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Abstract

Much remains unknown of molecular events controlling the plant hypersensitive defense response (HR), a rapid localized
cell death that limits pathogen spread and is mediated by resistance (R-) genes. Genetic control of the HR is hard to quantify
due to its microscopic and rapid nature. Natural modifiers of the ectopic HR phenotype induced by an aberrant auto-active
R-gene (Rp1-D21), were mapped in a population of 3,381 recombinant inbred lines from the maize nested association
mapping population. Joint linkage analysis was conducted to identify 32 additive but no epistatic quantitative trait loci
(QTL) using a linkage map based on more than 7000 single nucleotide polymorphisms (SNPs). Genome-wide association
(GWA) analysis of 26.5 million SNPs was conducted after adjusting for background QTL. GWA identified associated SNPs that
colocalized with 44 candidate genes. Thirty-six of these genes colocalized within 23 of the 32 QTL identified by joint linkage
analysis. The candidate genes included genes predicted to be in involved programmed cell death, defense response,
ubiquitination, redox homeostasis, autophagy, calcium signalling, lignin biosynthesis and cell wall modification. Twelve of
the candidate genes showed significant differential expression between isogenic lines differing for the presence of Rp1-D21.
Low but significant correlations between HR-related traits and several previously-measured disease resistance traits
suggested that the genetic control of these traits was substantially, though not entirely, independent. This study provides
the first system-wide analysis of natural variation that modulates the HR response in plants.
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Introduction

Programmed cell death (PCD) can be defined as death of a cell

mediated by intracellular signaling [1]. Apoptosis, the most

common form of PCD in animals, is defined by certain hallmark

characteristics including cellular shrinkage, ‘blebbing’ and nuclear

fragmentation [2]. The other major form of programmed cell

death identified in animals is autophagic cell death which has been

defined as ‘‘a type of cell death occurring together with (but not

necessarily by) autophagic vacuolization’’ [3]. Autophagy itself is

the degradation of components of the cell through the action of

lysozomes. As well as being involved in PCD, in many cases

autophagy is regarded as a ‘pro-survival’ response, allowing cells to

survive various types of stress [4].

PCD is perhaps best thought of as a complex of related

processes and is important in many developmental processes in

plants including leaf senescence, degeneration of cereal aleurone

cells, development of tracheary elements in xylogenesis, and cell

death in plant reproduction [5]. There is some discussion in the

literature regarding the relationship between animal and plant

PCD mechanisms. A recent review suggested that animal and

plant PCD are not analogous and that two major types of plant

PCD should be recognized: vacuolar cell death, characterized by

the removal of cell contents by autophagy and the release of

hydrolases from lytic vacuoles, and necrosis, characterized by early

rupture of the plasma membrane and shrinkage of the protoplast

[6].

The plant hypersensitive response (HR) is a key immune

response of plants that confers resistance to almost every type of

pathogen; bacteria, viruses, fungi, nematodes, insects and even

parasitic plants [7]. HR is a form of PCD characterized by rapid,

localized cell death at the point of attempted pathogen penetra-

tion, usually resulting in disease resistance [8]. It is often associated

with other responses, including ion fluxes, an oxidative burst, lipid
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peroxidation and cell wall fortification [9]. Van Doorn et al [6]

suggest that HR is a type of PCD sharing features with, but distinct

from, both vacuolar cell death and necrosis.

HR is generally effective against biotrophic pathogens, since

biotrophs require a long-term feeding relationship with living cells

of the host. It is generally mediated by dominant plant resistance

genes (R-genes) whose activation is triggered by the direct or

indirect detection of specific pathogen effector proteins [10].

Crucially, R-proteins are maintained in their inactive state if their

corresponding effector is not present. Mutants in which HR is

constitutively active have been identified in many plant species,

including maize [11,12], Arabidopsis thaliana [13], barley

(Hordeum vulgare) [14], and rice (Oryza sativa) [15].

Plant lesion mimics mutants, or lesioned mutants are a class of

mutants that spontaneously form lesions (patches of dead cells) in

the absence of any obvious injury, stress or infection to the plant.

Since these lesions in some cases resemble HR or lesions casued by

disease these mutaions have been termed disease lesion mimics

[16]. In fact many of the genes underlying this mutant class are

likely not involved in defense response pathways but are

components of various pathways, all of which cause cell death if

their function is perturbed [11]. For instance the Arabidopsis gene

acd2 and the maize gene lls1 are defective in chlorophyll

degradation [17,18]. However several lesion mimic genes are

indeed involved in the defense response in their wild type form.

One such gene is derived from the Rp1 locus of maize.

The Rp1 locus on maize chromosome 10 carries multiple

tandemly-repeated R-gene paralogs with characteristic coiled-coil,

nucleotide-binding site and leucine-rich repeat (CC-NBS-LRR)

domains, some of which confer resistance to specific races of maize

common rust conferred by the fungus Puccini sorghi [19]. The

locus is meiotically unstable due to a high frequency of unequal

crossovers between paralogs [20]. Unequal crossing over followed

by intragenic recombination resulted in the formation of the

chimeric gene Rp1-D21 [21,22]. In the Rp1-D21 protein, the

recognition and elicitation functions are uncoupled, causing the

spontaneous activation and formation of HR lesions on the leaves

and stalks of the plant in the absence of pathogen recognition.

Rp1-D21 has partially dominant gene action and its phenotypic

effect is influenced by the environment, developmental stage and

genetic background [21,23–26]. In this and in past studies [23–

25,27] we make the explicit assumption that the cell death caused

by Rp1-D21 is an exaggerated form of the HR that is, in normal

circumstances, a response to pathogenesis. This assumption is

based on a number of lines of reasoning: Most importantly Rp1-

D21 is a typical CC-NB-LRR protein of the type that is often

associated with HR-mediated resistance [10]. Rp1-D and several

other alleles confer pathogen-dependent HR in maize and

transgenic expression of Rp1-D21 confers a constitutive HR

phenotype in maize [21]. Furthermore, we have shown that the

cell death conferred by Rp1-D21 is associated with typical

hallmarks of HR including the accumulation of salicylic acid (G-

F Wang unpublished) and reactive oxygen species and the

expression of pathogenesis-related genes [23,25]. Finally Rp1-
D21 mediated HR is temperature and light-dependent dependent

[25], which is typical of HR associated with R-genes [25,28–30].

Since the Rp1-D21 HR phenotype is an exaggerated defense

response [23], it is likely that many or all of the genes that modify

the aberrant Rp1-D21-associated HR are also associated with

variation in the wild type defense response. Thus the Rp1-D21
phenotype can be used as a reporter for the identification of loci

affecting the strength and severity of HR. This approach, in which

a mutant phenotype is used as a reporter to reveal normally

undetectable genetically-controlled variation, has been termed

Mutant-Assisted Gene Identification and Characterization (MAG-

IC) [31].

