Seroprevalence of influenza viruses in Shandong, Northern China during the COVID-19 pandemic

Chuansong Quan^{1,*}, Zhenjie Zhang^{1,*}, Guoyong Ding^{2,*}, Fengwei Sun^{3,*}, Hengxia Zhao^{4,*}, Qinghua Liu⁵, Chuanmin Ma¹, Jing Wang¹, Liang Wang¹, Wenbo Zhao¹, Jinjie He⁴, Yu Wang⁶, Qian He², Michael J. Carr^{7,8}, Dayan Wang⁹, Qiang Xiao (⊠)⁵, Weifeng Shi (⊠)^{1,2}

¹Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China; ²School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; ³The Department of Infectious Disease, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China; ⁴Clinical Laboratory, The Department of Clinical Laboratory, Boshan District Hospital, Zibo 255200, China; ⁵Clinical Laboratory, The Department of Clinical Laboratory, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China; ⁶The Department of Cancer Center, Taian Tumor Prevention and Treatment Hospital, Taian 271000, China; ⁷National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin 4, Ireland; ⁸International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan; ⁹Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China

© Higher Education Press 2022

Abstract Nonpharmaceutical interventions (NPIs) have been commonly deployed to prevent and control the spread of the coronavirus disease 2019 (COVID-19), resulting in a worldwide decline in influenza prevalence. However, the influenza risk in China warrants cautious assessment. We conducted a cross-sectional, sero-epidemiological study in Shandong Province, Northern China in mid-2021. Hemagglutination inhibition was performed to test antibodies against four influenza vaccine strains. A combination of descriptive and meta-analyses was adopted to compare the seroprevalence of influenza antibodies before and during the COVID-19 pandemic. The overall seroprevalence values against A/H1N1pdm09, A/H3N2, B/Victoria, and B/Yamagata were 17.8% (95% CI 16.2%–19.5%), 23.5% (95% CI 21.7%–25.4%), 7.6% (95% CI 6.6%–8.7%), and 15.0 (95% CI 13.5%–16.5%), respectively, in the study period. The overall vaccination rate was extremely low (2.6%). Our results revealed that antibody titers in vaccinated participants were significantly higher than those in unvaccinated individuals (P < 0.001). Notably, the meta-analysis showed that antibodies against A/H1N1pdm09 and A/H3N2 were significantly low in adults after the COVID-19 pandemic (P < 0.01). Increasing vaccination rates and maintaining NPIs are recommended to prevent an elevated influenza risk in China.

Keywords influenza virus; seroprevalence; antibody; COVID-19; cross-sectional study

Introduction

Influenza, particularly seasonal influenza, imposes a major burden on global public health. Every year, 10% to 20% of the world's population contracts influenza, resulting in a severe burden of morbidity, mortality, and economic losses [1]. The seroprevalence of seasonal

Received: January 9, 2022; accepted: April 21, 2022 Correspondence: Weifeng Shi, shiwf@ioz.ac.cn; Qiang Xiao, tyfy8011@126.com

*These authors contributed equally to this work.

influenza among the general public varies sharply between seasons and across regions in China. For example, the A/H1N1 subtype seroprevalence values are 9.9% in Changzhi during the 2018–2019 influenza season [2] and 56.8% in Hong Kong during the summer of 2015 [3]. The A/H3N2 seroprevalence values are 7.9% in Shenzhen and 7.1% in Changzhou in 2018–2019 [4], and 73.1% in Hong Kong in 2017 [5]. In addition, the reported incidence and mortality of influenza increase with a steep upward trend in China in 2018–2019, and the reported cases of influenza reach 1.77 million in China in the first five months of 2019, which exceed the

cumulative total number of the reported influenza cases from 2015 to 2018 [6].

Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many countries formulated control strategies to prevent the spread of COVID-19 particularly nonpharmaceutical interventions (NPIs) [7,8]. These measures can provide effective protection against respiratory infections in the community [9] and have concomitantly resulted in a remarkable reduction in influenza transmission [10]. According to the Global Influenza Surveillance and Response System, only 0.3% of the respiratory samples are diagnosed as influenza viral infections between April 2020 and the end of December 2020, indicating a substantial decrease in incidence from that of the previous five years [11]. The incidence of influenza is extremely low in China and globally after the onset and during the COVID-19 pandemic, and mass vaccination has been deployed against COVID-19 in many countries. However, the global pandemic risk of seasonal influenza strains, particularly A/H1N1pdm09 and A/H3N2, should not be ignored. Experimental and clinical data showed that the coinfection of COVID-19 and seasonal influenza enhances the severity of pneumonia [12–14]. Therefore, investigating the antibody titers among the general public is crucial for assessing the risk of seasonal influenza transmission and outbreaks during the COVID-19

pandemic era.

In the present study, we have conducted a crosssectional, sero-epidemiological study to investigate the antibody titers against A/H1N1pdm09, A/H3N2, B/Victoria, and B/Yamagata in Shandong Province, China. We have characterized low seroprevalence profiles for each of the four currently circulating seasonal influenza viruses among different age groups, which is indicative of an elevated pandemic risk of seasonal influenza at present.

Characteristics of participants

Between May and June 2021, 2666 individuals from Taian and Zibo cities in Shandong Province agreed to participate in this study. Of the participants, 4 did not complete the questionnaire, and 12 did not provide blood samples (Supplementary materials and methods). Finally, 2650 participants were included in the study (Fig. 1A). Among the 2650 participants, 820 (30.9%) were under the age of 15 years, 999 (37.7%) were aged between 15 and 59 years, and 831 (31.4%) were aged \geq 60 years. Most of the participants were female (60.6%), and the proportion of female urban residents (62.7%) was significantly higher than that of female rural residents (58.3%; $\chi^2 = 5.468$, P = 0.019; Table 1). After the outbreak of COVID-19, people gradually developed the

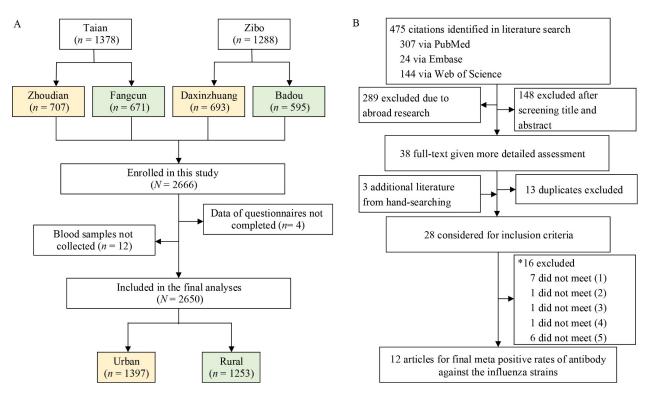


Fig. 1 Inclusion criteria of participants and studies in the meta-analysis. (A) Participant selection. Light gold color represents urban communities, and light green color represents rural communities. (B) Study selection in the meta-analysis. *(1)-(5) represent the inclusion criteria for the literature screening in the meta-analysis, which have been described in the supplementary materials and methods.

 Table 1
 Demographic characteristics of the study participants

	Total, <i>n</i> (%)	Urban, <i>n</i> (%)	Rural, <i>n</i> (%)	P value
Age				0.354
<15 years	820 (30.9)	443 (31.7)	377 (30.1)	
15-59 years	999 (37.7)	524 (37.5)	475 (37.9)	
≥ 60 years	831 (31.4)	430 (30.8)	401 (32.0)	
Sex				0.019
Female	1606 (60.6)	876 (62.7)	730 (58.3)	
Male	1044 (39.4)	521 (37.3)	523 (41.7)	
Wearing face masks				< 0.001
Occasionally	541 (20.4)	188 (13.5)	353 (28.2)	
Regularly	2079 (78.5)	1194 (85.4)	885 (70.6)	
Missing	30 (1.1)	15 (1.1)	15 (1.2)	
Influenza vaccination				0.023
Yes	69 (2.6)	46 (3.3)	23 (1.8)	
No	2418 (91.2)	1285 (92.0)	1133 (90.4)	
Unclear	163 (6.2)	66 (4.7)	97 (7.7)	
Influenza-like symptoms				0.332
Yes	614 (23.2)	317 (22.7)	297 (23.7)	
No	1951 (73.6)	1041 (74.5)	910 (72.6)	
Unclear	85 (3.2)	39 (2.8)	46 (3.7)	

Data are presented as n (%). P values were calculated by χ^2 test or Mann–Whitney test, as appropriate.

practice of wearing face masks, and 2079 (78.5%) individuals often or always wore face masks when they went out. However, the proportion wearing face masks in rural participants (70.6%) was significantly lower than that in urban participants (85.5%; $\chi^2 = 88.603$, P < 0.001; Table 1). Notably, only 2.6% (69/2650) of the participants received influenza vaccines in the past two years, and the influenza vaccination rate of urban participants was higher than that of rural participants $(3.3\% \text{ vs. } 1.8\%; \chi^2 = 7.508, P = 0.023; \text{ Table 1})$, which was slightly higher than those between 2004 and 2014 in China (1.5%-2.2%) but was far lower than those of highincome countries [3,15]. The prevalence of self-reported influenza-like symptoms was 23.2% (614/2650) since October 2020 (Table 1), of which 19.4% (119/614) of the cases with influenza-like symptoms occurred within the last two weeks before the study (data not shown).

