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Abstract. We describe the structure of a novel and 
unusually heterologous 13-tubulin isotype (MI31) iso- 
lated from a mouse bone marrow cDNA library, and a 
second isotype (MI33) isolated from a mouse testis 
cDNA library. Comparison of MI31 and MI33 with the 
completed (MI34, MI35) or extended (MI~2) sequence 
of three previously described 13-tubulin isotypes shows 
that each includes a distinctive carboxy-terminal re- 
gion, in addition to multiple amino acid substitutions 
throughout the polypeptide chain. In every case where 
a mammalian interspecies comparison can be made, 
both the carboxy-terminal and internal amino acid sub- 
stitutions that distinguish one isotype from another are 
absolutely conserved. We conclude that these char- 

acteristic differences are important in determining 
functional distinctions between different kinds of mi- 
crotubule. 

The amino acid homologies between MI32, MI33, 
M134, and M135 are in the range of 95-97%; however 
the homology between MIll and all the other isotypes 
is very much less (78%). The dramatic divergence in 
MI31 is due to multiple changes that occur throughout 
the polypeptide chain. The overall level of expression 
of MI31 is low, and is restricted to those tissues (bone 
marrow, spleen, developing liver and lung) that are ac- 
tive in hematopoiesis in the mouse. We predict that 
the MI31 isotype is functionally specialized for assem- 
bly into the mammalian marginal band. 

M 
ICROTUBULES are involved in a remarkable variety 
of cellular processes, including mitosis, morpho- 
genesis, and the motion of cilia and flagella. With 

the discovery that vertebrate tubulins are encoded by multi- 
ple genes, the question arose as to the contribution of differ- 
ent tubulin gene products to the diversity of microtubule 
function. One hypothesis is that the microtubules involved 
in each cellular function are composed of special ¢t- and 
[~-tubulins (7, 27). A modification of this view is that some, 
but not all, ~t- and 13-tubulin isotypes contribute to the func- 
tional diversity of microtubules either through their differen- 
tial polymerization, or by virtue of unique interaction with 
distinct microtubule-associated proteins. At the other ex- 
treme, one could imagine that all ¢x- and 13-tubulins function 
identically, and that the various genes have evolved for the 
purpose of delivering the different amounts of ct- and [3-tu- 
bulin protein needed in different cells. Some support for this 
idea comes from genetic evidence in Drosophila (11, 12) and 
Aspergillus (20) where it has been shown that a mutation 
in a single tubulin gene affects many different microtubule 
functions. In addition, the expression of a chicken/yeast chi- 
meric tubulin in mammalian cells results in its incorporation 
into both cytoskeletal and spindle microtubules without dis- 
ruption of their function (3). 

With such questions in mind, we have been investigating 
the mammalian tubulin repertoire by exhaustive screening of 
cDNA libraries representing several different tissues. We re- 

cently reported the structure and patterns of expression of 
five ct-tubulin (17, 31) and three 13-tubulin isotypes (17). Here 
we present the complete sequence of two novel mouse 
13-tubulin isotypes, and compare them with the extended se- 
quences of the three previously described 13-tubulins. Sub- 
cloned probes were used to study the expression of these iso- 
types during development. One is expressed ubiquitously at 
low levels and in mature testis at very high levels, where it 
is the dominant 13-tubulin. The second is remarkable in that 
it has only 78 % amino acid homology with the other 13-tubu- 
lin proteins; RNA blot transfer experiments show that the ex- 
pression of this isotype is restricted to tissues that are active 
in hematopoiesis. The structure, interspecies conservation, 
and expression patterns of these proteins seem to imply that 
the various ct- and 13-tubulin isotypes are indeed important 
determinants of functional differences among microtubules. 