In previous work [23,24,27], a maize inbred line (H95) into

which Rp1-D21 was introgressed and maintained in a heterozy-

gous condition (designated Rp1-D21-H95) was crossed with lines

from several mapping populations. By phenotyping the resulting

F1 families, several quantitative trait loci (QTL) modulating the

HR conferred by Rp1-D21 were identified. A genome-wide scan

of HR phenotypes scored on progenies of crosses between the

heterozygous Rp1-D21 tester line and 231 diverse inbred lines of

maize (constituting a high-resolution association mapping panel)

identified six significantly associated SNPs, five of which are

located within or immediately adjacent to candidate causative

genes predicted to play significant roles in the control of

programmed cell death and especially in ubiquitin pathway-

related genes [27].

Here we have significantly expanded and refined this analysis by

crossing Rp1-D21-H95 into a large sample of the maize nested

association mapping (NAM) population, a 5000-member recom-

binant inbred line (RIL) population derived from 25 diverse

parents [32]. Taking advantage of the power of joint linkage

analysis and high-resolution of genome-wide association mapping

in this population, we were able to characterize the genetic

architecture controlling the maize HR in a comprehensive fashion.

We identified a set of candidate genes implicating several

regulatory pathways in controlling HR. These include mecha-

nisms that regulate protein degradation, oxidative stress, lignin

biosynthesis, PCD and autophagy. We have further shown that the

expression of many of these genes is upregulated in the presence of

the Rp1-D21 gene.

Results

Evaluation of HR-related phenotypes and correlation
with disease resistance traits

The heritability estimates for the measured traits, lesion severity

(LES), height ratio (HTR) and stalk width ratio (SWR) were all

high, with line mean basis heritability ranging from 0.83 to 0.87,

while for days to anthesis ratio (DTAR) it was 0.58 (Table S1).

Author Summary

The hypersensitive pathogen defense response (HR) in
plants typically consists of a rapid, localized cell death
around the point of attempted pathogen penetration. It is
found in all plant species and is associated with high levels
of resistance to a wide range of pathogens and pests
including bacteria, fungi, viruses, nematodes, parasitic
plants and insects. Little is known about the control of HR
after initiation, largely because it is so rapid and localized
and therefore difficult to quantify. Here we use a mutant
maize gene conferring an exaggerated HR to quantify HR
levels in a set of 3,381 mapping lines characterised at 26.5
million loci to identify genes associated with naturally-
occurring variation in HR. Many of these genes seem to be
involved in a set of connected regulatory pathways
including protein degradation, control of programmed
cell death, recycling of cellular components and regulation
of oxidative stress. We have also shown that several of
these genes show high levels of expression induction
during HR. The study provides the first comprehensive list
of natural variants in maize genes that modulate HR and
cluster within reported pathways underlying molecular
events during HR.

Pathways Controlling the Maize Hypersensitive Defense Response
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Line within population, population-by-environment interaction,

and line-by-environment interaction within population were all

significant contributors to variance for all traits. Figure S1 shows

the distribution of phenotypic values across the subpopulations.

The Rp1-D21-H95 mutant line which was crossed to the NAM

recombinant inbred lines (RILS) to generate the F1 families that

were scored, had a relatively severe HR phenotype with scores of

7.3, 0.47, 0.39 and 0.95 for LES, HTR, SWR and DTAR,

respectively (for comparisons see Fig. S1).

NAM linkage, QTL and GWA analysis
Following a joint family stepwise regression analysis of the HR-

related traits, 21, 19, 22 and 7 QTL were detected for LES, HTR,

SWR and DTAR, respectively (Fig. 1 and File S1). Altogether, 32

distinct non-overlapping QTL regions were identified. A total of

six QTL overlapped across all four traits while 14 were unique to

one trait (Fig. 1). For all four traits, two QTL, on chromosome 1

(QTL peak at about 35 cM) and 10 (QTL peak at about 34.5 cM)

explained a high proportion of the phenotypic variance and

showed high allelic effects in most of the 24 NAM sub-populations

(Fig. 2, Fig. S2 and File S2). QTL on chromosomes 3, 5, 6, 9 and

10 with peaks at about 60, 11, 46, 29 and 4 cM, respectively, had

significant allelic effects in more than half of the 24 NAM

populations (Fig. 2, Fig. S2). Single family QTL analyses identified

QTL with similar locations and effects as joint family QTL

analysis, but identified more small effect QTL that were often

specific to individual families (Fig. 3, Fig. S3). The major QTL on

chromosome 1 (QTL peak at about 35 cM) and 10 (QTL peak at

about 34.5 cM) accounted for as much as 35.3 and 38.5% of the

phenotypic variation, respectively, within specific individual

families (File S3).

Exhaustive two-dimensional searches for epistatic QTL inter-

actions in the joint linkage model were performed for all four

lesion mimic-derived traits. Only QTL interactions for LES, HTR

and SWR passed the initial filter for putatively significant

interactions (File 10). However, no epistatic QTL interactions

were significantly associated (all p-values greater than permutation

test-based thresholds) with traits when fit simultaneously with the

additive joint linkage QTL.

Genome Wide Association (GWA) analysis identified more than

one hundred SNPs with a resample model inclusion probability

(RMIP) $0.25 (Table 1, Figure S4). In some cases, clusters of

associated SNPs were identified within ,100–2,000 bp of each

other. In these cases we assumed that SNPs were all detected due

to their linkage with the same causative gene and the SNP with the

highest statistical significance was chosen as being representative of

the cluster. Ultimately, 44 significantly associated SNPs, repre-

senting 44 distinct loci were identified in this way. Thirty-six of

these SNPs were within 23 of the 32 non-overlapping QTL

identifed by joint linkage analysis. Consistent with the QTL

analysis, the most significant large effect QTL on chromsomes 1

and 10 harboured SNPs with lowest GWAS p values (as low as

1.89610236) and largest RMIP (as much as 0.95) and allelic effect

values, indicating strong associations and higher contributions to

the phenotype variance (Files S4,S5).

Candidate genes, transcript expression levels and
associated pathways

The closest predicted gene to each of the 44 SNPs was identified

based on the publicly available maize genome (maizesequence.org,

Table 1, File S5). Eleven of the 44 SNPs loci were within the

coding region of the candidate genes, while the other 33 candidate

genes were the closest predicted genes to each SNP, with physical

map distances between the SNP and the candidate gene ranging

from 33 bp to 83,325 bp (File S5).

Based on functional annotations of the candidate genes, we

identified several groups of genes predicted to function in common

pathways that have been associated with HR: PCD, autophagy,

redox homeostasis, ubiquitin-mediated protein degradation, calci-

um signaling, lignin biosynthesis and the defense response

(Table 1, File S5). Additionally, one of the associated SNPs was

at the Rp1 locus itself.

Expression profiling was performed to compare gene expression

in the leaves of 18-day old seedlings from near-isogenic lines with

and without Rp1-D21 in B736H95 and Mo176H95 F1 hybrid

backgrounds. Twelve of the 44 candidate genes were differentaily

expressed (in all cases up-regulated in the presence of Rp1-D21)

while 15 were not (Table 1, File S5). Unique transcripts were not

detected for the remaining 17 candidate genes.