Seroprevalence of antibodies against influenza viruses

For the 2650 participants, the overall seroprevalence rates of antibodies against A/H1N1pdm09, A/H3N2, B/Victoria, and B/Yamagata were 17.8% (95% CI 16.2%–19.5%), 23.5% (95% CI 21.7%–25.4%), 7.6% (95% CI 6.6%–8.7%), and 15.0% (95% CI 13.5%–16.5%, Table 2). The seroprevalence of antibodies in the young group was significantly higher than those in the middle-aged

and elderly groups (A/H1N1pdm09: 36.3% vs. 9.6% and 9.3%, respectively ($\chi^2 = 280.158$, P < 0.001); A/H3N2: 42.0% vs. 15.1% and 15.3%, respectively ($\chi^2 = 225.755$, P < 0.001); and B/Yamagata: 20.2% vs. 15.8% and 8.8%, respectively ($\chi^2 = 43.430$, P < 0.001). Previous studies reported that school-aged children have the highest seroprevalence of seasonal and pandemic influenza strains likely because they have high population densities, which may increase potential for the transmission of influenza viruses [2,16]. The seroprevalence of antibodies for A/H1N1pdm09, B/Victoria, and B/Yamagata did not differ significantly between males and females (all P > 0.05). However, the seroprevalence of A/H3N2 in the female group (22.0%) was lower than that in the male group (25.7%; $\chi^2 = 4.673$, P = 0.031).

With respect to wearing face masks, the seroprevalence of antibodies against A/H3N2 in the group occasionally wearing masks was significantly higher than those in groups regularly wearing masks (30.3% vs. 21.7%; $\chi^2 = 17.762$, P < 0.001). However, the seroprevalence values of antibodies against A/H1N1pdm09, B/Victoria, and B/Yamagata were not statistically significant between the groups occasionally and regularly wearing masks. The seroprevalence of antibodies for the four influenza strains were significantly higher in the vaccinated group than those in the unvaccinated group: 42.0% vs. 16.2% for A/H1N1pdm09 ($\chi^2 = 62.568$, P < 0.001), 46.4% vs. 21.9% for A/H3N2 ($\chi^2 = 25.212$, P < 0.001), 21.7% vs.

	No. (%, 95% CI) seropositive participants					
	A/H1N1pdm09	A/H3N2	B/Victoria	B/Yamagata		
Total	471 (17.8, 16.2–19.5)	622 (23.5, 21.7–25.4)	202 (7.6, 6.6–8.7)	397 (15.0, 13.5–16.5)		
Age						
<15 years	298 (36.3, 32.3–40.7)	344 (42.0, 37.6–46.6)	69 (8.4, 6.5–10.6)	166 (20.2, 17.3–23.6)		
15-59 years	96 (9.6, 7.8–11.7) ^a	151 (15.1, 12.8–17.7) ^a	83 (8.3, 6.6–10.3)	158 (15.8, 13.5–18.5) ^a		
≥ 60 years	77 (9.3, 7.3–11.6) ^b	127 (15.3, 12.7–18.2) ^b	50 (6.0, 4.5-7.9)	73 (8.8, 6.9–11.0) ^{bc}		
P value	< 0.001	< 0.001	0.109	< 0.001		
Sex						
Female	270 (16.8, 14.9–18.9)	354 (22.0, 19.8–24.5)	122 (7.6, 6.3–9.1)	249 (15.5, 13.6–17.6)		
Male	201 (19.3, 16.7–22.1)	268 (25.7, 22.7–28.9)	80 (7.7, 6.1–9.5)	148 (14.2, 12.0–16.7)		
P value	0.108	0.031	0.950	0.349		
Wearing face masks						
Occasionally	95 (17.6, 14.2–21.5)	164 (30.3, 25.9–35.3)	39 (7.2, 5.1–9.9)	69 (12.8, 9.9–16.1)		
Regularly	369 (17.7, 16.0–19.7)	451 (21.7, 19.7–23.8)	161 (7.7, 6.6–9.0)	322 (15.5, 13.8–17.3)		
P value	0.918	< 0.001	0.676	0.112		
Influenza vaccination						
Yes	29 (42.0, 28.2–60.4)	32 (46.4, 31.7–65.5)	15 (21.7, 12.2–35.9)	20 (29.0, 17.7–44.8)		
No	392 (16.2, 14.7-17.9) ^a	529 (21.9, 20.1–23.8) ^a	176 (7.3, 6.2–8.4) ^a	345 (14.3, 12.8–15.9) ^a		
Unclear	50 (30.7, 22.8–40.4) ^c	61 (37.4, 28.6–48.1) ^c	11 (6.7, 3.4–12.1) ^b	32 (19.6, 13.4–27.7)		
P value	< 0.001	< 0.001	< 0.001	< 0.001		
Influenza-like symptoms						
Yes	123 (20.0, 16.7–23.9)	181 (29.5, 25.3–34.1)	38 (6.2, 4.4–8.5)	94 (15.3, 12.4–18.7)		
No	322 (16.5, 14.8–18.4)	422 (21.6, 19.6–23.8) ^a	159 (8.1, 6.9–9.5)	286 (14.7, 13.0–16.5)		
Unclear	26 (30.6, 20.0–44.8) ^c	19 (22.4, 13.5–34.9)	5 (5.9, 1.9–13.7)	17 (20.0, 11.7–32.0)		
P value	0.001	< 0.001	0.231	0.388		

 Table 2
 Seroprevalence of antibodies against the four influenza strains in Shandong Province

Data are presented as *n* (%, 95% CI). *P* values were calculated by χ^2 test.

 $^{a}P < 0.05$ for comparison between the first and second subgroups.

 $^{b}P < 0.05$ for comparison between the second and third subgroups.

 $^{\circ}P < 0.05$ for comparison between the first and third subgroups.

CI: confidence interval.

7.3% for B/Victoria ($\chi^2 = 19.778$, P < 0.001), and 29.0% vs. 14.3% for B/Yamagata ($\chi^2 = 18.564$, P < 0.001). These results suggested that the vaccination of influenza could provide consistent and effective antibody levels. Compared with participants without influenza-like symptoms in the past two years, those with influenza-like symptoms had higher seroprevalence of antibodies against A/H3N2, but no significant difference was found for other strains (Table 2).

Meta-analysis for comparing the seroprevalence before and during the COVID-19 pandemic

To compare the seroprevalence of antibodies against influenza strains before and during the COVID-19 pandemic, we performed a meta-analysis to retrieve the seroprevalence of antibodies against the major circulating seasonal influenza strains in the scientific literature published since 2015. A total of 475 potentially relevant articles were retrieved after systematic search, of which 12 met all the inclusion criteria (Fig. 1B) [2-5,17-24]. A total of 9656 individuals were included in our metaanalysis (Table S1). Among them, 11, 10, 7, and 5 studies reported serum A/H1N1pdm09 [2-4,17-24], A/H3N2 [2-5,17-20,22,23], B/Victoria [2-4,18-20,22], and B/Yamagata antibodies [2-4,18,20], respectively (Table S1). Other information in the articles, such as study site, study participants, collection date of the serum sample, study design, method of serologic assays and cutoff, were also extracted (Table S2).

