistically significant evidence of their synchronized expression, implying
functional interactions among these nodal proteins. Thus, the Nodes-and-Connections approach to RNAi knockdown screening
yields biologically meaningful outcomes by taking advantage of the existing knowledge of the physical and functional interactions
between the predicted target genes. The resulting interaction maps provide useful information on signaling pathways
cooperatively involved in clinically important features of the malignant cells, such as drug resistance.
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INTRODUCTION
Approximately 70% of naive primary breast cancers express
estrogen receptor-α (ERα) and require estrogens for their growth
and survival.1 Endocrine therapy suppresses estrogen-dependent
proliferation of breast cancer cells and induces their apoptosis by
reducing the supply of circulating estrogens and/or estrogen-
induced intracellular signaling.2,3 Although endocrine therapy has
been proven beneficial, its clinical effectiveness is limited by de
novo and acquired drug resistance.4,5 To improve the long-term
therapeutic outcome of estrogen-dependent breast cancer,
elucidation of the molecular mechanisms of endocrine therapy
resistance is urgently desired.4,6,7

Interactions between the estrogen signaling pathway and a
wide variety of other intracellular signaling molecules affect breast
cancer cell sensitivity to endocrine therapy.8 Ligand-activated ERα
functions as a transcription factor that interacts with a large
number of coregulator proteins and other transcription factors.9,10

Activated ERα also initiates rapid intracellular signaling through
interactions with growth factor signaling molecules at the plasma

membrane.4,11–13 Interactions of ERα with other signaling
molecules affect functions of growth factor-activated protein
kinases.14–20 The interferon-γ and the HER2/ERBB2-mitogen-
activated protein kinase (MAPK) signaling pathways have been
reported to play a pivotal role in antiestrogen resistance.21–23

These observations suggest that a highly complex network
comprising many intracellular signaling molecules is involved in
the development of resistance to endocrine therapy.
RNA interference (RNAi) knockdown screening of cell culture

models is a powerful approach for identifying molecules
involved in drug resistance.24,25 Comprehensive RNAi knockdown
screenings covering all known protein-coding genes in the human
genome may reveal a signaling network involved in breast cancer
cell resistance to endocrine therapy. However, genome-wide RNAi
knockdown screening experiments are technically demanding,24

and integration of the screening results into a biologically
informative signaling network is often challenging. To overcome
such limitations of genome-wide RNAi knockdown screenings,
we propose the use of nodes-and-connections RNAi knockdown
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screening. This approach starts with a small number of known
positive-hit RNAi targets that are designated as the primary node
molecules. Then, using bioinformatics tools, molecules that
may functionally or physically interact with the primary nodes
are predicted, and RNAi knockdown experiments focusing on
these predicted node molecules validate them to identify the
secondary node molecules. By iterating this prediction–validation
cycle, deeper levels of nodes are progressively determined,
eventually resulting in the generation of a comprehensive
molecular interaction map connecting most, if not all, the primary
nodes. A small number of nodes whose involvement in the
network is predicted but cannot be experimentally validated
because of technical limitations are allowed to be included in the
molecular interaction map for effective and flexible prediction of
practically useful signaling networks.
In the present study, we apply the nodes-and-connections RNAi

knockdown screening approach to generate an interaction map
of molecules necessary for the fulvestrant-induced MCF-7 cell
apoptosis. The resulting interaction map reveals the critical
importance of the death-associated protein kinase (DAPK) family
of pro-apoptotic signaling kinases as well as their downstream
effectors, including STAT3 (signal transducer and activator of
transcription 3) and myosin light chains. The in silico Kaplan–Meier
survival analysis reveals that not only experimentally validated
nodes but also nodes without validation in the interaction map

yield promising prognostic biomarkers predicting recurrence of
breast cancer. Immunohistochemical evaluation of the nodal
protein expression in human breast cancer tissues supports their
prognostic predictive power, and statistically significant evidence
is presented that these nodal proteins are expressed in a highly
synchronized manner, implying organized regulation of their
expression. These results demonstrate the usefulness of the
nodes-and-connections RNAi knockdown screening for rapid and
cost-effective identification of clinically relevant sets of biomarkers
and drug targets using cell culture systems.