Correlations between HR-related traits and disease
resistance traits

Correlation coeffecients were estimated between line mean

values for the Rp1-D21-associated HR-related traits and three

different maize disease resistance traits (Southern leaf blight- SLB,

Northern leaf blight- NLB and Grey leaf spot- GLS) previously

examined on the per se (i.e. not crossed to Rp1-D21-H95) NAM

populations [33–35]. For the correlations with disease resistance

traits, analysis was performed on pooled data from 24 NAM

families (all the NAM families except HP301) and the IBM

population (Table 2) and on each of the 25 biparental populations

separately (Table S2). The HR-related traits were all highly

significantly correlated with each other with correlation coeffi-

cients over the whole NAM population ranging from 0.70 to 0.89

(Table 2). With the exception of DTAR/GLS, the HR-related

traits all showed highly significant (p,0.0001) but low correlations

(range: 0.08 to 0.15) with all the disease traits (Table 2). In all

cases, enhanced HR was associated with enhanced disease

resistance. Correlations analyzed within individual NAM families

varied substantially between families and traits (Table S2).

The correlation between allele effect estimates for shared QTL

between traits were also calculated (Table S3). Among shared

QTL for HR-related traits, effects were highly correlated (range:

0.74–0.91, p,0.0001). Fourteen QTL co-localized between

previously identified SLB QTL [34] and the HR-trait QTL

(Figure 1). Effect estimate correlations were calculated on an

individual QTL basis for each pair of colocalizing QTL. Only the

QTL on chromosome 3 and 7 showed modest postive effect

correlations (Table S4) while the chromosome 9 QTL effect

estimates were negatively correlated, i.e. stronger HR was

correlated with lower resistance. Of 11 QTL that colocalized

between the HR-related QTL and NLB resistance QTL

(Figure 1), only the QTL on chromosome 1 had significantly

correlated effect estimates (Table S4).

Discussion

This report comprehensively describes the genetic architecture

controlling natural variation in the HR defense response in maize.

We have used the MAGIC procedure [31], in which modifiers of

an ectopic HR phenotype conferred by the autoactive R-gene

allele Rp1-D21 were mapped in a set of 3381 lines from the maize

NAM population [32]. The modulation of wild-type HR would

normally be unmeasurable since the reponse is so rapid and

localized. Our approach exposes allelic variants regulating HR

since the Rp1-D21 perturbs the system at the very onset of HR

initiation. The approach we have taken here lacks the ability to

Pathways Controlling the Maize Hypersensitive Defense Response
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detect loci at which the allele inherited from the reference line

(H95) is dominant to both the parental alleles from the NAM

population and masks potential functional variation. This can be

addressed by employing different crossing schemes [31].

The measurements used to quantify the HR by necessity

conflate several different possible effects on the HR phenotype,e.g.

changes in lesion number, size and shape. It is difficult to assess

these separate component traits in a robust way in large

segregating populations over multiple environments. In previous

work we had used image analysis of a smaller segregating

population to try to achieve this [27]. However the analysis was

both very time consuming and yielded traits with low heritabilities,

unsuitable for quantitative analysis. It is likely that the different

pathways identified will affect the HR in different ways and

elucidation of this will require further detailed analysis.

The MAGIC approach has been used succesfully to map

modifiers of HR in other recent studies [23,24,36,37]. The major

advances here are that the much larger size (about 11-fold higher),

diverse genetic makeup of, and the detailed genotypic data

available for the NAM population, allow us for the first time to

comprehensively describe the genetic architecture and to identify a

set of specific genes and pathways implicated in controlling the

plant HR, specifically; redox homeostasis, lignin biosynthesis,

calcium signalling, programed cell death, autophagy, ubiqutin-

mediated protein degradation, interaction with other R-gene

paralogs.

Correlation between disease resistance and HR severity
The heritability estimates observed for LES, HTR and SWR in

the NAM population were very high (all .0.8 , Table S1)

indicating a strong genetic influence on variation in these traits.

The NAM population has been previously evaluated for disease

resistance to SLB [34], NLB [35] and GLS [33]. Low but highly

significant correlations were detected between the HR-related

traits and the disease resistance traits over the entire NAM

population (Table 2). Importantly, the correlations are in the same

direction; increased HR was associated with increased resistance.

At the level of individual QTL, the story was not as straight-

forward. Of 14 and 11 QTL co-localizing between the HR-trait

QTL and SLB and NLB QTL respectively only two and one

respectively showed modest postive effect correlations between

their allelic effects (Table S4) while the effects of an SLB QTL on

Figure 1. NAM joint-linkage QTL analysis for HR-related traits (LES, HTR, SWR and DTAR) across all the 10 maize chromosomes/
linkage groups. Units on vertical bars are in centi-Morgan (cM) genetic distance. Colored bars on right side of chromosome bar indicate the HR-
related trait QTL support intervals: purple- DTAR; red-HTR; green-LES pink-SWR, while green and red segments inside chromosome bars correspond
to SLB and NLB resistance QTL support intervals, respectively (Derived from KUMP et al. [34]; POLAND et al. [35]). Horizontal lines on the right side of
chromosomes 5, 7,9,10 indicate significant SNP hits for HR-related traits from a previous study (OLUKOLU et al. [27]).
doi:10.1371/journal.pgen.1004562.g001
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chromosome 9 were negatively correlated with HR-traits, i.e.

stronger HR was correlated with lower resistance. Overall it is

clear that the majority of HR QTL do not coincide with a disease

resistance QTL (of the three diseases assessed in NAM so far) or if

they do, that the QTL have uncorrelated effects. Together with

the low correlations over the entire population, this suggests the

genetic control of these traits is substantially, though (importantly)

not entirely, independent.

HR is mostly associated with resistance to biotrophic pathogens

[38] while SLB, NLB and GLS are substantially necrotrophic [39].

We expect a stronger correlation would be found with resistance to

a biotrophic disease. With this in mind, it is of note that the most

biotrophic of the three diseases assessed, NLB [40] shows the

highest correlations with HR. We would also expect to obtain

stronger correlations if both traits had been measured in per se
lines rather than disease resistance evaluated on per se lines and

HR on F1 hybrids as was the case.

Necrotrophs can exploit the HR, sometimes triggering it

‘deliberately’ as part of their pathogenesis process [41,42]. So it

might seem counter-intuitive that enhanced HR is associated even

at a low level with enhanced reistance rather than susceptibility to

SLB and GLS in particular. However necrotrophy and biotrophy

are two extremes of a continuum and the relationship between cell

death and disease resistance or susceptibility is complex [43]. The

causal agents of SLB and GLS (the fungi Cochliobolus hetero-
strophus and Cercospora zeae-maydis respectively) grow in the

living plant for some time (,1–2 days for SLB, ,2 weeks for GLS)

before any host cell death is apparent. It is likely that an HR or

associated response at this ‘biotrophic’ stage of the disease would

confer some resistance. The exploitation of HR by necrotrophic

disease is a possible explanation for the negative effect correlations

between the SLB and HR effects for the chromosome 9 QTL.