Only two studies reported the serum influenza antibodies in children or adolescents, and we only calculated the pooled estimates of seroprevalence in adults in the meta-analysis. Seroprevalence against A/H1N1pdm09 in the literature ranged from 7.8% to 58.2% in adults, with the pooled estimate of 25.2% (95% CI 14.9%–39.2%) by using the random model (Fig. 2A and Table S3). Seroprevalence against A/H3N2 in the

literature ranged from 7.3% to 96.1%, with the pooled estimate of 48.9% (95% CI 27.5%–70.8%) by using the random model (Fig. 2B and Table S3). Seroprevalence

А							
Study	Site	Events	Total		Seropreval	ence	95% CI
Relevant literature							
Gao et al. (2016)	Beijing	136	292	-	-	46.7	(40.7-52.5)
Tam et al. (2018) Xu et al. (2021)	Hong Kong Changzhi	499 41	878 413	-		56.8 9.9	(53.5-60.1) (7.2-13.2)
Tiffany <i>et al.</i> (2020)	Hong Kong	466	800			58.2	(54.7-61.7)
Quan et al. (2019)	Seven areas in China	348	2124	-		16.4	(14.8-18.0)
Shu et al. (2020)	Shenzhen & Changzhou	8	68			11.8	(5.2-21.9)
Wang et al. (2017) Wang et al. (2015)	Lianyungang Guangdong	267 12	1756 26	·		15.2 46.1	(13.6-17.0) (26.6-66.6)
Wu et al. (2015)	Guangdong	45	502	+		9.0	(6.6-11.8)
Ma et al. (2015)	Guangdong	9	115	-		7.8	(3.6-14.3)
Chen et al. (2015)	Guangdong	134	264	-		50.8	(44.5-56.9)
Random effects model Heterogeneity: $I^2 = 99\%$	$r^2 = 1.1718$ $R < 0.01$		7238			25.2	(14.9-39.2)
Therefogenenty. 1 55%	5,1 1.1715,7 < 0.01						
This study							
Our study Shandong		173	1830	•		9.4	(8.1-10.9)
Random effects model Heterogeneity: not applic	able		1830	•		9.4	(8.1–10.9)
Heterogeneity: $I^2 = 99\%$							
Test for subgroup differen	nces: $\chi_1^2 = 11.70$, df = 1 (P <	0.01)		10 20 30 40	50 60		
_							
В							
Study	Site	Events	Total		Seroprevale	ence	95% CI
Relevant literature	D-:::	101	202				(50 6 50 0)
Gao et al. (2016) Zhu et al. (2018)	Beijing Hong Kong	191 318	292 435			65.4 73.1	(59.6-70.9) (68.7-77.2)
Tam et al. (2018)	Hong Kong	550	878	-	-	62.6	(59.3-65.8)
Xu et al. (2021)	Changzhi	39	413	-		9.4	(6.8-12.7)
Tiffany et al. (2020)	Hong Kong	587	800	_		73.4	(70.2-76.4)
Quan et al. (2019)	Seven areas in China Shenzhen & Changzhou	772 5	2124 68	·		36.3 7.3	(34.3 - 38.4)
Shu et al. (2020) Wang et al. (2017)	Lianyungang	807	1756			46.0	(2.4-16.3) (43.6-48.3)
Wang et al. (2015)	Guangdong	25	26			96.1	(80.4-99.9)
Ma et al. (2015)	Guangdong	36	115			31.3	(23.0-40.6)
Random effects model	$\%, \tau^2 = 2.1610, P < 0.01$		6907			48.9	(27.5-70.8)
Heterogeneity: $I^{-} = 99\%$	$\%, \tau = 2.1610, P < 0.01$						
This study							
0 1 1 1		278	1830			15.2	(13.6 - 16.9)
Our study Shandong		276					
Random effects model		278	1830	•		15.2	(13.6–16.9)
Random effects model Heterogeneity: not applie Heterogeneity: $I^2 = 90^{\circ}$	cable $(\pi^2 = 2.1918) P < 0.01$			♦			
Random effects model Heterogeneity: not applie Heterogeneity: $I^2 = 90^{\circ}$	cable $(\pi^2 = 2.1918) P < 0.01$			◆ 20 40 60			
Random effects model Heterogeneity: not applie Heterogeneity: $I^2 = 999$ Test for subgroup differe	cable			◆ 20 40 60	80		
Random effects model Heterogeneity: not applid Heterogeneity: $1^2 = 999$ Test for subgroup differe C	table 6, $\tau^2 = 2.1918$, $P < 0.01$ nces: $\chi^2 = 12.33$, df = 1 (P	< 0.01)	1830	◆ 20 40 60		15.2	(13.6–16.9)
Random effects model Heterogeneity: not applie Heterogeneity: $I^2 = 999$ Test for subgroup differe	cable $(\pi^2 = 2.1918) P < 0.01$			◆ 20 40 60	1 80 Seroprevale	15.2	
Random effects model Heterogeneity: not applid Heterogeneity: $1^2 = 999$ Test for subgroup differe C	table 6, $\tau^2 = 2.1918$, $P < 0.01$ nces: $\chi^2 = 12.33$, df = 1 (P	< 0.01)	1830	• 20 40 60		15.2	(13.6–16.9)
Random effects model Heterogeneity: no tapplic Heterogeneity: no applic Heterogeneity: no applic Test for subgroup differe C Study Relevant literature Gao <i>et al.</i> (2016)	able $6, \tau^2 = 2.1918, P < 0.01$ nces: $\chi^2 = 12.33, df = 1$ (P Site Beijing	< 0.01) Events 174	1830 Total 292	◆ 20 40 60		15.2 ence 59.6	(13.6–16.9) 95% CI (53.7–65.3)
Random effects model Heterogeneity: not applie Heterogeneity: $J^2 = 999$ Test for subgroup differe C Study Relevant literature Gao <i>et al.</i> (2016) Tam <i>et al.</i> (2018)	able $\phi_{1}, \tau^{2} = 2.1918$, $P < 0.01$ nces: $\chi^{2} = 12.33$, df = 1 (P Site Beijing Hong Kong	< 0.01) Events 174 286	1830 Total 292 878	•		15.2 ence 59.6 32.6	(13.6–16.9) 95% CI (53.7–65.3) (29.5–35.6)
Random effects model Heterogeneity: not applic Heterogeneity: $l^2 = 999$ Test for subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2018) Xu et al. (2021)	able $\phi_{*,\tau}\tau^{2}=2.1918$, $P < 0.01$ nces: $\chi^{2}=12.33$, df = 1 (P Site Beijing Hong Kong Changzhi	< 0.01) Events 174 286 10	1830 Total 292 878 413			15.2 ence 59.6 32.6 2.4	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4)
Random effects model Heterogeneity: not applie Heterogeneity: $J^2 = 999$ Test for subgroup differe C Study Relevant literature Gao <i>et al.</i> (2016) Tam <i>et al.</i> (2018)	able $\phi_{1}, \tau^{2} = 2.1918$, $P < 0.01$ nces: $\chi^{2} = 12.33$, df = 1 (P Site Beijing Hong Kong	< 0.01) Events 174 286	1830 Total 292 878	• 20 40 60		15.2 ence 59.6 32.6	(13.6–16.9) 95% CI (53.7–65.3) (29.5–35.6)
Random effects model Heterogeneity: <i>no</i> applic Heterogeneity: <i>no</i> applic Heterogeneity: <i>no</i> applic C Study Relevant literature Gao <i>et al.</i> (2016) Tam <i>et al.</i> (2018) Xu <i>et al.</i> (2021) Tiffany <i>et al.</i> (2020) Shu <i>et al.</i> (2021) Wang <i>et al.</i> (2017)	able $\phi_{+} \tau^{2} = 2.1918$, $P < 0.01$ nces: $\chi^{2} = 12.33$, df = 1 (P Site Beijing Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang	< 0.01) Events 174 286 10 248 4 88	1830 Total 292 878 413 800 68 1756			15.2 59.6 32.6 2.4 31.0 5.9 5.0	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1)
Random effects model Heterogeneity: not applic Heterogeneity: not applic Heterogeneity: not applic Relevant literature Gao et al. (2016) Tam et al. (2017) Xu et al. (2020) Shu et al. (2020) Shu et al. (2020) Wang et al. (2017) Wang et al. (2015)	able (6), $\tau^2 = 2.1918$, $P < 0.01$ nces: $\chi^2 = 12.33$, df = 1 (P Site Beijing Hong Kong Changzhi Hong Kong Shenzhen & Changzhou	< 0.01) Events 174 286 10 248 4	1830 Total 292 878 413 800 68 1756 26			15.2 59.6 32.6 2.4 31.0 5.9 5.0 34.6	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (4.0-5.7)
Random effects model Heterogeneity: <i>no</i> applic Heterogeneity: <i>no</i> applic Heterogeneity: <i>no</i> applic C Study Relevant literature Gao <i>et al.</i> (2016) Tam <i>et al.</i> (2018) Xu <i>et al.</i> (2021) Tiffany <i>et al.</i> (2020) Shu <i>et al.</i> (2021) Wang <i>et al.</i> (2017)	able $\phi_{, \tau} \tau^2 = 2.1918$, $P < 0.01$ nccs: $\chi^2 = 12.33$, df = 1 (P Site Beijing Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang Guangdong	< 0.01) Events 174 286 10 248 4 88	1830 Total 292 878 413 800 68 1756			15.2 59.6 32.6 2.4 31.0 5.9 5.0	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1)
Random effects model Heterogeneity: $n^2 = 999$ Test for subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2018) Xu et al. (2021) Tiffany et al. (2020) Shu et al. (2020) Wang et al. (2015) Random effects model Heterogeneity: $I^2 = 999$;	able $\phi_{, \tau} \tau^2 = 2.1918$, $P < 0.01$ nccs: $\chi^2 = 12.33$, df = 1 (P Site Beijing Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang Guangdong	< 0.01) Events 174 286 10 248 4 88	1830 Total 292 878 413 800 68 1756 26			15.2 59.6 32.6 2.4 31.0 5.9 5.0 34.6	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (4.0-5.7)
Random effects model Heterogeneity: $D^{2} = 99^{9}$ Test for subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2016) Tam et al. (2021) Triffany et al. (2020) Shu et al. (2020) Shu et al. (2020) Wang et al. (2015) Random effects model Heterogeneity: $I^{2} = 999$: This study	able $\phi_{, \tau} \tau^2 = 2.1918$, $P < 0.01$ nccs: $\chi^2 = 12.33$, df = 1 (P Site Beijing Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang Guangdong	< 0.01) Events 174 286 10 248 4 88 9	1830 Total 292 878 413 800 68 1756 26 4233			15.2 59.6 32.6 2.4 31.0 5.9 5.0 34.6 16.8	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (1.6-14.4) (1.6-14.4) (4.0-6.1) (1.7.2-55.7) (6.5-36.8)
Random effects model Heterogeneity: $\vec{P} = 999$ Test for subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2017) Tiffany et al. (2021) Tiffany et al. (2020) Shu et al. (2021) Wang et al. (2015) Random effects model Heterogeneity: $\vec{I}^2 = 99\%$	able $\phi_{, \tau} \tau^2 = 2.1918$, $P < 0.01$ nccs: $\chi^2 = 12.33$, df = 1 (P Site Beijing Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang Guangdong	< 0.01) Events 174 286 10 248 4 88	1830 Total 292 878 413 800 68 1756 26 4233 1830			15.2 59.6 32.6 31.0 5.9 5.0 34.6 16.8 7.3	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (17.2-55.7) (6.5-36.8) (6.1-8.5)
Random effects model Heterogeneity: $D^{2} = 99^{9}$ Test for subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2016) Tam et al. (2021) Triffany et al. (2020) Shu et al. (2020) Shu et al. (2020) Wang et al. (2015) Random effects model Heterogeneity: $I^{2} = 999$: This study	able (a), $\tau^2 = 2.1918$, $P < 0.01$ nces: $\chi^2 = 12.33$, df = 1 (P Site Beijing Hong Kong Hong Kong Hong Kong Shenzhen & Changzhou Lianyungang Guangdong Guangdong b, $\tau^2 = 1.9658$, $P < 0.01$	< 0.01) Events 174 286 10 248 4 88 9	1830 Total 292 878 413 800 68 1756 26 4233			15.2 59.6 32.6 2.4 31.0 5.9 5.0 34.6 16.8	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (1.6-14.4) (1.6-14.4) (4.0-6.1) (1.7.2-55.7) (6.5-36.8)