RESULTS
Mapping interactions between the signaling molecules required
for fulvestrant-induced MCF-7 cell death by the nodes-and-
connections RNAi knockdown screenings
Our previous studies have shown that fulvestrant kills estrogen-
dependent MCF-7 human breast cancer cells by inducing
apoptosis in a manner dependent on the TP53 tumor suppressor
protein and the BIK pro-apoptotic member of the BCL2 family of
apoptosis regulators.26,27 Fulvestrant-induced expression of BIK
mRNA requires wild-type TP53 that is strongly expressed in MCF-7
cells.26,27 To investigate the signaling network required for the
fulvestrant-induced MCF-7 cell death in more detail, we performed
RNAi knockdown screenings using 6560 arrayed short hairpin RNA
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Figure 1. The nodes-and-connections strategy generating an interaction map of signaling molecule network required for the fulvestrant-
induced MCF-7 cell apoptosis. (a) The in silico prediction and experimental validation of proteins functionally and/or physically interacting
with the DAPK3 protein kinase (red). The Ingenuity Pathway Analysis (IPA) and other bioinformatics tools predicted 13 proteins regulating
DAPK3 function or being regulated by it. Among them, requirement of three protein kinases (DAPK1, DAPK2 and ROCK1; orange) for the
fulvestrant-induced MCF-7 cell apoptosis was confirmed by RNAi knockdown experiments. Although requirement of two other protein
kinases (MYL2 and MYL9; open red) was unable to be confirmed by RNAi knockdown for technical limitations, requirement of MYLK3 (yellow),
which regulates MYL2 and MYL9, was experimentally validated. RNAi knockdown of the other eight proteins (white) did not affect the
fulvestrant-induced MCF-7 cell apoptosis. (b) An intermediate interaction map consisting of experimentally validated primary, second-
generation and third-generation nodes. Two primary nodes (ERBB4 and MAPK2) are not yet connected to any other nodes. The four primary
nodes have not been connected yet. (c) The interaction map of signaling molecules required for the fulvestrant-induced MCF-7 cell apoptosis.
Three nodes (Myosin light chains, STAT3 and STAT5A) in this map were predicted by in silico analyses but not experimentally validated.
All primary nodes are connected to each other, directly or indirectly, and the entire map is roughly divided into three sections—namely, SFK
(Src family protein tyrosine kinase) signaling, DAPK signaling and other signaling molecules including BIK, TP53, MAP2Ks and MAPKs.
Requirement of MAP2K7 and CSK (*) was also identified in an independently performed kinome-wide RNAi knockdown screening.
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(shRNA) expression plasmids targeting the human kinome,28 cell
cycle proteins and apoptosis regulators. This preliminary screening
yielded four signaling molecules—namely, BIK, ERBB4, DAPK3 and
MAP2K2. Signaling by ERBB4 (also known as HER4), a member of
the ERBB/HER family receptor kinases, promotes differentiation
and growth inhibition of breast cancer cells.29 Whereas expression
of the other three members of the ERBB/HER family in breast
cancer is strongly linked to poor prognosis, increased expression
of ERBB4 is more consistently correlated with a favorable
prognosis.29 DAPK3 (also known as ZIP kinase (ZIPK)) is a member
of the DAPK family pro-apoptotic signaling kinases.30,31 The
mitogen-activated protein kinase kinase 2 (MAP2K2 or MEK2)
regulates the MAPK/ERK protein kinases that directly phosphor-
ylate multiple nuclear proteins involved in cell cycle regulation.32

Although these four signaling molecules did not have any known
direct interactions among each other, we presumed that they
might be parts of a large network of molecules required for the
fulvestrant-induced MCF-7 cell death. To identify this hypothetical
network, we extended our RNAi knockdown screenings with the
nodes-and-connections approach, as outlined in Supplementary
Figure 1. In this study, the four signaling molecules identified
above are designated as the primary nodes (Figure 1b).
To initiate the nodes-and-connections screening, molecules

directly or indirectly interacting with the primary nodes were
predicted using the Ingenuity Pathway Analysis.33 For example,
DAPK3 was predicted to interact with 13 proteins: DAPK1, DAPK2,
ROCK1, MYL2, MYL9, DAXX, NR3C1, ATF4, PAWR, PRKCZ, GRB14,
F2RL3 and PPP1R12A (Figure 1a). The computationally predicted
molecules interacting with the primary nodes were subjected to
RNAi knockdown using shRNA-expressing lentiviruses to test
whether they are required for the fulvestrant-induced MCF-7 cell
death. Among the 13 proteins predicted to interact with DAPK3,
knockdown of three protein kinases DAPK1, DAPK2, and
ROCK1 resulted in strong fulvestrant resistance (Figure 1a and
Supplementary Figure 2). DAPK1, DAPK2 and DAPK3 belong to the
DAPK family of pro-apoptotic protein kinases.30,31,34,35 Reduced
expression of DAPK1 mRNA in human breast cancer correlates
with a poor prognosis.36,37 DAPK1 activates DAPK3 to amplify
apoptotic signals.38 DAPK1, DAPK2 and DAPK3 induce apoptosis
when overexpressed in human cells,30 and they physically interact
with each to form a multiprotein complex apoptosis inducer.30,31