Materials and Methods 

cDNA Cloning and Sequencing 
PolyA ÷ RNA was prepared from the testis and bone marrow of adult Swiss 
Webster mice for the construction of cDNA libraries in Lgtll (33) as de- 
scribed (15). The libraries were screened (1) with 32p nick-translated, ex- 
cised insert from the chicken 13-tubulin clone pT2 (4), and duplicate filters 
were screened with the 32p-labeled 3' untranslated region fragments from 
M132 and M[~5 (17). Plaques that hybridized to the former probe, but not 
the latter were picked, purified, and subcloned into bacteriophage M13 for 
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~5 CCAAAAACCTTAATTTTCTTTCTTGTTCGGTACCTACATTGGAACCACCAAAAACAATTATTTCAGTAAACCGTAC.CC 
M~4 GC TAGAC-CC ACAGC GCCGGATC GGCAC CC G TCCATC AGAC GCC AC CAGOAGC GO CACCACC 
Ne3 GCTCCCTTCTACAGC TGTTCCGCA'rGTCGCCGCCGCC 
Me I TCTTGGTTCAGGCTAGG 

l IO 2'0 
ATG AGG GAA ATC GTG CAC ATC CAG GCC GGA CAG TGT GGC AAC CAG ATC GGT GCT /LAG TTC 

C CG A T A C T G C 
G CG G C T C C 

A l ATT C A C 

~ S T G G ~ G G T C A T A ~ C ~ T ~ A C A T G ~ A T C ~ C C C C A C C G G T A C C T A C C A C G G T ~ C A G C  
M¢4 C T  G C  T G  T T G  T 
Me3 A C G  T T  T C T  A T  
He] G C G G A  G T  T G G T G G  T G T G A C G T C T  

'SO 6O 
GAC CTG CAG CTG GAC CGA ATC TCT GTG TAC TAT AAT GAA GOC ACA GGT GGC AAG TAT GTC 

C G A G  AA C C G A C T 
C G C AAC C C C G 

CT C G A G AC, C T C C TAC AAG G 

70 8O 
Me5 CCT CGA GCT ATC TTG GTG GAT CTA GAA CCT GGG ACT ATG GAC TCC GTT CGC TCA GGT CCT 
N¢4 C A C G G C C C G C C C T C C C 
I,~3 C C C G G C C  C T G  G C C C G G T G C 
Mel G C G C T C G C A AG A C A C A C AGA 

9O I00 
TTT C-£.-C CAG ATC TTC AGA CCA GAC SAC TTC GTT TTC GGT CAG TCT GGG C.-CA GGC AAC AAC 

T C G  T A T A C A 
C G T T C T AG T G 
G A GTC CTC T CAG T GT T CAT A C T T T 

110 120 
M~5 TGG GCT' AAA GGC CAC TAC .kCA GAG GGA GCT GAG TTG GTT GAC TCT GTC TTG GAT GTG GTG 
NB4 C G T C C C A G T G C  C C 
MI3 C G G T A T A C G G C T 
m 2  
Me% G G G C A C A AA A A 

130 140 
CGG ~ G  GAG GCG GAG AGC TGT C~T TC,~ CTG CAA GGC TTT CAG CTG ACC CAC TCA CTG GGT 

C A A C C T C G C C G C A 
A A  A T C G C C 

T C G T C G 
A G AGC C C A G T C A C GTG T T G 

1 ~  160 
M~5 G ~  GGC ACT G~ TCT GGC ATG GGC EC CTG CTC ATC k ~  ~ G  ATC CGG ~ ~ TAT CCT 
~ 4 T  C A G T A G G T A  
H e 3 G G  G G T C T  G G C A  
m2 A G A A G G C A  
HII  G A G A  A G G C G  

170 180 
GAC CGT ATC ATG AAT ACC TTC AGT GTG GTG CCC TCG CCC A.EA GTC TCT CAT ACC GTG GTC 

AG G C A A G G C G G 
A A  C A T C G G G C A T 

C C CA A G T G 
T G T C T  T CA A A G A A C G A 

I90 700 
MIlS GAG CCC TAC AAT GCC ACC CTG TCT GTC CAT CAG TTG GTT GAG AAC ACG G~T GAG ACC TAC 
Me4 A C G T 
M83 T A C C A A T 
I,~2 T C A G C C A A A T 
Hal GTG A C A C C A A A CC TG T 

210 220 
T ~  ATC ~ C  ~ C  ~ G  ~C CTC TAC ~C ATC T ~  TTC CGT ~C CTC ~ G  CTC ACC ACG CCA 

G G G C 
T T T T A A T T  A A  A G A C  

C T  T T G T  T C G G A 
A G  T TT C G G G G A C  

2 ~  240 
M e S ~ C T ~ C C T G ~ C C A T C T C G T C T C G G C C A C C A T G A ~ G G C G T C A C C A C C T ~ C T C  
~ 4 G  G C C G A  T A  A 
M e 3 T  T A G C  T G A  T G 
~ 2  T C T C  C G G A  T A G  G 
He[ G T C  C G G C ~ G  A A  G T C A G  