Random effects model Heterogeneity: $\vec{P} = 999$ Test for subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2017) Tiffany et al. (2021) Tiffany et al. (2021) Wang et al. (2021) Wang et al. (2021) Wang et al. (2015) Random effects model Heterogeneity: $\vec{I}^2 = 99\%$ This study Our study Shandong Random effects model Heterogeneity: \vec{r} ender	able $\phi, \tau^2 = 2.3918$, $P < 0.01$ nces: $\chi^2 = 12.33$, $df = 1$ (P Site Beijing Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang Guangdong $\phi, \tau^2 = 1.9558$, $P < 0.01$ able $\phi, \tau^2 = 1.8131$, $P < 0.01$	< 0.01) Events 174 286 10 248 4 8 8 9 133	1830 Total 292 878 413 800 68 1756 26 4233 1830	* * * * *	Seropreval	15.2 59.6 32.6 31.0 5.9 5.0 34.6 16.8 7.3	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (17.2-55.7) (6.5-36.8) (6.1-8.5)
Random effects model Heterogeneity: $\vec{P} = 999$ Test for subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2017) Tiffany et al. (2021) Tiffany et al. (2021) Wang et al. (2021) Wang et al. (2021) Wang et al. (2015) Random effects model Heterogeneity: $\vec{I}^2 = 99\%$ This study Our study Shandong Random effects model Heterogeneity: \vec{r} ender	able $\phi_{s}, \tau^{2} = 2.1918$, $P < 0.01$ nccs: $\chi^{2} = 12.33$, df = 1 (P Site Beijing Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang Guangdong $\phi_{s}, \tau^{2} = 1.9658$, $P < 0.01$	< 0.01) Events 174 286 10 248 4 8 8 9 133	1830 Total 292 878 413 800 68 1756 26 4233 1830			15.2 59.6 32.6 31.0 5.9 5.0 34.6 16.8 7.3	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (17.2-55.7) (6.5-36.8) (6.1-8.5)
Random effects model Heterogeneity: $D^{2} = 99$ Test for subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2016) Tam et al. (2017) Xu et al. (2020) Shu et al. (2020) Shu et al. (2020) Wang et al. (2017) Wang et al. (2015) Random effects model Heterogeneity: $I^{2} = 99\%$ This study Our study Shandong Random effects model Heterogeneity: not applic Heterogeneity: not applic Heterogeneity: $I^{2} = 99\%$	able $\phi, \tau^2 = 2.3918$, $P < 0.01$ nces: $\chi^2 = 12.33$, $df = 1$ (P Site Beijing Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang Guangdong $\phi, \tau^2 = 1.9558$, $P < 0.01$ able $\phi, \tau^2 = 1.8131$, $P < 0.01$	< 0.01) Events 174 286 10 248 4 8 8 9 133	1830 Total 292 878 413 800 68 1756 26 4233 1830	* * * * *	Seropreval	15.2 59.6 32.6 31.0 5.9 5.0 34.6 16.8 7.3	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (17.2-55.7) (6.5-36.8) (6.1-8.5)
Random effects model Heterogeneity: $D^{2} = 99^{9}$ Test for subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2017) Tiffany et al. (2020) Shu et al. (2021) Tiffany et al. (2020) Shu et al. (2015) Random effects model Heterogeneity: $I^{2} = 99\%$ This study Our study Shandong Random effects model Heterogeneity: not applic Heterogeneity: not applic Heterogeneity: not applic	able $6, \tau^2 = 2.1918, P < 0.01$ neces: $\chi^2 = 12.33, df = 1$ (P Site Beijing Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang Guangdong $5, \tau^2 = 1.9658, P < 0.01$ able $6, \tau^2 = 1.8131, P < 0.01$ neces: $\chi^2_1 = 2.99, df = 1$ (P = 1)	< 0.01) Events 174 286 10 248 4 88 9 133	1830 Total 292 878 413 800 68 1756 64 223 4233 1830 1830	* * * * *	Seropreval 	15.2 59.6 32.6 2.4 31.0 5.9 5.0 34.6 16.8 7.3 7.3	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (17.2-55.7) (6.5-36.8) (6.1-8.5) (6.1-8.5)
Random effects model Heterogeneity: $n^2 = 999$ Test for subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2018) Xu et al. (2021) Tiffany et al. (2020) Shu et al. (2020) Shu et al. (2015) Random effects model Heterogeneity: $T^2 = 999$ This study Our study Shandong Random effects model Heterogeneity: not applic Heterogeneity: not applic Heterogeneity: $T^2 = 999$	able $\phi, \tau^2 = 2.3918$, $P < 0.01$ nces: $\chi^2 = 12.33$, $df = 1$ (P Site Beijing Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang Guangdong $\phi, \tau^2 = 1.9558$, $P < 0.01$ able $\phi, \tau^2 = 1.8131$, $P < 0.01$	< 0.01) Events 174 286 10 248 4 8 8 9 133	1830 Total 292 878 413 800 68 1756 26 4233 1830	* * * * *	Seropreval	15.2 59.6 32.6 2.4 31.0 5.9 5.0 34.6 16.8 7.3 7.3	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (17.2-55.7) (6.5-36.8) (6.1-8.5)
Random effects model Heterogeneity: $n^2 = 99^{9}$ Test for subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2017) Tiffany et al. (2021) Tiffany et al. (2021) Wang et al. (2021) Wang et al. (2021) Wang et al. (2017) Random effects model Heterogeneity: $l^2 = 99^{9}$. This study Our study Shandong Random effects model Heterogeneity: $l^2 = 99^{9}$.	able 6. $\tau^2 = 2.1918$, $P < 0.01$ nces: $\chi^2 = 12.33$, df = 1 (P Site Beijing Hong Kong Hong Kong Shenzhen & Changzhu Lianyungang Guangdong 5. $\tau^2 = 1.9658$, $P < 0.01$ able 6. $\tau^2 = 1.8131$, $P < 0.01$ nces: $\chi^2 = 2.99$, df = 1 ($P = 1$ Site	< 0.01) Events 174 286 10 248 4 8 9 133 0.08) Events	1830 Total 292 878 800 68 800 68 800 68 800 68 800 26 4233 1830 1830	* * * * *	Seropreval 	15.2 ence 59.6 32.6 2.4 31.0 5.9 5.0 34.6 16.8 7.3 7.3	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (17.2-55.7) (6.5-36.8) (6.1-8.5) (6.1-8.5)
Random effects model Heterogeneity: $n^{2} = 99^{9}$ Test for subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2016) Tam et al. (2017) Xu et al. (2020) Shu et al. (2020) Shu et al. (2020) Wang et al. (2017) Wang et al. (2017) Wang et al. (2015) Random effects model Heterogeneity: $I^{2} = 99\%$ This study Our study Shandong Random effects model Heterogeneity: not applic Heterogeneity: not applic Heterogeneity: $I^{2} = 99\%$ Test for subgroup differed D Study Relevant literature Tam et al. (2018)	able $6, \tau^2 = 2.1918, P < 0.01$ neces: $\chi^2 = 12.33, df = 1$ (P Site Beijing Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang Guangdong $5, \tau^2 = 1.9658, P < 0.01$ able $6, \tau^2 = 1.8131, P < 0.01$ neces: $\chi^2_1 = 2.99, df = 1$ (P = 1)	< 0.01) Events 174 286 10 248 4 88 9 133 0.08) Events 82	1830 Total 292 878 413 800 68 1756 26 4233 1830 1830 1830 Total 878	* * * * *	Seropreval 	15.2 59.6 32.6 2.4 31.0 5.0 34.6 16.8 7.3 7.3 lence 9.3	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (17.2-55.7) (6.5-36.8) (6.1-8.5) (6.1-8.5) 95% CI (7.5-11.5)
Random effects model Heterogeneity: $n^2 = 99^{9}$ Test for subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2017) Tiffany et al. (2021) Tiffany et al. (2021) Wang et al. (2021) Wang et al. (2017) Random effects model Heterogeneity: $l^2 = 99^{9}$. This study Our study Shandong Random effects model Heterogeneity: $l^2 = 99^{9}$. This study Sut subgroup differe D Study Relevant literature Tam et al. (2018) Xu et al. (2021)	able 6. $\tau^2 = 2.1918$, $P < 0.01$ nces: $\chi^2 = 12.33$, df = 1 (P Site Beijing Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang Guangdong 5. $\tau^2 = 1.9658$, $P < 0.01$ able 6. $\tau^2 = 1.8131$, $P < 0.01$ nces: $\chi^2 = 2.99$, df = 1 ($P = 1$ Site Hong Kong Changzhi Hong Kong Changzhi Hong Kong	< 0.01) Events 174 286 10 248 4 8 9 133 0.08) Events 82 12 78	1830 Total 292 878 800 68 800 68 800 68 800 68 4233 1830 1830 1830	* * * * *	Seropreval 	15.2 ence 59.6 32.6 2.4 31.0 5.9 5.0 34.6 16.8 7.3 7.3 7.3 lence 9.3 2.9 9.7	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (17.2-55.7) (6.5-36.8) (6.1-8.5) (6.1-8.5) (6.1-8.5) 95% CI (7.5-11.5) (1.5-5.0) (7.8-12.0)
Random effects model Heterogeneity: $n^2 = 99^9$ Test for subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2016) Tam et al. (2017) Xu et al. (2020) Shu et al. (2020) Wang et al. (2017) Wang et al. (2017) Wang et al. (2017) Wang et al. (2015) Random effects model Heterogeneity: $I^2 = 99\%$ This study Our study Shandong Random effects model Heterogeneity: not applic Heterogeneity: $I^2 = 99\%$ Test for subgroup differe D Study Relevant literature Tam et al. (2018) Xu et al. (2021) Tiffany et al. (2020) Shu et al. (2020)	able 6, $\tau^2 = 2.1918$, $P < 0.01$ nces: $\chi^2 = 12.33$, df = 1 (P Site Beijing Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang Guangdong 6, $\tau^2 = 1.8131$, $P < 0.01$ able 6, $\tau^2 = 1.8131$, $P < 0.01$ nces: $\chi^2_1 = 2.99$, df = 1 ($P = 1$ Site Hong Kong Changzhi Hong Kong Shenzhen & Changzho	< 0.01) Events 174 286 10 248 4 88 9 133 0.08) Events 82 12 78 u 2	1830 Total 292 878 813 800 68 1756 26 4233 1830 1830 1830 70tal 878 8413 800 68	* * * * *	Seropreval 	15.2 sence 59.6 32.6 2.4 31.0 5.0 34.6 16.8 7.3 7.3 7.3 lence 9.3 2.9	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (17.2-55.7) (6.5-36.8) (6.1-8.5) (7.1-1.5) (7.1-1.5) (7.1-1.5) (7.1-1.2) (7
Random effects model Heterogeneity: $n^2 = 999$ Test for subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2017) Tiffany et al. (2020) Shu et al. (2020) Wang et al. (2017) Wang et al. (2017) Wang et al. (2017) Wang et al. (2017) Wang et al. (2017) This study Our study Shandong Random effects model Heterogeneity: $t^2 = 999$ This study Our study Shandong Random effects model Heterogeneity: not applic Heterogeneity: $t^2 = 999$ Test for subgroup differe D Study Relevant literature Tam et al. (2018) Xu et al. (2021) Tiffany et al. (2020) Shu et al. (2020)	able 6. $\tau^2 = 2.1918$, $P < 0.01$ nces: $\chi^2 = 12.33$, $df = 1$ (P Site Beijing Hong Kong Changzhi Hong Kong Guangdong 5. $\tau^2 = 1.9658$, $P < 0.01$ able 6. $\tau^2 = 1.9658$, $P < 0.01$ ces: $\chi^2_1 = 2.99$, $df = 1$ ($P = 1$ Site Hong Kong Changzhi Hong Kong Changzhi Hong Kong Shenzhen & Changzho Lianyungang	< 0.01) Events 174 286 10 248 4 8 9 133 0.08) Events 82 12 78	1830 Total 292 878 8413 800 84233 1830 1830 1830 Total 878 8413 800 678	* * * * *	Seropreval 	15.2 ence 59.6 32.6 2.4 31.0 5.9 5.0 34.6 16.8 7.3 7.3 1.3 lence 9.3 2.9 9.7 2.9 33.7	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (17.2-55.7) (6.5-36.8) (6.1-8.5) (7.5-11.5) (1.5-5.0) (7.3-12.0) (3.1-3-35.9) (3.1-35.9)