ROCK1 (Rho-associated coiled-coil containing protein kinase 1)
phosphorylates DAPK3 to activate it,39 and both ROCK1 and
DAPK3 phosphorylate myosin light chain subunits to increase the
actin-activated myosin ATPase activity.40 DAPK1, DAPK2 and
ROCK1, which interact with the DAPK3 primary node, are the
second-generation nodes in the molecular interaction map for
the fulvestrant-induced MCF-7 cell death. Because RNAi knock-
down of MYL2 or MYL9 myosin light chains strongly reduced
MCF-7 cell viability even in the absence of fulvestrant,41 their
requirement for the fulvestrant-induced apoptosis was not
experimentally confirmed. However, RNAi knockdown of the
MYLK3 myosin light chain kinase, which phosphorylates MYL2 and
MYL9,42 did not damage MCF-7 cell viability and caused their
fulvestrant resistance (Figure 1a). Because of the nonspecific cell
toxicity of MYL2 or MYL9 knockdown, Supplementary Figure 2
presents data demonstrating fulvestrant resistance induced by
MYLK3 knockdown. The molecular interaction map thus includes
MYLK3 as an experimentally validated third-generation node,
whereas its substrate myosin light chains are included as predicted
second-generation nodes (Figure 1a).
Because our previous study showed that expression of BIK

mRNA is dependent on TP53,26 TP53 is a second-generation
node (Figure 1b). TP53 also plays critical roles in DAPK1-induced
cell death,30,31 and in human breast cancers the epigenetic
suppression of DAPK1 expression and mutational inactivation of
TP53 occur in a mutually exclusive manner,43 supporting the

notion that DAPK inactivation in breast cancers might contribute
to attenuation of TP53-dependent drug actions.
Computational prediction of molecules interacting with the

second-generation nodes followed by experimental validation of
their requirement for the fulvestrant-induced MCF-7 cell death
with RNAi knockdown yielded three additional third-generation
nodes—namely, the MAPK9 mitogen-activated protein kinase and
the CAMK1D and CAMK4 calmodulin-dependent protein kinases
(Figure 1b and Supplementary Figure 2). MAPK9 (also known as
the JUN N-terminal kinase 2 or JNK2) blocks ubiquitination of TP53
to increase its stability.44 DAPK1, DAPK2, CAMK1D and CAMK4
are regulated by the Ca2+/calmodulin system,31,45 and RNAi
knockdown of a calmodulin CALM1 caused MCF-7 cell resistance
to fulvestrant (Figure 1c and Supplementary Figure 2a). CALM1 is
thus a fourth-generation node.
Extension from the MAP2K2 primary node and the MAPK9

third-generation node through an iteration of the computational
prediction - RNAi validation cycle yielded MAP2K7 as a fourth-
generation node (Figure 1c and Supplementary Figure 2a). Our
previous study also detected the requirement of MAP2K7 for the
fulvestrant-induced MCF-7 cell death.46 Furthermore, Iorns et al.25

demonstrated the requirement of MAP2K7 for inhibition of
MCF-7 cell proliferation by tamoxifen, another antiestrogen
drug prescribed for ERα-positive breast cancers. Independent
reidentification of MAP2K7 as a kinase required for antiestrogen
action in MCF-7 cells supports the validity and efficiency of the
nodes-and-connections approach.
Computationally predicted new nodes interacting with DAPK3,

ERBB4 and ROCK1 included STAT3 that directly binds to the
PAG1/CBP (CSK binding protein).47 Although RNAi knockdown of
STAT3 was unsuccessful because of nonspecific cell damage, RNAi
knockdown of PAG1 caused MCF-7 cell resistance to fulvestrant
(Supplementary Figures 2a and b). PAG1 interacts with the CSK
c-Src tyrosine kinase, a negative regulator of the c-Src oncoprotein
and other Src family kinases,48,49 and our previous study
demonstrated requirement of CSK for the fulvestrant-induced
MCF-7 cell death.46 Thus, PAG1 and CSK are fourth- and fifth-
generation nodes, respectively, and STAT3 is a predicted node
(Figure 1c). STAT5A, which is another ERBB4-interacting signaling
molecule, is also included in the interaction map as a predicted
node based on its close involvement in the c-Src signaling
(Figure 1c). All the nodes in the map of molecular interactions
required for the fulvestrant-induced MCF-7 cell death are now
connected, forming a large network consisting of three major
components—namely, the calmodulin–DAPK–myosin light chain
signaling, the TP53–MAPK signaling and the Src family kinase
signaling (Figure 1c). Table 1 lists the numbers of independent
shRNA lentiviral clones that significantly suppressed the cytocidal
action of fulvestrant in the present study (note that RNAi
knockdown experiments for BIK27 and TP5326 previously described
by us are not included in Table 1). Supplementary Table 1 lists The
RNAi Consortium (TRC) clone ID and shRNA sequences used in the
present RNAi knockdown screenings.