Joint linkage and individual population analysis
The joint linkage analyses identified 32 distinct non-overlapping

QTL for all traits (Figure 1). The variable effect estimates for most

QTL alleles across poulations implies the presence of alleleic series

at most QTL postions (Fig. 2, Fig. S2, File S2). Most of the QTL

had small effects, but two QTL on chromosomes 1 (peak at

,35 cM) and 10 (,34.5 cM) had major contributions to

phenotypic variance with R2 values as high as 32 and 37%,

respectively in specific populations (File S2, Fig. 2, Fig. S2). The

single population analyses largely confirmed the joint-linkage

analysis results with additional small effect QTL identified in

Figure 2. Heat map showing additive allelic effects for the HTR across 24 NAM founder lines relative to the common B73 parent.
Chromosome and genetic map positions (centiMorgans; cM) of QTL peaks are shown on the left vertical axis, the contribution to variance among RIL
mean values across all 24 NAM populations are shown on right vertical axis and the NAM founder lines are shown on the horizontal axis. Scale below
heat map indicates range of allelic effect values and corresponding color intensity. Boxes with asterisks indicate significant (p,0.05) allelic effects.
doi:10.1371/journal.pgen.1004562.g002

Pathways Controlling the Maize Hypersensitive Defense Response
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specific populations. All QTL previously identified in the IBM

[23,24] and 3 NAM mapping populations [24] were detected in

our current study.

The additive effects of QTL reflect their average effects over

segregating genetic backgrounds, and thus across many possible

epistatic interactions [44]. We did not find any QTL - QTL

interactions that explained significant variation in lesion mimic-

derived traits beyond what was already explained in the additive

joint linkage QTL model. This result is congruent with results

from other complex quantitative traits analyzed with NAM

[34,45–47]. Statistical epistasis is a more general concept than

functional epistasis [48] and depends on allele frequencies in the

study population. QTL - QTL interactions can be difficult to

detect even when the genes underlying QTL interact epistatically

in regulatory or biochemical pathways [44]. Thus, our inability to

detect such statistical interactions does not imply that the causative

genes do not interact epistatically in a functional sense.

Genome-wide association analyses
The NAM population was specificaly designed for high-

resolution dissection/fine mapping of QTL [49] as implemented

with GWA analysis [34,35,50,51]. Linkage disequilibrium and

hence mapping resolution will vary across the genome and the

closest gene to an associated SNP may not always be the causal

gene [e.g. 52]. Also, it is well known that gene complements vary

significantly between lines, so that the causal gene may not always

be present in the sequenced B73 genome [53]. Still, previous

NAM GWA studies and validation with fine mapping/positional

cloning in independent near-iosgenic line (NIL) populations

demonstrate resolution in some cases is sufficient to identify

causative genes such as DGAT, a key determinant of oil content

[50,54] and the flowering time gene VGT1 [55,56]. Furthermore,

in this study we used a substantially more detailed genetic map

than was used in these previous studies (7386 SNPs used for joint

linkage compared to 1106 previously, ,26 million used for GWA

(see Materials and Methods and [57]) compared to ,1.6 million

previously) and complemented the GWA analysis with transcrip-

tome profiling to compare gene expression between near isogenic

hybrids differing for Rp1-D21 in two hybrid backgrounds

(B736H95 and Mo176H95).

Forty-four significantly associated SNP loci were identified

(Table 1, Figure S4, File S5), 36 of which mapped to one of the

QTL identifed by joint linkage analysis. The large-effect QTL on

chromsome 1 and 10 harboured SNPs with lowest p values (as low

as 1.89610236; Table 1, File S5) and highest RMIP (up to 0.95)

and allelic effect values, indicating strong associations and high

contributions to the phenotype variance. In some cases and

particularly in QTL with large confidence intervals, GWA

identified more than one associated genomic region within a

single QTL. A previous publication [27] used the 231 lines from

the maize association population [58] and identified 6 SNPs

significantly associated with variation in HR (Fig. 1). Of these, the

three with the largest effects were closely linked on chromosome

10 at 21.7–21.8 Mbp, in precisely the same position as the major

QTL and SNP identified in this study. However, the other three

SNPs identified by Olukolu et al [27], on chromosomes 5, 7 and 9,

were not identified in the present study. While the 26 parents of

the NAM population are a subset of the maize association

population and were chosen to maximize the included diversity, a

substantial amount of the diversity present in the association

population is not included in the NAM population. It is possible

that the causal polymorphisms underlying these SNP on chromo-

somes 5,7 and 9 were simply not segregating in the NAM or were

segregating in only one or two populations, making their effects

hard to detect. This does point out an obvious limitation in any

study of this type that aims to describe the genetic architecture

Figure 3. LES QTL obtained from single and joint-linkage QTL analysis across all the 10 maize chromosomes/linkage groups.
Parental inbred lines crossed with the common B73 inbred line to derive each bi-parental sub-population are shown on the vertical axis. The results
of joint linakage analysis across the NAM population comprising 24 populations is indicated as JL. The genetic distance for each chromosome is
represented in cM (centi-Morgan) unit on the horizontal axis. Different colours are used to indicate alternating chromosomes.
doi:10.1371/journal.pgen.1004562.g003
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underlying natural variation in a trait; namely, only variation

captured among the original parental lines of the population used

can be detected. The NAM parental lines capture about 57% of

the variation captured amongst 2,815 maize inbred accessions

collected from maize breeding programs all over the world [59].

Furthermore alleles that segregate in only one or two of the 25

subpopulations that comprise the NAM population may not be

detected by joint analysis or GWA due to lower power. In these

cases, single population analysis may be more effective in

identifying rare but important QTL. Figures 3 and S3 illustrate

this point quite clearly. Two of the three SNPs identified by

Olukolu et al [27] that were not identified in the present study, on

chromosomes 7 and 9, were within QTL identified in individual

population analyses (TX303 and NC358 families, respectively) but

not in the joint analysis (File S2, S3, Fig. 3, Fig. S3).

Candidate genes and underlying pathways
Remarkably, most of the 44 candidate genes identified are

predicted to function in a discrete set of interconnected pathways

associated with functions that a priori would seem likely to be

involved in HR, including programmed cell death, defense

response, ubiquitination, redox homeostasis, autophagy, calcium

signalling, lignin biosynthesis and cell wall modification (Table 1).

Furthermore, the expression of many of these genes were

upregulated in the presence of Rp1-D21.

Lignification of cell walls is an important part of the HR defense

response and inhibtion of lignin bisynthesis has been shown to

reduce the effectiveness of HR and resistance [60,61]. Lignin

depositon is usually observed in the cells around the point of HR

initiation [62]. The hydroxycinnamoyl-CoA shikimate/quinate

hydroxycinnamoyl transferase (HCT) gene is the gene closest to

the most highly associated SNP (RMIP = 0.95) and is predicted to

be involved in lignin biosynthesis. It is the most differentially

upregulated candidate gene in the Rp1-D21-carrying compared to

the wild type hybrids in both backgrounds tested (296-fold in

B736H95 and 224-fold in Mo176H95, Table 2). A second

candidate gene, caffeoyl-CoA O-methyltransferase (CCoAOMT),

is also predicted to be involved in lignin biosynthesis downstream

in the pathway from HCT [63]. This gene was also significantly

upregulated in NILs carrying Rp1-D21. The same CCoAOMT

gene was also identified as a candidate gene for SLB resistance

[34]. The allele effect estimates for the SLB resistance and the HR-

related QTL at this locus are negatively correlated, i.e. increasing

strength of HR is correlated with reduced levels of SLB resistance.