2 ~  260 
C G T T T C C C G G G C C A G C T T ~ T ~ T ~ C C T T C G A ~ G C T G ~ T G T C ~ C A T G G T G C C A T T C  

G C A T A C  G 
A T A C G G A  A T  C 
C A G C A  G C  C G  
C T C T  C A G C  C G T  C T  

270 280 
14e5 CCA CGT CTC CAC TTC TTC ATG CCT GC-C TTT C-CC CCT CTC ACC AGC CGT GGA AGC CAG CAG 
~ 4  C A A C A C T G  AG C 
M83 T C G C T G G C 
Ne2 C G A A G G C 
Mel T T T C T A A GC AG T 

29O 3OO 
TAC CGG GCC CTC ACT GTG CCT GAA CTT ACC CAG CAG GTC TTC CAT GOC AAG AAC ATG ATG 

C T G G A AG T 
T l A T G C AG T 
A G G C G G AG CT 
A TA AGG G C A AG CGO T C 

310 370 
Ms5 GCC GCC TC,-C GAC CCG CGC CAC GC-C CGG TAC CTC ACA GTT GCC GCC GTC TTC CGT GGA CGG 
HIe4 T G T A A T C G T G T T G 
H83 T T T A A A  T G C T G  T G T G A G  C C 
Ne2 T T T C G C G A T C C 
Nel T T T G C G T G T TGT A A G T AA 

330 340 
ATG TCC ATG AAG GAG GTG GAT GAG CAG ATG CTC AAC GTG CAG AAC A.AG AAT AGC AGC TAC 

A C T A GT G C T 
T C A T T C A C 

C 
CC A C C A C G TC A T CA G C A G 

350 360 
Me5 TTC GTG GAA TGG ATC CCC AAC AAT GTC AAG ACA GCT GTC TGT GAC ATC CCA CCG CGT GGC 
Me4 T G G C A G C C 
M83 T T G G T T G 
Me2 G C G C G T T 
1481 T T GT G G C G 

370 38O 
CTC AAG ATG GCA GTC ACC TTC ATT GGA AAC AGC ACA C-CC ATC CAG GAG CTG TTC AAG CGC 

G C C C T 
G A TG C C C A 

T C C T 
G C CT C G C AT A C CC A G 

390 400 
Me5 ATC TCT GAG CAG TTT ACG GCT ATG TTC CGC CGG AAG GCT TTC CTC CAC TGG TAC ACG GGT 
Ne4 G C C C A A C C G C 
He3 A C A C A C A 
He2 G C T C G C G 
Hel G C C T A  A A A  GA T G G  CA 

410 4L ~0 
GAG GGC ATG GAC GAG ATG GAG TTC ACC GAG GCT GAG AGC AAC ATG AAC GAC CTG GTG TCT 

A T G A A T C 
A T T C C 

G T 
A G ATA GT A T GGG A T G T C C T 

430 440 
HaS GAG TAC CAG CAG TAC CAG GAT GCC ACC GCG GAA GAG G/L~ GAG GAT TTC GGA GAG GAG * * *  GCA G ~  GAG GAG GCC TAA CGGCAGAGAGCCCTGCATCAGCTCAGGCTC£TTAGATCCCTCAGCCTTTCTCC/~ 
~le4 T T * * *  G GC G A GCT A G T T ~ GTCTCCTGCCATCACTCTGTCCCTGGGGCCCACCAGCA,~GCTTTGACCCTAAGC 
Me3 C T A T G A G ~ G TAG GCT AG T T ~ A~TGTCTTAGTCACTA,a, AGCATGG~AGTGTGAACTCTTTATTCATTCACAG 
N82 G T T C G ~ G AG GAG GT T T ~ GAACTTCTCACdkTACAGTGTGCACCCTTAGTC, JI,~CTTCTGTTGTCCTCCAGCATT 
N~I A A T A T ~ A GG CTA G C AGT ~ AG T C GAG AG C T AG ~ ~ GAC ~ GAT CAT TAG CTAGCd&GAGAAGCTATAG~AGCCG.ATGCT 