Expression of the mRNA transcripts for the nodal genes is affected
by 17β-estradiol and/or fulvestrant
As fulvestrant kills MCF-7 cells by shutting down the estrogen-
dependent cell survival signaling,50 we determined whether
expression of the mRNA transcripts for the nodal genes is affected
by ERα agonists and/or antagonists. Affymetrix microarray analysis
(Santa Clara, CA, USA) revealed significant increase in mRNA
expression for CAMK1D, CSK, ERBB4 and DAPK3 after exposure of
MCF-7 cells to 100 nM fulvestrant for 48 h (Figure 2a). Under this
experimental condition, intracellular ERα protein is completely
degraded but cellular viability has not yet been significantly
reduced.26,27,46 In contrast, mRNA expression for CALM1, MAPK9
and ROCK1 slightly decreased after exposure to fulvestrant
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(Figure 2b). After cells were exposed to varying concentrations of
17β-estradiol for 48 h, expression of CALM1 and MAPK9 mRNA was
induced (Figure 2c), whereas CAMK1D, DAPK3 and ERBB4 mRNA
expression was suppressed (Figure 2d). In contrast, mRNA
expression of CSK or ROCK1 was not affected by exposure to
17β-estradiol (Figure 1e) despite their significant induction
(Figure 1a) or suppression (Figure 1b) by fulvestrant, respectively.
Thus, MAPK9, CALM1, DAPK3, CAMK1D and ERBB4 are estrogen-
responsive genes in MCF-7 cells, whereas expression of CSK1 and
ROCK1 is fulvestrant responsive but not estrogen responsive
through unknown mechanisms.

The in silico Kaplan–Meyer analysis suggests significant prediction
power of the nodal genes as prognostic biomarkers of breast
cancer
To explore the relevance of the interaction map generated in this
study to human breast cancer, we examined whether mRNA
expression of the nodal genes in tumor tissues of previously
published breast cancer cohorts correlates with better prognosis
by in silico Kaplan–Meier analysis (Figure 3). Patients were ranked
by mRNA expression for each nodal gene, and two independent
recurrence-free survival curves were drawn for the top 50
percentile (high expressers, red curves) and bottom 50 percentile
(low expressers, blue curves) patients. Log-rank testing identified
three nodal genes (STAT3, STAT5A and STAT5B) whose stronger
expression correlated with significantly better prognosis in
multiple cohorts. Expression of four other nodal genes (ROCK1,
ERBB4, CSK and CAMK4) and MYLK, encoding a myosin light chain
isoform as the nodal gene MYLK3, also correlated with significantly
better prognosis in a single cohort (data not shown). These results
suggest that the interaction map of molecules required for
fulvestrant-induced death of MCF-7 cell culture model may
provide insights into clinically useful prognostic biomarkers of
breast cancer.

Strong protein expression of nodal molecules in human breast
cancer tissues correlates with better prognosis
To determine whether nodal protein expression in breast cancer
tissues correlates with prognosis, paraffin-embedded pathological
slides of surgically excised tumor tissues obtained from 18 age-
and stage-matched breast cancer patients (clinical and patholo-
gical profiles shown in Supplementary Table 4) were subjected to
immunohistochemical analysis for selected 10 nodal proteins.

Nodal protein expression was scored to calculate the Prognosis
Marker Expression (PME) score for each patient as described in the
Materials and methods. Figure 4a shows immunohistochemical
images of tumors with the lowest PME score (patient ID = 1363,
PME score = 2.5, recurrence (+)) and the highest PME score
(patient ID = 2765, PME score = 36, recurrence (− )) with the same
T/N/M (tumor/node/metastasis) and clinical stages (4/1/0, IIIb).
As shown in Supplementary Table 5, the PME scores of all patients
who experienced breast cancer recurrence were significantly
smaller than the scores of all patients without recurrence
(P= 0.0086). The PME scores were also significantly smaller for
recurrent breast cancers when the same analysis was performed
only with patients who received endocrine therapy (P= 0.046),
whereas no statistically significant recurrence-associated differ-
ence in the PME scores was observed with patients who did not
receive endocrine therapy (P= 0.124). These results suggest that
expression profiling of the nodal proteins may be useful for
predicting prognosis of breast cancer after endocrine therapy.
We next performed a permutation test to determine whether