This may be an example where an allele that enhances HR can be

exploited by a necrotroph that can grow on dead tissue, as

discussed above.

Several studies have implicated autophagy in plant immunity

and HR [64]. In particular, it has been shown to be important for

restricting the spread of plant HR cell death [65,66]. The ability of

cells to remove damaged organelles/cellular components and

recycle them during stress and nutrient starvation is an essential

rescue mechanism for cells to escape from the progression of cell

death [67]. This pro-survial mechanism might be particularly

important for resistance against necrotophic pathogens that

promote cell death for nutrition [68,69]. Conversely, autophagy

has been implicated as a pro-death signal in HR triggered by

certain R-genes in Arabidopsis [70]. These apparently contradic-

tory roles of autophagy in plant cells have also been noted in the

animal autopahagy literature [71].

Of the three candidate genes identified in this study with

predicted roles in autophagy (Table 1), only the UEV domain/
VPS23/ELC gene, located in the major QTL on chromosome 10,

was significantly upregulated in NILs carrying Rp1-D21. The

other autophagy-related candidate genes include modifier of

rudimentary (Mod(r)) protein/VPS37 and heat shock cognate 70
(HSC70). Both the UEV domain/VPS23/ELC and VPS37 genes

(VPS stands for vacuolar protein sorting) are predicted to be

involved in the biogenesis of multivesicular bodies (MVBs) and

endosomal sorting of membrane cargo [72,73]. ESCRT-I, a 350-

kDa protein complex, comprises class E VPS proteins, VPS23,

VPS28, and VPS37, that are required for binding and sorting of

mono-ubiquitinated MVB cargoes, an interaction that seems to

occur via the VPS23 subunit (a ubiquitin E2 variant) and the

Table 2. Correlation coefficients between mean values of NAM RILs for lesion mimic traits and disease resistance score values
obtained from previous studies (SLB, Kump et al. [34]; NLB, Poland et al. [35]; GLS, Benson [33]).

Traits Scores on NAM populations (n,3606)

HTR SWR DTAR

LESinv 0.85**** (n = 3576) 0.80**** (n = 3576) 0.65**** (n = 3576)

HTR 0.84**** (n = 3581) 0.70**** (n = 3582)

SWR 0.60**** (n = 3580)

SLBinv GLS NLB

LESinv 0.06** (n = 3421) 0.08**** (n = 2520) 0.11**** (n = 3091)

HTR 0.06*** (n = 3423) 0.10**** (n = 2522) 0.13**** (n = 3093)

SWR ns(n = 3423) 0.07*** (n = 2522) 0.11**** (n = 3093)

DTAR 0.04* (n = 3429) 0.06** (n = 2528) 0.10**** (n = 3098)

LES, lesion score; HTR, height ratio; SWR, stalk width ratio; DTAR, days to anthesis ratio; SLB, southern leaf blight resistance score ; GLS, gray leaf spot resistance score;
NLB, northern leaf blight resistance score; N, sample size and inv indicates that the original lesion/disease rating scale was inverted so that the correlation sign was
consistent between comparisons so that in every case, a positive correlation implies increased HR was correlated with increased HR or with increased disease resistance.
Significance of correlation coefficients (r);
****P,0.0001,
***P,0.001,
**P,0.01,
*P,0.05.
ns- not significant.
doi:10.1371/journal.pgen.1004562.t002
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chaperone HSC70 [74,75]. Damaged proteins that are targeted to

the MVB membrane by VPS23 and VPS37 become internalized

through the invagination of the outer membrane and finally fuse

with the vacoule or lysosome where damaged proteins are

degraded by the luminal proteases [72,73].

Sixteen of the candidate genes have predicted roles in a PCD.

The expression of five of these genes was upregulated in NILs

carrying Rp1-D21. The Rp1-D21 phenotype is more severe in the

Mo176H95 background than in the B736H95 backgound [23].

In this context, it is interesting to note that in all five cases, the

genes were more up-regulated in the Mo176H95 background.

These five candidate genes include Spotted leaf 11 (SPL11)/plant
U-box 13 (PUB13), RP1/NB-ARC domain-containing disease

resistance protein, Serine/threonine-protein kinase CTR1, Lipox-

ygenase 3 (LOX3) and a RING/U-box superfamily protein.

Homologs of three of these genes are involved directly or indirectly

in the induction of a spontaneous HR similar to the phenotype in

this study. The A. thaliana SPL11/PUB13 encodes a U-Box/

Armadillo repeat protein with a E3 ubuqitin ligase activity and

plays a role in the ubiquitination pathway. Mutations in this gene

confer a spontaneous cell death phenotype and enhanced non-

race-specific resistance to both Magnaporthe grisea and Xantho-
monas oryzae pv oryzae [76]. Deletion of CTR1 gene, a negative

reglator of the ethylene signaling pathway, was shown to lead to

amplification of the spontaneous cell death and defense pheno-

types of the A. thaliana vad1 (for vascular associated death 1)

mutant [77]. The RP1/NB-ARC domain-containing candidate

gene is a paralog of the Rp1-D21 gene used in this study and is

located in the same complex Rp1 locus [19]. The fact that we

identified a candidate in this region implies that Rp1 proteins may

act as heterodimers so that the activity of one paralog is affected by

the presence or absence of others. There is considerable evidence

in the literature for these types of interactions [78–80]. A pepper

ortholog of the two closely related Jacalin-like lectin domain-

containing candidate genes has been shown to play a role in cell

death and disease resistance in both pepper and A. thaliana [81].

The LOX3 gene is predicted to be involved in the mediation of

PCD as well as disruption of redox homeostasis. LOX3 encodes an

enzyme that dioxygenates unsaturated fatty acids , subsequently

triggering lipoperoxidation of the cell membrane and synthesis of

signaling molecules. The ensuing signaling results in structural and

metabolic cellular changes in several pathopysiological conditions.

The effect of the lipoperoxidation and the hydroperoxides by-

product have been reported to induce pro-apoptotic conditions

leading to HR cell death [82,83]. Lipoxygenase genes have also

been implicated in increased resistance to fungal pathogens [84].

Ubiquitin-mediated protein degradation pathways have recently

emerged as major players in the regulation of R-gene mediated

HR and plant immunity [85]. It is interesting therefore that nine of

the candidate genes identified in this study as well as two other

candidate genes identified in a previous study [27] have predicted

roles in this pathway. Of particular interest here are examples for

which the stability of canonical NBS-LRR type R-genes is

regulated by ubiquitin-dependant mechanisms, conferring direct

effects on R-gene function. Probably the best example of this is the

case of the F-box gene CPR1 [86], a gene that determines the

specificity of the SCF ubiquitin E3 ligase complex. CPR1 targets

the R-gene RPS2 and the NBS-LRR R-gene homolog SNC1 for

degradation. The protein accumulation, but not the corresponding

steady state transcript level of both RPS2 and SNC1 increase

substantialy in cpr1 mutants and are reduced in CPR1 overex-

pressing lines (with a corresponding loss of immunity conferred by

these genes).