Random effects model Heterogeneity: $n^{2} = 99^{9}$ Test for subgroup differe C Study Relevant literature Gao <i>et al.</i> (2016) Tam <i>et al.</i> (2018) Xu <i>et al.</i> (2021) Tiffany <i>et al.</i> (2020) Shu <i>et al.</i> (2021) Wang <i>et al.</i> (2020) Wang <i>et al.</i> (2020) Wang <i>et al.</i> (2015) Random effects model Heterogeneity: $I^{2} = 99^{9}$. This study Our study Shandong Random effects model Heterogeneity: $I^{2} = 99^{9}$. This study Our study Shandong Random effects model Heterogeneity: $I^{2} = 99^{9}$. This study Our study Shandong Random effects model Heterogeneity: $I^{2} = 99^{9}$. Test for subgroup different D Study Relevant literature Tam <i>et al.</i> (2018) Xu <i>et al.</i> (2020) Shu <i>et al.</i> (2020) Shu <i>et al.</i> (2020) Wang <i>et al.</i> (2017) Random effects model	able 6. $\tau^2 = 2.1918$, $P < 0.01$ nces: $\chi^2 = 12.33$, df = 1 (P Site Beijing Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang dog $\tau^2 = 1.8131$, $P < 0.01$ nces: $\chi^2 = 2.99$, df = 1 ($P = 1$ Site Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang	< 0.01) Events 174 286 10 248 4 88 9 133 0.08) Events 82 12 78 u 2	1830 Total 292 878 813 800 68 1756 26 4233 1830 1830 1830 70tal 878 8413 800 68	* * * * *	Seropreval 	15.2 sence 59.6 32.6 2.4 31.0 5.0 34.6 16.8 7.3 7.3 7.3 lence 9.3 2.9	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (17.2-55.7) (6.5-36.8) (6.1-8.5) (7.1-1.5) (7.1-1.5) (7.1-1.5) (7.1-1.2) (7
Random effects model Heterogeneity: $n^{2} = 99^{9}$ Test for subgroup differe C Study Relevant literature Gao <i>et al.</i> (2016) Tam <i>et al.</i> (2018) Xu <i>et al.</i> (2021) Tiffany <i>et al.</i> (2020) Shu <i>et al.</i> (2021) Wang <i>et al.</i> (2020) Wang <i>et al.</i> (2020) Wang <i>et al.</i> (2015) Random effects model Heterogeneity: $I^{2} = 99^{9}$. This study Our study Shandong Random effects model Heterogeneity: $I^{2} = 99^{9}$. This study Our study Shandong Random effects model Heterogeneity: $I^{2} = 99^{9}$. This study Our study Shandong Random effects model Heterogeneity: $I^{2} = 99^{9}$. Test for subgroup different D Study Relevant literature Tam <i>et al.</i> (2018) Xu <i>et al.</i> (2020) Shu <i>et al.</i> (2020) Shu <i>et al.</i> (2020) Wang <i>et al.</i> (2017) Random effects model	able 6. $\tau^2 = 2.1918$, $P < 0.01$ nces: $\chi^2 = 12.33$, $df = 1$ (P Site Beijing Hong Kong Changzhi Hong Kong Guangdong 5. $\tau^2 = 1.9658$, $P < 0.01$ able 6. $\tau^2 = 1.9658$, $P < 0.01$ ces: $\chi^2_1 = 2.99$, $df = 1$ ($P = 1$ Site Hong Kong Changzhi Hong Kong Changzhi Hong Kong Shenzhen & Changzho Lianyungang	< 0.01) Events 174 286 10 248 4 88 9 133 0.08) Events 82 12 78 u 2	1830 Total 292 878 8413 800 84233 1830 1830 1830 Total 878 8413 800 678	* * * * *	Seropreval 	15.2 ence 59.6 32.6 2.4 31.0 5.9 5.0 34.6 16.8 7.3 7.3 1.3 lence 9.3 2.9 9.7 2.9 33.7	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (17.2-55.7) (6.5-36.8) (6.1-8.5) (7.5-11.5) (1.5-5.0) (7.3-12.0) (3.1-3-35.9) (3.1-35.9)
Random effects model Heterogeneity: $n^2 = 999$ Test for subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2018) Xu et al. (2021) Tiffany et al. (2020) Shu et al. (2020) Wang et al. (2017) Wang et al. (2017) Wang et al. (2017) Wang et al. (2017) Wang et al. (2017) This study Our study Shandong Random effects model Heterogeneity: $1^2 = 999$. This study Study Relevant literature Tam et al. (2021) Study Relevant literature Tam et al. (2020) Shu et al. (2020) Wang et al. (2021) Tiffany et al. (2020) Shu et al. (2020) Shu et al. (2020) Wang et al. (2021) Wang et al. (2020) Shu et al. (2020) Shu et al. (2020) Wang et al. (2021) Kandom effects model Heterogeneity: $1^2 = 999$.	able 6. $\tau^2 = 2.1918$, $P < 0.01$ nces: $\chi^2 = 12.33$, df = 1 (P Site Beijing Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang dog $\tau^2 = 1.8131$, $P < 0.01$ nces: $\chi^2 = 2.99$, df = 1 ($P = 1$ Site Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang	< 0.01) Events 174 286 10 248 4 88 9 133 0.08) Events 82 12 78 82 12 78 84 2591	1830 Total 2922 878 413 800 68 1756 26 4233 1830 1830 1830 1830 70tal 878 8413 800 68 1756 3915	* * * * *	Seropreval 	15.2 ence 59.6 32.6 2.4 31.0 5.0 34.6 16.8 7.3 7.3 7.3 7.3 9.7 2.9 33.7 8.5	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (17.2-55.7) (6.5-36.8) (6.1-8.5) (6.1-8.5) (6.1-8.5) (6.1-8.5) (6.1-8.5) (1.5-5.0) (1.5-5.0) (0.4-10.2) (3.14-35.9) (3.5-19.1)
Random effects model Heterogeneity: $n^2 = 999$ Test for subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2016) Tam et al. (2017) Tiffany et al. (2020) Shu et al. (2021) Tiffany et al. (2020) Shu et al. (2020) Shu et al. (2020) Shu et al. (2020) Shu et al. (2015) Random effects model Heterogeneity: $I^2 = 999$ This study Our study Shandong Random effects model Heterogeneity: $I^2 = 999$ Test for subgroup differe D Study Relevant literature Tam et al. (2018) Xu et al. (2021) Tiffany et al. (2020) Shu et al. (2020) Shu et al. (2020) Shu et al. (2020) Wang et al. (2020) Shu et al. (2020) This study Our study Shandong This study Our study Shandong	able 6. $\tau^2 = 2.1918$, $P < 0.01$ nces: $\chi^2 = 12.33$, $df = 1$ (P Site Beijing Hong Kong Changzhi Hong Kong Guangdong 5. $\tau^2 = 1.9658$, $P < 0.01$ able 6. $\tau^2 = 1.8131$, $P < 0.01$ nces: $\chi^2 = 2.99$, $df = 1$ (P = 1) Site Hong Kong Changzhi Hong Kong Changzhi Hong Kong Changzhi Hong Kong Changzhi Hong Kong Changzhi Hong Kong Changzhi Hong Kong Shenzhen & Changzho Lianyungang M_{ϕ} , $\tau^2 = 1.0495$, $P < 0.01$	< 0.01) Events 174 286 10 248 4 88 9 133 0.08) Events 82 12 78 u 2	1830 Total 292 878 413 800 68 1756 26 4233 1830 1830 Total 878 413 800 68 1756 3915	* * * * *	Seropreval 	15.2 ence 59.6 32.6 2.4 31.0 5.9 34.6 16.8 7.3 7.3 7.3 7.3 8.5 9.7 2.9 9.7 2.9 9.7 8.5 12.6	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (17.2-55.7) (6.5-36.8) (6.1-8.5) (6.1-8.5) (6.1-8.5) (1.5-5.0) (7.5-11.5) (1.5-5.0) (7.8-12.0) (0.4-10.2) (3.1-4-35.9) (3.5-19.1) (11.1-14.2)
Random effects model Heterogeneity: $n^2 = 999$ Test för subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2017) Tiffany et al. (2020) Shu et al. (2021) Tiffany et al. (2020) Shu et al. (2020) Wang et al. (2020) Wang et al. (2015) Random effects model Heterogeneity: $I^2 = 999$; This study Our study Shandong Random effects model Heterogeneity: $I^2 = 999$; Test for subgroup differe D Study Relevant literature Tam et al. (2018) Xu et al. (2020) Shu et al. (2020) Wang et al. (2020) Study Relevant literature Tam et al. (2020) Shu et al. (2020) This study Our study Shandong Random effects model	able 6. $\tau^2 = 2.1918$, $P < 0.01$ nces: $\chi^2 = 12.33$, df = 1 (P Site Beijing Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang 6. $\tau^2 = 1.8131$, $P < 0.01$ nces: $\chi^2_1 = 2.99$, df = 1 (P = 1) Site Hong Kong Changzhi Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang No. $\tau^2 = 1.0495$, $P < 0.01$	< 0.01) Events 174 286 10 248 4 88 9 133 0.08) Events 82 12 78 82 12 78 84 2591	1830 Total 2922 878 413 800 68 1756 26 4233 1830 1830 1830 1830 70tal 878 8413 800 68 1756 3915	* * * * *	Seropreval 	15.2 ence 59.6 32.6 2.4 31.0 5.0 34.6 16.8 7.3 7.3 7.3 7.3 9.7 2.9 33.7 8.5	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (17.2-55.7) (6.5-36.8) (6.1-8.5) (6.1-8.5) (6.1-8.5) (6.1-8.5) (6.1-8.5) (1.5-5.0) (1.5-5.0) (0.4-10.2) (3.14-35.9) (3.5-19.1)
Random effects model Heterogeneity: $n^2 = 999$ Test for subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2016) Tam et al. (2017) Wang et al. (2020) Shu et al. (2020) Shu et al. (2020) Shu et al. (2020) Shu et al. (2015) Random effects model Heterogeneity: $n^2 = 999$. This study Our study Shandong Random effects model Heterogeneity: not applic Heterogeneity: $n^2 = 999$. Test for subgroup differe D Study Relevant literature Tam et al. (2018) Xu et al. (2020) Shu et al. (2020) Shu et al. (2020) Shu et al. (2020) Study Relevant literature Tam et al. (2020) Shu et al. (2020)	able 6. $\tau^2 = 2.1918$, $P < 0.01$ nces: $\chi^2 = 12.33$, $df = 1$ (P Site Beijing Hong Kong Changzhi Hong Kong Guangdong 5. $\tau^2 = 1.9658$, $P < 0.01$ able 6. $\tau^2 = 1.9658$, $P < 0.01$ site Hong Kong Changzhi Hong Kong Changzhi Hong Kong Changzhi Hong Kong Changzhi Hong Kong Changzhi Hong Kong Changzhi Hong Kong Shenzhen & Changzho Lianyungang 3. $\tau^2 = 1.0495$, $P < 0.01$ where $\chi^2 = 1.0495$, $P < 0.01$	< 0.01) Events 174 286 10 248 4 88 9 133 0.08) Events 82 12 78 12 78 12 591 231	1830 Total 292 878 413 800 68 1756 26 4233 1830 1830 Total 878 413 800 68 1756 3915		Seropreval	15.2 ence 59.6 32.6 2.4 31.0 5.9 34.6 16.8 7.3 7.3 7.3 7.3 8.5 9.7 2.9 9.7 2.9 9.7 8.5 12.6	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (17.2-55.7) (6.5-36.8) (6.1-8.5) (6.1-8.5) (6.1-8.5) (1.5-5.0) (7.5-11.5) (1.5-5.0) (7.8-12.0) (0.4-10.2) (3.1-4-35.9) (3.5-19.1) (11.1-14.2)
Random effects model Heterogeneity: $n^2 = 999$ Test for subgroup differe C Study Relevant literature Gao et al. (2016) Tam et al. (2016) Tam et al. (2017) Wang et al. (2020) Shu et al. (2020) Shu et al. (2020) Shu et al. (2020) Shu et al. (2015) Random effects model Heterogeneity: $n^2 = 999$. This study Our study Shandong Random effects model Heterogeneity: not applic Heterogeneity: $n^2 = 999$. Test for subgroup differe D Study Relevant literature Tam et al. (2018) Xu et al. (2020) Shu et al. (2020) Shu et al. (2020) Shu et al. (2020) Study Relevant literature Tam et al. (2020) Shu et al. (2020)	able 6. $\tau^2 = 2.1918$, $P < 0.01$ ness: $\chi^2 = 12.33$, df = 1 (P Site Beijing Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang Guangdong 6. $\tau^2 = 1.9658$, $P < 0.01$ able 6. $\tau^2 = 1.9658$, $P < 0.01$ Site Hong Kong Changzhi Hong Kong Shenzhen & Changzhou Lianyungang Shenzhen & Changzhou Lianyungang	< 0.01) Events 174 286 10 248 4 88 9 133 0.08) Events 82 12 78 12 78 12 591 231	1830 Total 292 878 413 800 68 1756 26 4233 1830 1830 Total 878 413 800 68 1756 3915	* * * * *	Seropreval 	15.2 ence 59.6 32.6 2.4 31.0 5.9 34.6 16.8 7.3 7.3 7.3 7.3 8.5 9.7 2.9 9.7 2.9 9.7 8.5 12.6	(13.6-16.9) 95% CI (53.7-65.3) (29.5-35.6) (1.2-4.4) (27.8-34.3) (1.6-14.4) (4.0-6.1) (17.2-55.7) (6.5-36.8) (6.1-8.5) (6.1-8.5) (6.1-8.5) (1.5-5.0) (7.5-11.5) (1.5-5.0) (7.8-12.0) (0.4-10.2) (3.1-4-35.9) (3.5-19.1) (11.1-14.2)