expression of the 10 nodal proteins is mutually independent. A
bell-shaped distribution of the PME scores was generated by
computational simulation without considering mutual effects of
the nodal proteins on their expression (red bars). The χ2 tests
indicated that the 18 PME scores of breast cancer patients
(Figure 4b, blue dots) do not follow this simulated distribution
(Figure 4c; Po0.0001 for both 5 and 1% tails), indicating that
expression of each nodal protein is not mutually independent.
The apparent associations among the nodal proteins for their
expression in breast cancer tissues may imply that resistance
to endocrine therapy might occur through a coordinated loss
of multiple nodes in the interaction map rather than loss or
dysfunction of a single nodal molecule. It is unknown as to
whether suppression of a single nodal molecule in breast cancer
in vivo is insufficient to cause clinically observed drug resistance
that is in contrast to the MCF-7 cell culture model showing
significant resistance after single molecule knockdown. Alterna-
tively, the apparently coordinated loss of multiple nodal molecule
in vivo might reflect an involvement of common mechanisms
regulating their expression such as epigenetic suppression.

DISCUSSION
High-throughput knockdown/knockout screening of cell culture
models is a powerful approach to identify molecules involved in

Table 1. Summary of a node-and-connection RNAi knockdown screening for genes required for fulvestrant-induced apoptosis of MCF-7 cells

Two positive shRNA lentivirus clones

ACVR1B CHKB DGKB KFZp686K16132 MAPK4 NME5 PKMYT1 ROS1
ACVRL1 CIB4 DMPK KHK MAPK6 NME6 PLK1 RPS6KA4
ADRBK1 CKC42BP DNAJC6 KSR1 MGC16169 NUAK2 PRKAB2 SRPK3
ADRBK2 CKMT2 EPHA2 LOC392265 MGC42105 PDGFRL PRKAG3 STK38
AKT2 CLK3 FASTKD3 MAP2K7 MINK1 PFKL PRKAR1A TSSK6
ALS2CR7 CSNK1E FLT4 MAPK11 MPP7 PHKB PRKAR1B TTN
CAMK4 DAPK2 GRK1 MAPK12 MYO3B PHKG2 PTK7 ULK1
CHEK1 DCAMKL1 GSK3A MAPK13 NEK10 PIK3R2 RIOK2 YES1

Three positive shRNA lentivirus clones

CALM1 DAPK3 EPHB2 LOC441655 MPP3 PAG1 TESK1
CAMK1D DGKG ERBB4 MAP2K2 MYLK3 ROCK1 TLK2
DAPK1 EPHA3 GUCY2D MAPK9 RAGE RPS6KB2 TNIK

Four positive shRNA lentivirus clones

CSK

Abbreviations: RNAi, RNA interference; shRNA, short hairpin RNA. Genes included in the interaction map (Figure 1) are shown in bold.
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drug resistance.51–53 Whereas a standard knockdown/knockout
study performs screening data generation and bioinformatics data
analysis as two separate stages, a nodes-and-connections approach
performs multiple cycles of iteration of knockdown/knockout
experiments and data analysis. This novel approach has the
following merits.

First, even when experimental knockdown/knockout of certain
nodes is technically difficult, such nodes can be considered
pending and cautiously included in the molecular interaction map
if results of later cycles of iteration or other studies support their
validity, possibly reducing false negatives caused by technical
limitations. Examples of such nodes in our present study are
STAT3, STAT5A and myosin light chains (Figure 1c), whose validity
was supported by in silico survival curve analysis (Figure 3)
and immunohistochemical examinations of their usefulness as
prognosis markers of breast cancer (Figure 4).
Second, data analysis is efficient because physical or functional

interactions between nodes are already known. The interaction
map generated in the present study suggests importance of
TP53–MAPK, Calmodulin–DAPK–myosin light chain and Src Family
Kinase signaling in the fulvestrant-induced MCF-7 cell death
(Figure 1c). Fulvestrant may kill MCF-7 cells through coordinated
effects via these signaling pathways, namely (1) TP53 induces the
pro-apoptotic effector BIK while affecting cell cycle progression via
MAPKs; (2) calmodulin-regulated DAPKs cause death signaling
involving myosin light chains; and (3) ERBB4-STAT3/5A suppress
the c-Src cell survival signal involving PAG1 and CSK.
Third, the size of a nodes-and-connections RNAi knockdown