Finally, three candidate genes were predicted to be involved in

calcium signalling and five in redox homeostasis. Increases in

cytoplasmic calcium have been associated with HR in a number of

studies [87–89], while blockers of calcium channels and cyclic

nucleotide gated channels (CNGC, the opening of which are

modulated by calcium) can inhibit HR-mediated cell death [89–

91]. The role of oxidative stess in HR is very well documented in

the literature. An ‘oxidative burst’, the rapid generation of

superoxide and accumulation of H2O2 is one of the first events

described after elicitation of the HR [92]. The detoxification of

reactive oxygen species can delay HR [e.g. 93]. Importantly

calcium influx and reactive oxygen accumulation in HR appear to

be mutually-dependent processes in some cases [90,94].

In conclusion, in this study we have combined the gene-

mapping power of the NAM population with the ability of the

MAGIC technique to render quantifiable a previously inaccesible

(though very important) phenotype. We have identified a relatively

small set of candidate genes that strongly implicate a few key

pathways in controlling the strength of the HR associated with

Rp1-D21. In some cases expression analyses reinforce these

conclusions. Roles for all these pathways in the control of

programed cell death and HR have been demonstrated previously

in the literature. While some of the loci/pathways identified may

be specific to Rp1-D21 –induced HR or to a subset of HRs

induced by specific R-genes, we believe that most of are involved

in HR more generally. In fact, all these pathways have been

implicated in HR in other species and all were implicated by

recent work that examined system-wide induced HR in tomato

[95]. This work provides the most comprenensive understanding

of the genetic control of the plant HR to date. Further work will

attempt to dissect these effects further, to validate the genes and

determine which aspect of HR, intiation, signal transduction,

excecution or containment, they affect.

Materials and Methods

Plant materials
An Rp1-D21-H95 mutant line was generated from a cross

between an Rp1-D21 variant and the maize inbred line H95. The

ensuing F1 progeny was then backcrossed to the H95 parent four

times, while selecting for the HR phenotype marked by

spontaneous lesion formation. Since the homozygous Rp1-D21-
H95 mutant lines are sterile, it was maintained in a heterozygous

state. For further details of this line see Chaikam et al [24]. The

Rp1-D21-H95 line was crossed as a male to each of 3,381 lines

from nested association mapping (NAM) population and to 225

lines from the IBM population [96] to create a set of F1 families,

each of which segregated 1:1 (wild type:mutant) for the presence

and absence of the Rp1-D21-induced HR phenotype but which

were otherwise isogenic within a family.

Development of the maize (NAM) populations has been

previously described [32,56]. This study used a subset from the

NAM population that is comprised of 25 bi-parental RIL

populations with B73 as a common parent and 200 lines in each

population. The B736HP301 population was not included in our

panel of 3,381 lines since HP301 and about 88% of the derived

lines in this population carry the ga1cross-incompatibility gene,

making it very difficult to obtain F1 seed from these lines used as

female parents [97]. The selection of 3,381 F1 families was based

on the availability of seed. F1 crosses derived from the IBM

population were also included in the correlation analysis part of

this study but excluded from the joint linkage and genome-wide

association (GWA) analysis.
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Field trials
Each of the 3,606 F1 families (including 225 IBM lines) was

evaluated in four environments that comprised two locations

(Clayton, NC and West Lafayette, IN) and 2 years (2011 and

2012), with single replicate of the NAM RILs in each location. An

augmented randomized incomplete block design was implemented

with the Rp1-D21-H95 as repeated check to provide an estimate

of experimental error. Each NAM family was assigned to a block

and a total of 10 sub-blocks within each family block. The Rp1-
D21-H95 check was included in each of the 10 blocks in each

NAM family and in each location. Two rows of a constant

genotype were planted around the edges of the field to minimize

border row effect. Standard fertilizer, pesticide and herbicide

regimes were applied during the trial to ensure normal plant

growth. Thinning to desired plant density and overhead irrigation

were applied as required. At Clayton, NC, 12 kernels of each line

were sown in 2 m rows with an inter-row spacing of 0.97 m and a

0.6 m alley at the end of each plot, while at West Lafayette, IN, 18

seeds were sown in 6 m rows with an inter-row spacing of 0.76 m.

Phenotypic evaluations
Four lesion-associated traits, lesion severity (LES), mutant to

wild type height ratio (HTR), mutant to wild type stalk width ratio

(SWR), and mutant to wild type days to anthesis ratio (DTAR)

were scored. Each F1 family segregated 1:1 for the presence and

absence of Rp1-D21 but was otherwise isogenic. Within a family it

was immediately obvious, by the presence or absence of lesions

and by the growth habit of the plant, which plants carries Rp1-
D21 and which were wild-type. For the LES trait, only plants

carrying Rp1-D21 were scored, while for HTR, SWR and DTAR,

both wild type and mutant classes were phenotyped separately and

ratios between them derived.

Lesion severity (LES). In all environments, lesion severity

scores were assigned based on a scale of 1 to 10 (Figure S5), with

‘‘1’’ representing very few lesions and ‘‘10’’ indicating a completely

dead plant [24]. Experiments were scored five times at Clayton,

NC in both 2011 and 2012. At West Lafayette, IN, plants were

scored six and four times in years 2011 and 2012, respectively.

Scoring was started one month after planting and continued at

approximately 10–14 day intervals.

We scored an aberrant HR defense response rather than a

disease symptom in this case, but since the lesion phenotypes are

generally similar to disease lesions, we applied a widely-accepted

statistic in plant pathology; standardized area under disease

progress curve (sAUDPC), to quantitatively measure HR severity

[98]. For each environment, the sAUDPC for LES was calculated

as follows: The average value of two consecutive ratings was

computed and multiplied by the number of days between the

ratings. Values were summed over all intervals, and then divided

by the total number of days over which evaluations were

performed to determine the weighted average.

Mutant to wild type height ratio (HTR). Plant height data

were collected after flowering from three representative mutant F1

individuals and from three representative wild type F1 individuals

within each F1 family. Height means were calculated for each class

within each family and the HTR was calculated by dividing the

average mutant type height to the average wild type height.

Mutant to wild type stalk width ratio (SWR). Stalk width

immediately above the primary ear was measured on three

representative mutant F1 individuals and three representative wild

type F1 individuals within each F1 family. SWR was then

calculated by dividing the average mutant stalk width to the wild

type average stalk width.

Mutant to wild type days to anthesis ratio

(DTAR). Plants were monitered every other day for the date

when 50% of the wild type and 50% of the mutant plants in an F1

family were shedding pollen. The days from planting to anthesis

were computed for the wild type and the mutant plants in each

family. DTAR was then calculated by dividing the days to anthesis

for mutants by days to anthesis for wild type plants.

Disease scores
Disease scores for SLB (southern leaf blight; Cochliobolus

heterostrophus), GLS (gray leaf spot; Cercospora zeae-maydis) and

NLB (northern leaf blight; Exserohilum turcicum) were obtained

from previous studies [33–35]. These data were used to evaluate

the correlation between disease resistance and HR severity in

response to Rp1-D21 aberrant phenotype (lesion mimics).