Fig. 2 Subgroup analysis of the seroprevalence of influenza antibodies between the relevant literature and our study: (A) A/H1N1pdm09, (B) A/H3N2, (C) B/Victoria, and (D) B/Yamagata.

against B/Victoria in the included literature ranged from 2.4% to 59.6%, with the pooled estimate of 16.8% (95%) CI 6.5%-36.8%) by using the random model (Fig. 2C and Table S3). Seroprevalence against B/Yamagata in the literature ranged from 2.9% to 33.7%, with the pooled estimate of 8.5% (95% CI 3.5%-19.1%) by using the random model (Fig. 2D and Table S3). By comparing the seroprevalence of influenza before and during the COVID-19 pandemic, we found a significantly low seropositive rate of influenza in adults following the onset of COVID-19 pandemic particularly the for A/H1N1pdm09 and A/H3N2. As expected, results of seroprevalence of influenza were consistent with the low reporting of laboratory-confirmed influenza cases [25]. In the sensitivity analysis, no individual study substantially influenced the pooled seroprevalence rates (Fig. S1). In addition, no publication bias was detected by funnel plots and Egger tests (A/H1N1pdm09: P = 0.743, A/H3N2: P =0.855, B/Victoria: P = 0.517, and B/Yamagata: P =0.098; Table S3).