screening study is flexible. During the iterated prediction–
validation cycles, the interaction map gradually develops from
the unconnected primary nodes to form a relatively complex
functional network involving multiple generations of nodes
(Figure 1). Investigators can terminate the iteration when a
sufficient amount of information has been obtained to depict a
closed interaction map and/or to generate testable new
hypotheses. When newly predicted genes are no longer
experimentally validated positive after several cycles of iteration,
the screening may be coming closer to saturation. This is in
contrast to the standard screening approach that does not
provide real-time opportunities to evaluate possible screening
saturation. In the nodes-and-connections screening, investigators
may also have opportunities to evaluate the validity of an ongoing
screening experiment by testing whether it is detecting known
positive genes. For example, Iorns performed a small interfering
RNA-based knockdown screening of the 779-gene human
kinome and identified CDK10, CRK7 and MAP2K7 as signaling
kinases required for inhibition of MCF-7 cell proliferation by
tamoxifen,22,25 and our present screening successfully ‘redisco-
vered’ MAP2K7 as a kinase required for fulvestrant-induced MCF-7
cell death (Figure 1c and Supplementary Figure 2), suggesting the
importance of MAP2K7 in estrogen signaling in this cell line.
Taking advantage of the ‘expressome’ database of estrogen

dose-dependent transcriptomal changes in MCF-7 cells developed
in our previous study,54 we characterized estrogen and fulvestrant
responsiveness of the nodal genes (Figure 2). We identified
CAMK1D, CSK, ERBB4 and DAPK3 as fulvestrant-induced genes
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Figure 2. Effects of fulvestrant and 17β-estradiol on expression of
the mRNA transcripts for the interaction map nodes in MCF-7 cells.
(a, b) Cells were exposed to 100 nM fulvestrant or vehicle for 48 h
followed by mRNA expression profiling by Affymetrix microarray.
Robust Multi-array Average (RMA)-normalized relative mRNA
expression of genes induced (a) or suppressed (b) by fulvestrant
are shown; mRNA expression in vehicle-exposed cells is defined
as 1.00 for each gene (mean± s.e.m., n≥ 5). Asterisk indicates
statistically significant changes compared with exposure to vehicle
(analysis of variance (ANOVA) *Po0.05). (c–e) Cells were exposed to
varying concentrations of 17β-estradiol for 48 h followed by
Affymetrix transcriptomal profiling. RMA-normalized relative mRNA
expression of genes induced (a), suppressed (b) or unchanged (c) by
17β-estradiol are shown. Each datum point represents results of at
least three independent experiments (mean± s.e.m.), and asterisk
indicates statistically significant changes compared with exposure to
vehicle (ANOVA *Po0.05; **Po0.005).
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(Figure 2a), and three of them (CAMK1D, ERBB4 and DAPK3)
indeed showed estradiol dose-dependent suppression (Figure 2d).
Similarly, CALM1, MAPK9 and ROCK1 were fulvestrant-
suppressible genes (Figure 2b), and two of them (CALM1 and
MAPK9) were also estrogen inducible (Figure 2c). Interestingly,
despite the significant fulvestrant effects on mRNA expression of
CSK and ROCK1, these genes did not respond to any concentra-
tion of estradiol (Figure 2e), suggesting the existence of
fulvestrant-dependent transcriptional regulating mechanism inde-
pendent of estrogen signaling. Further studies will be required to
explain the differences in the fulvestrant and estradiol effects on
expression of the CSK and ROCK1 mRNA transcripts.

The clinical relevance of the outcome of the present study has
been demonstrated by the in silico Kaplan–Meier analysis of breast
cancer cohorts (Figure 3) and immunohistochemical examination
of expression of the nodes in breast cancer tissues (Figure 4). In
agreement with previously published studies,29 stronger expres-
sion of ERBB4 in breast cancer cohorts correlated with better
prognosis (Figure 3). Similarly, stronger expression of STAT3,
STAT5A and STAT5B, which functionally interact with ERBB4, also
correlated with better prognosis. In addition, expression of ROCK1,
CSK, CAMK4 and myosin light chain kinase also showed significant
prognostic prediction power. These results demonstrate that
expression of the nodes, whether experimentally validated or
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Figure 3. Kaplan–Meier recurrence-free survival curves of breast cancer cohorts whose surgically resected primary tumors strongly or weakly
expressed the interaction map nodes. Each cohort of patients involved in the previously reported studies on breast cancer prognosis and
mRNA expression profiles were divided into two groups of identical numbers of patients strongly (red) or weakly (blue) expressing the
interaction map nodes. Thus, the weakest mRNA expression in a tumor belonging to the subcohort indicated by red line was stronger than
the strongest mRNA expression in the subcohort indicated by blue line, although the absolute mRNA amounts and the shape of their
distributions may differ for each panel. Kaplan–Meier curves of recurrence-free survival were drawn for each of the two groups, and the pair of
curves showing significantly different survival rate are shown (false discovery rate (FDR) o0.25, Benjamini–Hochberg corrected one-sided
log-rank P-values). Each panel indicates the pair of curves, the node protein and the cohort study.
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included in the interaction map as predicted nodes, may be useful
as clinically relevant biomarkers. The potential usefulness of the
nodes as prognostic biomarkers has also been supported by
immunohistochemical examinations of their expression in breast
cancer, in which stronger expression correlated with recurrence-
free status of breast cancer patients who received endocrine
therapy (Figure 4 and Supplementary Table 5). Such correlation
was not statistically significant for patients who did not
receive endocrine therapy, whereas it was significant for the
entire patients combined with or without endocrine therapy
(Supplementary Table 5). Interestingly, a permutation test
demonstrated significant mutual association among expression
of the nodes—that is, breast cancers tend to express the nodes in
a coordinated manner (all nodes are strongly expressed, or no
node is detected). This observation may imply a possibility that
fulvestrant resistance of breast cancer might not be caused by loss
of one or a few components of the interaction map. Instead, many
of the components of the network could be lost simultaneously in
the endocrine therapy-resistant tumors. Future studies should
address the question of whether expression of multiple nodes is
regulated by a common mechanism that could be involved in the
mechanism of acquired resistance to endocrine therapy.
Because the nodes-and-connections RNAi knockdown screening