Statistical analysis of phenotypic data
The least square (LS) mean data used for analysis can be found

in File S6. File S7 and Figure S1 gives the metadata for each of the

populations. To obtain least square mean values adjusted for

environmental effects, data were analyzed with a mixed model

considering line as a fixed effect and environment, block within

environment, population by environment and line-by-environ-

ment interaction within population as random effects using Proc

Mixed in SAS v9.3 [99]. The REML Wald’s Z statistic was used to

test the significance of each random factor in the model [100].

Least squares means for lines were estimated from this mixed

model and used as the input phenotype for association analysis.

For the purpose of estimating heritability, a mixed model with all

factors, including lines, as random effects was used. Correlations

between disease scores (SLB, GLS and NLB) and lesion mimic

traits for each line were estimated using Proc Corr in SAS v9.3

[99]. The NAM sub-population groups, considered as a covariate,

were accounted for during correlation analysis.

Genotypic data, SNP imputation and SNP Projection
A total of 7386 SNP markers scored on all 4892 available NAM

RILs were used for linkage and QTL analyses (Files S8, S9). The

marker values were imputed at 0.2 cM intervals based on SNP

calls made from short sequence reads using the GBS protocol

[101]. Briefly, each sample was digested with the ApeK1

restriction enzyme, PCR amplified, multiplexed, sequenced and

then processed through a custom SNP calling pipeline. Because

the sequence coverage was low, about 0.56, two problems arose;

First, many sites had more than 50% missing data, and, second, at

many heterozygous sites only a single allele of the two possible

alleles was detected. As a result, about 80% of the heterozygous

sites were scored as homozygous. To deal with these issues, each

SNP call was first scored as either the B73 or non-B73 parent.

Then the Viterbi algorithm was applied to the resulting sequence

to identify probable heterozygous loci and genotype calling errors.

Sites were then chosen at 0.2 cM intervals and values for each site

imputed as 2 (probability allele came from the non-B73 parent)

based on the nearest non-missing flanking markers. Where both

flanking markers came from the same parent the value was either

0 or 2. Where the markers came from different parents, the value

was intermediate and based on the relative distance from the two

markers [59].

For the GWA analysis, a total of about 26.5 million SNPs

polymorphic among the NAM founder lines were obtained from

the HapMapv2 project [57]. The data at each locus are comprised

of two alleles per SNP, with the minor alleles set to 1 and

everything else to 0. The data were recoded to reduce

computational time during projection by setting B73 alleles
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(common parental allele) to 0 and non-B73 alleles (alternate allele)

to 1. Projection of the 26.5 million HapMap v2 NAM founder

genotypes on the NAM RILs was performed based on the

genotype of the RIL’s diverse founder/parental lines at each of the

26.5 million HapMap v2 SNP, and an individual RIL’s genotype

calls at the NAM SNP markers flanking the physical position of the

HapMap v2 SNP. Because we used the high density 7386 NAM

SNP marker linkage map, each interval was only 0.2 cM in genetic

distance, permitting very accurate imputation of HapMap v2

SNPs. If the diverse founder/parental line has the same

homozygous allele as B73 at both flanking loci, the RIL genotype

is assigned a B73 allele (coded as 0) for a SNP position. When the

diverse founder/parental line carries an alternate/non-B73 allele

homozygous at both flanking loci, the probability that the RIL

carries the alternate allele is computed as the weighted average of

the flanking mapped NAM SNP genotype, with the weights

assigned based on the relative physical position of the HapMap

SNP within the interval. This is computed as:

G~ d2G1zd1G2ð Þ= d1zd2ð Þ

where d2 is the physical distance between the HapMap v2 SNP

and the right-hand mapped NAM SNP, G1 is the genotype score

at the mapped NAM SNP, d1 is the physical distance between the

HapMap v2 SNP and the left-hand mapped NAM SNP, and G2 is

the genotype score at the right-hand mapped NAM SNP.

Single family and joint family linkage analysis
The single/independent population QTL analysis was per-

formed based on composite interval mapping (CIM) and

implemented in the Windows QTL Cartographer software v2.5

[102]. Permutation tests set to an alpha-level of 0.05 were

performed to determine population and trait specific LOD

thresholds at aprroximately 3.0. Linkage and QTL maps were

prepared using the MapChart software v2.2 [103].

Joint-linkage mapping was implemented as previously described

[56]. Before the joint stepwise regression procedure in PROC

GLMSELECT was implemented in SAS software v9.3, LOD

thresholds were established following 1,000 trait-dependent

permutation tests based on alpha set at 0.05 with the model

containing a family main effect. Trait specific QTL LOD

thresholds of 5.44, 5.00, 4.27 and 8.34 were obtained and applied

to detect QTL for LES, HTR, SWR and DTAR, respectively.

The model included family main effects and a single marker effects

nested within families. The lowest resulting p value among marker

tests was obtained for each permutation.

Following initial detection of QTL loci, the stepwise regression

model was optimized with an iterative process by sequentially

dropping a marker in the model, testing the fit of adjacent markers

until the eighth marker (1.6 cM away) from the originally selected

marker, and fitting the best marker in the region back into the

model. Allele effects at each marker included in the final model

were estimated simultaneously using the solution option of Proc

GLM in SAS software v.9.3. The t-tests of the null hypothesis of

zero allele effect were performed for each NAM founder allele

effect at each QTL. The QTL support intervals were computed in

the SAS software v.9.3 by adding a single flanking marker to the

full model one at a time from the QTL at a step of 0.2 cM. This

was performed at the left and right side of the QTL. The support

interval boundary was considered to be the last marker at which

the QTL regained significance at the p = 0.05 level.

To test for significant digenic epistatic interactions, a subset of

1409 SNP markers were obtained from the available 7386 SNP

markers at uniform 1 cM intervals and all pairwise combinations

of the 1409 markers were tested separately using models that

included population main effects, the two marker main effects

nested in populations, and the marker-marker interaction nested

in populations by extending the method of Holland [104]. The

analysis was performed across the 24 NAM families while the trait-

specific QTL LOD thresholds were estimated based on a

permutation test at a critical value with alpha less than 5%.

Marker pair interactions with p-values less than the permutation

test-based threshold were considered for inclusion in the final joint

linkage model without regard to the signficance of the main effects

of the markers. Each such pair of markers and their interaction

were added to the final additive joint linkage model one at a time;

the p-value of the interaction in this full model was used to

determine if the epistatic interaction improved the model fit.

Genome-wide association analysis
GWA models were fit for each chromosome, one at a time. For

each chromosome, line residual values from the final joint linkage

QTL model excluding all markers on the chromosome under

consideration were computed in SAS software v.9.3. Using 26.5

million SNPs, GWA (genome wide association) analysis was

performed based on forward regression of the HapMap v2 SNPs

to subsamples of these phenotypic residual values adjusted for

QTL on other chromosomes. To identify SNPs with the most

robust associations with traits, we implemented a subsampling

(subagging) procedure during the GWA analysis [105], with

forward regression (using a p-value threshold for inlcusion in the

model of 161026 [106]) performed in each of 100 subsample

datasets. Each subsample dataset comprised 80% of the RILs from

each NAM family [34,51]. A population main effect was included

in the model prior to the addition of SNP terms during the forward

selection. The effect estimate of each significant SNP in each

subsample was also computed and averaged over the 100

subsamples. The resample model inclusion probability (RMIP)

was computed for each SNP as the proportion of subsample data

sets in which it was included in the final regression model. Only

SNPs with RMIP .0.05 are shown on the Manhattan plot.