MIS CTGCCCTTTGTCCTCCAGTTTCTTTCTGCTGCCTCTGTCTTGTATTTGTTTTGCTTCTGTTrTCTCATTGGGGGTAAATGGTGCCTGGCACATGGCAGGCACT~MTM~ATATTTGTTTGTGG(A)n 
M64 AT~ACAc~CT~.CA~CTAGTTC~CTCATT~CTAGGACCCCATGAGCATCTTCACCATGAGGCCAAGCCCAGGTTGCTT~T ATTTGCT TCACCTTTAACTCCT.IU~ACECCACTGTCTCTCCAJ~cCTGCCAGGGAAGGGCTCTTCTAGTTCCCATGAGCG 
MI3 CCTGTCTG£.TAGCCATGT~CACTGTGCATTAGCTGTCCTGTGTCCTGACATCACTTGTACAGATACCAC~ATTA~GCAATT~ATAGTGTG~A)n 
NI2 GGTCTTTCTATTTGTAAATTATGGT~CTCAGTTTGCCTCTGTCAGAAATTCACTGTTGATGTAATAGTGT~ACCTCTTTCAAGATCACAGTATTGTCTCAGAAAT~TATATGAATAJUUU~AG~ATGTC'G 
Ni l  TGCTTTTC•TTCTTCCTTTTTAAATAGTGAGTGAGTTTACTGTAGTGAGCCCTATTTATTTTTTATTAGTTGTAGGATAGACATGCAGACAAAGTGTGCAAGTTTG•CAGGAGCCGTTTAGCAGTGTTGCTGGGTACC 
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dideoxy sequencing (24). Approximately 30 I~-tubulin cDNA clones from 
each library were sequenced. The sequences of selected clones were com- 
pleted by subcloning Bal31 exonuclease-treated fragments into M13 (16), 
and a 3' untranslated region probe for Mfl3 was also constructed by this 
method. A 3' untranslated region probe for MIll was constructed by sub- 
cloning into pUC a 176-bp Sau3A to Kpnl fragment from this region. In the 
initial screening of 2 x 105 recombinant phage only one cDNA represent- 
ing MIll was obtained. Two antisense oligodeoxyribonucleotide probes cor- 
responding to heterologous regions of this isotype were therefore synthe- 
sized (see Fig. 1), 32P-end-labeled, and used to screen 2 × 105 further 
cDNA clones to obtain six overlapping cDNAs encoding MI31, all of which 
were sequenced as described above. 

RNA Blot Transfer Experiments 
RNA was prepared (2) from 10 different tissues dissected from Swiss Web- 
ster mice of various ages (see legend to Fig. 1). RNA concentrations were 
determined by absorbance at 260 nm, and 10- or 20-I.tg aliquots were elec- 
trophoresed on 1% agarose gels containing 2.2 M formaldehyde. The gel 
contents were transferred to nitrocellulose (26) and the blots hybridized with 
gene specific probes for M[31 or MI33. Oligonucleotides were 32P-labeled 
with polynucleotide kinase, and excised fragments were 32P-labeled by 
nick-translation (23). Hybridization and wash conditions are given in the 
figure legends. 

Results 

Isolation of Two Novel Mouse [3-Tubulin Isotypes 
Accumulating evidence on the tissue-restricted expression of 
several tubulin isotypes and the interspecies conservation of 
isotype-specific amino acid sequences suggests a role for the 
primary structure of these isotypes in defining microtubule 
function (5, 17, 28, 31). The expression of unique tubulin iso- 
types might therefore be expected in tissues and/or cell types 
that contain specialized kinds of microtubules, such as plate- 
lets (which contain the marginal band [30]) or spermatozoa 
(which contain a flagellum and the manchette). We therefore 
performed exhaustive screening experiments on eDNA li- 
braries constructed using polyA + mRNA from mouse bone 
marrow and testis. To facilitate the isolation of novel 13-tubu- 
lin cDNAs, each library was simultaneously screened with 
two probes: a chicken 13-tubulin coding region eDNA (4) 
that would indiscriminately identify all [I-tubulin coding se- 
quences, and a mixed probe consisting of the subcloned 3' 
untranslated regions of two previously described mouse 
D-tubulin isotypes, M132 and M135, that are expressed in most 
(if not all) tissues, though at varying levels. This approach 
served to eliminate from study many of those clones encod- 
ing 13-tubulin isotypes we had characterized previously (17). 