Subgroup analysis was used to assess the differences in the seroprevalence of antibodies against influenza strains between the meta-analysis and our study. Accordingly, significant differences were observed in the seroprevalence rates of A/H1N1pdm09 (meta-analysis: 25.2%, 95% CI 14.9%-39.2%; our study: 9.4%, 95% CI 8.1%–10.9%; P < 0.01) and A/H3N2 (meta-analysis: 48.9%, 95% CI 27.5%-70.8%; our study: 15.2%, 95% CI 13.6%–16.9%; P < 0.01)(Fig. 2A and 2B). No significant difference was found for the seroprevalence of antibodies against the B/Victoria and B/Yamagata strains between the data from the meta-analysis and our study (Fig. 2C and 2D). These findings indicated that antibodies for A/H1N1pdm09 and A/H3N2 might have lowered after the onset of the COVID-19 pandemic.

By the end of December 2021, an estimated 57.6% of the global population has received at least one dose of a COVID-19 vaccine [26]. Therefore, the relaxation of NPIs and other pandemic prevention measures, such as the abolition of the "lockdowns" and the easing of restrictions on social and physical distancing, has been implemented in some countries. However, China reported 110 691 influenza cases in November 2021, compared with 22 783 cases in November 2020 [6]. The global circulation of influenza viruses has also been on the rise since autumn 2021 [27]. Therefore, relaxing the NPIs will likely increase the pandemic risk of influenza.

Summary

We reported low seroprevalence to four influenza vaccine strains among the general public in Shandong Province, China during the COVID-19 pandemic, which highlighted the increased pandemic risk of seasonal influenza in northern China and potentially elsewhere. We strongly recommend that the vaccination of seasonal influenza and SARS-CoV-2 should be substantially increased to contain the COVID-19 pandemic and lower the pandemic risk of seasonal influenza. Active influenza surveillance should also be performed longitudinally to assess influenza antibody titers among the general public and monitor the genetic variation of influenza viruses for the mitigation of future influenza pandemics.

Acknowledgements

We thank the participants of this study, as well as the staff of the Second Affiliated Hospital of Shandong First Medical University and Boshan District Hospital who made the survey possible. We thank the help from Ti Liu and Julong Wu in Shandong Center for Disease Control and Prevention. This work was supported by the Academic Promotion Programme of Shandong First Medical University (No. 2019QL006) and the Natural Science Foundation of Shandong Province (Nos. ZR2020QH133, ZR2020MH339, and ZR2021MC001).

Compliance with ethics guidelines

Chuansong Quan, Zhenjie Zhang, Guoyong Ding, Fengwei Sun, Hengxia Zhao, Qinghua Liu, Chuanmin Ma, Jing Wang, Liang Wang, Wenbo Zhao, Jinjie He, Yu Wang, Qian He, Michael J. Carr, Dayan Wang, Qiang Xiao, and Weifeng Shi declare that they have no actual or potential competing financial interests. This study was approved by the Ethics Committee of Shandong First Medical University & Shandong Academy of Medical Sciences (approved No. R202105170154). The study conformed to the principles of the *Declaration of Helsinki*, and the standards of Good Clinical Practice defined by the International Conference on Harmonization. Written informed consent was obtained from all adult participants, and from legal guardians for participants ≤ 15 years old.