Following Valdar et al. (2006), an RMIP threshold of 0.25 was

used to report the most robust SNP associations.

Candidate gene selection
Genes co-localizing with or adjacent to associated SNPs were

determined using the maize B73 reference genome assembly v2

available on the MaizeGDB genome browser [107] or the www.

maizesequence.org genome browser [108]. Functional annotations

of the candidate genes were determined using blastp [109],

conserved domain search tools [110] and annotations avialble at

the Maize Genome database (http://gbrowse.maizegdb.org/gb2/

gbrowse/maize_v2/). Further annotation was achieved by inspec-

tion of the literature specific to each gene and domain (File S5).

RNA-seq library construction, data processing and
differential expressed gene analysis

Wild-type (WT) and mutant plants in B736Rp1-D21-H95 and

Mo176Rp1-D21-H95 backgrounds growing in constant 22uC
with 12 h-day/12 h-dark were used for RNA extraction. The 3rd

true leaves of 5 individual seedlings collected from 18-day old WT

or mutant plants were pooled and total RNA was isolated using

Trizol reagent (Life Technologies) according to manufacturer’s

instructions. RNA concentration and quality were monitored by

the NanoDrop and agarose gel electrophoresis. mRNA was

isolated from the total RNA by Dynabeads oligo(dT) (Life

Technologies) following manufacturer’s directions. RNA-seq
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libraries were constructed according to the TruSeq RNA Sample

Prep v2 LS protocol (Illumina) and sequenced using the Illumina

HiSeq 2000. Two biological replicates, each consisting of 5

individual plants, and two technical replicates (two lanes) were

performed, with 100 nt single end reads. The sequences were

aligned to maize genome sequence v2 (www.maizegdb.org) via

TopHat 2.0 [111], using all the default parameter settings. The

raw counts per gene were calculated using in-house scripts. Only

reads with unique alignments were maintained for subsequent

analyses. Genes with total read counts less than 20 were filtered

out. Differentially expressed genes (DEGs) were identified using

the software package edgeR from the Bioconductor suite [112]. To

account for multiple testing, the procedure of Benjamini and

Hochberg [113] for controlling the false discovery rate (FDR) was

applied using a threshold of q, = 0.05 to determine significance.

Supporting Information

Figure S1 Distribution of least square mean values across

populations shown in a bean plot.

(TIFF)

Figure S2 Heat map showing additive allelic effects for 3 HR-

related traits, LES, SWR, DTAR across 24 NAM founder lines

relative to the common B73 parent. Chromosome and genetic

map positions (cM) of QTL peaks are shown on the left vertical

axis, the contribution to phenotypic variance across all 24 NAM

populations are shown on right vertical axis and the NAM founder

lines are shown on the horizontal axis. Scale below heat map

indicates range of allelic effect values and corresponding color

intensity. Boxes with asterisks indicate significant (p,0.05) allelic

effects.

(TIFF)

Figure S3 HTR, SWR and DTAR QTL obtained from single

and joint-linkage QTL analysis across all the 10 maize

chromosomes/linkage groups. Parental inbred lines crossed with

the common B73 inbred line are shown on the vertical axis and

represents each bi-parental mapping population. The NAM

population comprising all 24 populations is indicated as JL (joint

linkage analysis). The genetic distance for each chromosome is

represented in cM unit on the horizontal axis.

(TIFF)

Figure S4 Results of genome-wide association analysis showing

associated SNP markers above 0.05 RMIP (resample model

inclusion probability). Threshold of 0.25 RMIP is indicated.

Chromosomes shown on horizontal axis with SNPs in order based

on physical map positions. Triangles pointing up indicate that the

non-B73 allele increases the value of the trait.

(TIF)

Figure S5 Images of leaves displaying variable severities of the

Rp1-D21 lesion phenotype scored on the severity scale used in this

study. A 1–10 scale was used; examples are shown of leaves scored

between 2 and 8 [from 25].

(TIFF)

Table S1 Heritability analyses for the traits measured in this

study.

(DOCX)

Table S2 Pearson correlation coefficients between HR-related

and disease traits by individual family. S2a–d correlations with

LESinv, HTR, SWR, DTAR. Subscript ‘‘inv’’ indicates that the

original lesion/disease rating scale was inverted so that the

coefficient sign was consistent between comparisons so that in

every case, a positive correlation implied that increased HR was

correlated with increased disease resistance. Significance of

correlation coefficients (r) ; ****P,0.0001, ***P,0.001, **P,

0.01, *P,0.05. ns- not significant.

(DOCX)

Table S3 Correlation coefficients between QTL effect estimates

across parental alleles at colocalizing QTL. n is the number of

colocalizing QTL that were identified between each pair of traits.

The correlation is taken between the effect estimates for each trait

for each of the 24 alleles for each QTL e.g. if n = 15 , then the

correlation coefficient is derived from 15624 = 360 comparisons.

****P,0.0001.

(DOCX)

Table S4 Correlations between effect estimates at specific QTL

which colocalize between HR-related trait QTL and previously

identified QTL for SLB and NLB resistance. Subscript ‘‘inv’’

indicates that the original lesion/disease rating scale was inverted

so that the coefficient sign was consistent between comparisons so

that in every case, a positive correlation implied that increased HR

was correlated with increased HR or disease resistance. Signifi-

cance of correlation coefficients (r) ; ****P,0.0001, ***P,0.001,

**P,0.01, *P,0.05, #P,0.1. ns- not significant.

(DOCX)

File S1 QTL genetic and physical map 95% support interval for

LES_HTR_SWR_DTAR.

(TXT)

File S2 QTL allelic effects for each NAM population.

(XLSX)

File S3 QTL peak, LOD scores, proportion of contribution to

phenotypic variance (R2) and allelic effects of QTL computed

from the single family QTL analysis on LES, HTR, SWR and

DTAR.

(XLSX)

File S4 Significant SNPs at thresholds of p = 161026 and

RMIP = 0.05 for all four traits.

(TXT)

File S5 Table of candidate genes and functional annotations

with more comprehensive details than shown in Table 2. Included

here are effect estimates and more detailed notes on implicated

pathways.

(XLSX)

File S6 LSmeans for LES, HTR, SWR and DTAR and BLUPs

for SLB, GLS and NLB.

(TXT)

File S7 Sample size, mean and range of values (minimum and

maximum) of traits for each NAM population.

(TXT)

File S8 Genotypes of the NAM RILs at 7386 SNP loci.

(ZIP)

File S9 Genetic linkage map of the NAM population used in this

analysis.

(TXT)

File S10 Joint family QTL analysis showing loci with epistatic

interactions.

(XLSX)
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