approach is dependent on the existing knowledge on the nodes,
it may be associated with ‘subjective bias’ introduced during
selections of the screening targets. Therefore, this approach might
not be ideal for studies that require strictly unbiased screening
conditions such as toxicological assessments for regulatory
purposes. Because of its dependence on the existing knowledge,
it may have limited power to discover unknown molecular
interactions. Nonetheless, the nodes-and-connections approach
still has significant discovery power within the contexts of known
signaling pathways and molecular interactions and is appropriate

for obtaining useful mechanistic insights into biologically or
clinically important phenomena such as drug resistance. Thus, the
nodes-and-connections screening and the genome-wide thorough
screening are designed to aim distinct goals. These two
approaches should be compared based on the benefits and
limitations depending on the priorities of the screening projects.
In summary, the nodes-and-connections RNAi knockdown

screening approach efficiently generates a comprehensive map
of functional interactions between genes involved in a specific
cellular phenotype. In this approach, one cycle of iteration consists
of computational prediction of relatively small numbers of
knockdown targets based on known positive target genes and
their experimental validation by RNAi knockdown, and the cycle
is repeated until sufficient amount of information is obtained
from the interaction map. With this approach, a knockdown
screening study can reduce false positives and adjust its size
during the ongoing screening operation, and interpretation of
the biological significance of its outcome is straightforward.
The nodes-and-connections screening thus provide unique
opportunities to take advantage of the database-stored knowl-
edge of functional molecular interactions to enhance the
efficiency of RNAi knockdown screening.

MATERIALS AND METHODS
Cell culture
MCF-7 human breast cancer cells (BUS stock) were provided by C
Sonnenschein and Ana M Soto (Tufts University, Medford, MA, USA),55 and
its fulvestrant-sensitive monoclonal subline W2 has been described in our
previous study.50 Cells were maintained in Dulbecco’s modified Eagle’s
medium supplemented with 5% fetal calf serum (HyClone, DEFINED grade;
Thermo Scientific, Waltham, MA, USA) in 10% CO2 at 37 °C. Research-grade
fulvestrant was purchased from Tocris (Ellisville, MO, USA). Fulvestrant-
induced W2 cell apoptosis was evaluated by crystal violet staining after
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Figure 4. Expression of the interaction map node proteins in human breast cancer tissues. (a) Immunohistochemical staining of a recurrence-
positive tumor (top) and a recurrence-negative tumor (bottom) for 10 selected interaction map node proteins. (b, c) A permutation test
demonstrating synchronized expression of the 10 interaction map node proteins in human breast cancer tissues. The PME score is the sum of
intensity scores of the 10 antigens (see Materials and methods for details). The histogram (b) shows a theoretical distribution of the PME score
computationally generated by 50 000-cycle permutations of randomly selected intensity scores of the raw data, and arrows indicate
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significance was determined by the χ2 test (c).
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exposure to 100 nM fulvestrant for 7 days in the presence of 10%
nonstripped fetal calf serum. Detailed method of cell viability analysis has
been described in our previous paper.46

Following the criteria adopted in the original study describing the
development and use of the TRC shRNA lentiviral libraries,28 our RNAi
knockdown screening experiments defined positive hit as a target with at
least two distinct shRNA lentiviral clones inducing a statistically significant
resistance to fulvestrant compared with cells infected with the pLKO.1
control virus (Po0.05, analysis of variance). Because distinct shRNAs are
expected to have different spectra of off-target effects, this criterion is
expected to filter out off-target effects. For some positive-hit targets,
fulvestrant resistance was observed with only two or three shRNA lentiviral
clones among five or larger numbers of viral clones. This incompleteness
reflects a commonly known technical limitation of the RNAi knockdown
experiments using the TRC shRNA lentiviral library that was thoroughly
evaluated in its original literature.28