Electronic Supplementary Material Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-022-0930-5 and is accessible for authorized users.

References

- Anderson ML, Dobkin C, Gorry D. Effect of influenza vaccination for the elderly on hospitalization and mortality. Ann Intern Med 2020; 173(4): 322–323
- Xu C, Liu L, Ren B, Dong L, Zou S, Huang W, Wei H, Cheng Y, Tang J, Gao R, Feng L, Zhang R, Yuan C, Wang D, Chen J. Incidence of influenza virus infections confirmed by serology in children and adult in a suburb community, northern China, 2018–2019 influenza season. Influenza Other Respir Viruses 2021; 15(2): 262–269
- Tam YH, Valkenburg SA, Perera RAPM, Wong JHF, Fang VJ, Ng TWY, Kwong ASK, Tsui WWS, Ip DKM, Poon LLM, Chau CKV, Barr IG, Peiris JSM, Cowling BJ. Immune responses to twice-

annual influenza vaccination in older adults in Hong Kong. Clin Infect Dis 2018; 66(6): 904–912

- Shu LM, Zhang J, Huo X, Chen C, Fang SS, Zong KX, Guo YY, Zhao YZ, Zhang J, Bao CJ, Xia JJ, Zhu FC, Wang DY, Wu GZ, Gao F, Liu J. Preplanned studies: surveillance on the immune effectiveness of quadrivalent and trivalent split influenza vaccines — Shenzhen City and Changzhou City, China, 2018–2019. China CDC Wkly 2020; 2(21): 370–375
- 5. Zhu H, Lee ACY, Li C, Mak WWN, Chen YY, Chan KH, Zhang AJX, Fung WF, Zhang RQ, Fung YF, Poon RWS, Lam JY, Tam S, Hung IFN, Chen H, Yuen KY, To KKW. Low population serum microneutralization antibody titer against the predominating influenza A(H3N2) N121K virus during the severe influenza summer peak of Hong Kong in 2017. Emerg Microbes Infect 2018; 7(1): 23
- National Health Commission of the People's Republic of China. Overview of the national epidemic of statutory infectious diseases. 2019. Available at the website of National Health Commission of the People's Republic of China (accessed December 28, 2021)
- Feng S, Shen C, Xia N, Song W, Fan M, Cowling BJ. Rational use of face masks in the COVID-19 pandemic. Lancet Respir Med 2020; 8(5): 434–436
- Prather KA, Wang CC, Schooley RT. Reducing transmission of SARS-CoV-2. Science 2020; 368(6498): 1422–1424
- Leung NHL, Chu DKW, Shiu EYC, Chan KH, McDevitt JJ, Hau BJP, Yen HL, Li Y, Ip DKM, Peiris JSM, Seto WH, Leung GM, Milton DK, Cowling BJ. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat Med 2020; 26(5): 676–680
- Han S, Zhang T, Lyu Y, Lai S, Dai P, Zheng J, Yang W, Zhou X, Feng L. The incoming influenza season — China, the United Kingdom, and the United States, 2021–2022. China CDC Wkly 2021; 3(49): 1039–1045
- World Health Organization. Review of global influenza circulation, late 2019 to 2020, and the impact of the COVID-19 pandemic on influenza circulation. 2021. Available at the website of World Health Organization (accessed December 28, 2021)
- 12. Zhang AJ, Lee ACY, Chan JFW, Liu F, Li C, Chen Y, Chu H, Lau SY, Wang P, Chan CCS, Poon VKM, Yuan S, To KKW, Chen H, Yuen KY. Coinfection by severe acute respiratory syndrome coronavirus 2 and influenza A(H1N1)pdm09 virus enhances the severity of pneumonia in golden syrian hamsters. Clin Infect Dis 2021; 72(12): e978–e992
- 13. Bai L, Zhao Y, Dong J, Liang S, Guo M, Liu X, Wang X, Huang Z, Sun X, Zhang Z, Dong L, Liu Q, Zheng Y, Niu D, Xiang M, Song K, Ye J, Zheng W, Tang Z, Tang M, Zhou Y, Shen C, Dai M, Zhou L, Chen Y, Yan H, Lan K, Xu K. Coinfection with influenza A virus enhances SARS-CoV-2 infectivity. Cell Res 2021; 31(4): 395–403
- Cuadrado-Payán E, Montagud-Marrahi E, Torres-Elorza M, Bodro M, Blasco M, Poch E, Soriano A, Piñeiro GJ. SARS-CoV-2 and influenza virus co-infection. Lancet 2020; 395(10236): e84
- Yang J, Atkins KE, Feng L, Pang M, Zheng Y, Liu X, Cowling BJ, Yu H. Seasonal influenza vaccination in China: landscape of diverse regional reimbursement policy, and budget impact analysis.

Vaccine 2016; 34(47): 5724-5735

- 16. Hayward AC, Fragaszy EB, Bermingham A, Wang L, Copas A, Edmunds WJ, Ferguson N, Goonetilleke N, Harvey G, Kovar J, Lim MSC, McMichael A, Millett ERC, Nguyen-Van-Tam JS, Nazareth I, Pebody R, Tabassum F, Watson JM, Wurie FB, Johnson AM, Zambon M; Flu Watch Group. Comparative community burden and severity of seasonal and pandemic influenza: results of the Flu Watch cohort study. Lancet Respir Med 2014; 2(6): 445–454
- Ma M, Anderson BD, Wang T, Chen Y, Zhang D, Gray GC, Lu J. Serological evidence and risk factors for swine influenza infections among Chinese swine workers in Guangdong Province. PLoS One 2015; 10(5): e0128479
- Ng TWY, Perera RAPM, Fang VJ, Yau EM, Peiris JSM, Tam YH, Cowling BJ. The effect of influenza vaccination history on changes in hemagglutination inhibition titers after receipt of the 2015–2016 influenza vaccine in older adults in Hong Kong. J Infect Dis 2020; 221(1): 33–41
- Gao D, Yang H, Deng B, Yin G, Song W, Zhang H, Li Y. Safety and immunogenicity of 3 seasonal trivalent influenza vaccines in the Chinese military. Hum Vaccin Immunother 2016; 12(10): 2634–2639
- 20. Wang SY, Liu SZ, Chu K, Zhao Y, Zhu FC, Hu YM, Meng FY, Li JX, Luo L, Yang JY, Liu P, Yu J. Immunogenicity and safety of an inactivated quadrivalent influenza vaccine candidate versus inactivated trivalent influenza vaccines in participants >/=3 years of age: a double-blind, randomized, parallel-controlled phase III clinical trial in China. Expert Rev Vaccines 2017; 16(11): 1155–1169
- Chen J, Ma J, White SK, Cao Z, Zhen Y, He S, Zhu W, Ke C, Zhang Y, Su S, Zhang G. Live poultry market workers are susceptible to both avian and swine influenza viruses, Guangdong Province, China. Vet Microbiol 2015; 181(3–4): 230–235
- Wang JR, Guan WD, Yau LF, Gao WN, Zhan YQ, Liu L, Yang ZF, Jiang ZH. Glycomic signatures on serum IgGs for prediction of postvaccination response. Sci Rep 2015; 5(1): 7648
- 23. Quan C, Wang Q, Zhang J, Zhao M, Dai Q, Huang T, Zhang Z, Mao S, Nie Y, Liu J, Xie Y, Zhang B, Bi Y, Shi W, Liu P, Wang D, Feng L, Yu H, Liu WJ, Gao GF. Avian influenza A viruses among occupationally exposed populations, China, 2014–2016. Emerg Infect Dis 2019; 25(12): 2215–2225
- Wu J, Yi L, Ni H, Zou L, Zhang H, Zeng X, Liang L, Li L, Zhong H, Zhang X, Lin JY, Ke C. Anti-human H1N1pdm09 and swine H1N1 virus antibodies among swine workers in Guangdong Province, China. Sci Rep 2015; 5(1): 12507
- Chinese National Influenza Center. Chinese influenza weekly report. 2021. Available at the website of Chinese National Influenza Center (accessed December 28, 2021)
- University of Oxford. Coronavirus (COVID-19) vaccinations. 2021. Available at the ourworldindata website (accessed December 28, 2021)
- World Health Organization. Global circulation of influenza viruses. 2021. Available at the website of World Health Organization (accessed December 28, 2021)