RNAi knockdown
Lentiviruses expressing shRNA species targeting human mRNA transcripts
were produced using the pLKO.1 vector harboring a puromycin resistance
marker gene as previously described.28 An arrayed shRNA lentivirus
library targeting human kinome was prepared by transfecting HEK293T
packaging cells with TRC library of 6560 kinome shRNA hairpin plasmids
(Broad Institute, Cambridge, MA, USA) together with the pMD2G
expression plasmid for vesicular stomatitis virus glycoprotein and the
pCMV-dR8.91 plasmid for the core lentiviral genome. MCF-7 cells grown at
5–10 ×104 cells/well density were infected with 4–8 multiplicity of infection
titers of lentiviruses in the presence of 8 μg/ml polybrene under 1200 g
gravity for 60min. Medium was changed 48 h after infection, and
successfully infected cells were selected by exposure to 2.5 μg/ml
puromycin for 48 h.

Transcriptomal profiling
Transcriptomal profiles of MCF-7 cells determined by Affymetrix microarray
has been described in our previous studies.50,54 Microarray data of MCF-7
cells exposed to fulvestrant and 17β-estradiol are available from the
Gene Expression Omnibus (GEO) database of the National Center for
Biotechnology Information (NCBI) accession numbers GSE14986 and
GSE50705, respectively. The 17β-estradiol dose-dependent mRNA expres-
sion data are also retrievable from our website (http://mplwebserver.
partners.org).

Immunohistochemistry
Human breast cancer tissues were surgically excised from patients
admitted in the Rinku General Medical Center (Osaka, Japan) between
2005 and 2008 and processed for the standard formalin fixation and
paraffin embedding. Informed consent was obtained from the 18 patients
involved in this study, whose clinical profiles are shown in Supplementary
Table 4. The present study was approved in advance by the institutional
review board of the Rinku General Medical Center. Immunohistochemical
staining (hydrogen peroxide-diaminobenzidine chromogen system) was
performed in the Special Pathology Core Facility of the Dana-Farber/
Harvard Cancer Center at the Massachusetts General Hospital (Charles-
town, MA, USA). All antibodies used in this study were rabbit polyclonal
antibodies obtained from Abcam (Cambridge, MA, USA): anti-calmodulin
(cat. no. ab38590), anti-CSK (cat. no. ab151590), anti-DAPK1 (cat. no.
ab109382), anti-DAPK3/ZIPK (cat. no. ab78943), anti-ERBB4 (cat. no.
ab38158), anti-JNK2 (cat. no. ab78495), anti-MEK2 (cat. no. ab28834),
anti-MYLK (cat. no. ab71826), anti-STAT3 (ab137803) and anti-STAT5
(cat. no. ab68465). To ensure the same staining condition, slides of all
the 18 tumor tissues were subjected to immunohistochemical procedure in
a single batch for each antibody. Signal intensities of the stained sections
were independently scored by two examiners using an arbitrary scale
defined for each antigen (0 =no signal, 1 =weak, 2 =moderate, 3 = strong,
and 4= strongest signal within the 18 sections), and means of the two raw
scores (Supplementary Table 5) were used for further analysis. Identities of
the pathological slides were blinded during the scoring procedure to
eliminate bias. The PME score was defined for each tumor as the sum of
these averaged intensity scores calculated for all the 10 antigens.

Bioinformatics and statistics
The in silico prediction of interactions between nodes was performed using
the Ingenuity Pathway Analysis tool (Ingenuity Systems, Redwood City, CA,
USA). Kaplan–Meier analysis of recurrence-free survival was performed
using the ‘survival’ package of the R programming language
(https://cran.r-project.org/web/packages/survival/) and publicly available
mRNA expression and survival data (Supplementary Table 2). For each
gene selected for this analysis (Supplementary Table 3) and each data set,
a one-sided log-rank test was performed against the alternative hypothesis
that patients with expression of the gene above the median have better
survival. The P-values were then corrected for multiple hypotheses testing
by the Benjamini–Hochberg method. Resulting false discovery rate
estimates were considered significant if below 0.25.
To generate a theoretical distribution of the PME scores, an intensity

score was randomly sampled from the 18 scores of each antigen, and the
sum of these scores for all the 10 antigens were calculated to obtain a
theoretical PME score. To test a null hypothesis that expression of each
antigen is mutually independent (that is, not synchronized), a distribution
of 50 000 theoretical PME scores was computationally generated, and its
1% and 5% two-tail cutoff values were determined. If expression of the 10
antigens is mutually independent, the majority of the observed PME scores
are expected to follow this theoretical distribution. The χ2 tests were
performed to determine whether the observed PME scores follow such a
theoretical distribution.
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