These experiments resulted in the identification of two 
novel 13-tubulin cDNAs, one (M133) isolated from the testis 
eDNA and bone marrow eDNA libraries, the other (MI31) 
only from the bone marrow eDNA library. The complete se- 
quence of each isotype was determined from a set of exten- 
sively overlapping clones, each bearing sequence identity 
within the region of overlap. The compiled sequence data 
from these clones is shown in Fig. 1, together with the ex- 
tended sequences of cDNAs encoding three previously de- 
scribed mouse 13-tubulin isotypes, M132, MI34, and M135. 

Each cDNA possesses both unique untranslated regions and 
multiple substitutions throughout the coding regions, and 
each therefore represents a cloned copy of a distinct gene 
transcript. The [I-tubulin isotypes encoded by each eDNA 
are compared in Fig. 2. The 15 carboxy-terminal amino acids 
of each isotype are distinct, and there is significantly less ho- 
mology between isotypes in this region than in any other por- 
tion of the polypeptide chain. Multiple amino acid substitu- 
tions also exist throughout the polypeptide, particularly in 
MI31, which is exceptionally divergent from all other mam- 
malian 13-tubulin isotypes described hitherto, and, in addi- 
tion, encodes a slightly larger polypeptide chain containing 
451 amino acids. While the great majority of amino acid 
differences among MI~2, MI33, M~4, and MI~5 are the result 
of conservative substitutions, a significant proportion of the 
divergent amino acids in MIll are nonconservative (Fig. 2), 
resulting in a polypeptide that is two charges less acidic than 
that encoded by, for example, MI~5. 

Patterns of Expression of M~3 and M~ I 
in the Adult Mouse 
To determine the overall pattern of expression of the isotypes 
encoded by MIll and MI33, non-crosshybridizing (i.e., 
isotype-specific) probes were used in blot transfer experi- 
ments using total RNA from adult mouse brain, heart, kid- 
ney, liver, lung, skeletal muscle, spleen, stomach, and testis. 
The data show abundant expression of MI33 in testis, with 
a much lower (10-20-fold) and essentially invariant level of 
expression in all other tissues examined except brain, where 
it is lower still (Fig. 3). On the other hand, in the tissues ex- 
amined, MI31 is expressed most strongly in spleen, and (at 
a much lower level) in lung. The relative exposure times of 
the RNA blots shown in Fig. 3 suggest that the level of ex- 
pression of MI31 is much lower in these tissues than that of 
any other co-expressed tubulin isotype. No expression of 
MI31 was detectable in adult brain, heart, kidney, liver, skele- 
tal muscle, stomach, or testis. 

Developmental Regulation of M~3 and M~ I 

The preponderance of MI33 in adult mouse testis (Fig. 3) 
suggested that the expression of this isotype might be linked 
to the process of spermatogenesis. To investigate this possi- 
bility, blot transfer experiments were done using RNA from 
various tissues of the developing mouse. The data (Fig. 4) 
show that, in testis, the expression of Mfl3 is relatively low 
until postnatal day 32, when there is a dramatic increase. By 
contrast, in all somatic tissues examined, a low level of MI~3 
expression is maintained at an essentially constant level 
throughout development. 

The isolation of eDNA clones encoding MI31 from a bone 
marrow cDNA library and its expression in adult spleen 
raised the possibility that expression of this unusually heter- 
ologous isotype might be restricted to tissues involved in 
hematopoiesis. Because spleen and immature liver are sites 
of hematopoiesis in the mouse, the expression of Mfll was 

Figure 1. Nucleotide sequence of five mouse 13-tubulin isotypes, MI~5, MI34, MI33, MI32, and MI31, derived from a series of overlapping 
eDNA clones. The composite data encompass the entirety of the coding region, with the exception of M~2, which lacks sequences 5' to 
amino acid 125 (indicated by a vertical bar in the figure). Spaces denote sequence identity with respect to MI35; asterisks indicate deletions 
introduced so as to maximize homology. Termination codons and polyadenylation signals are underlined. Heterologous regions of MIll 
selected for the synthesis of Ml~l-specific antisense oligonucleotides are also underlined. 
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10 20 30 40 50 60 70 80 
B5 MREIvHIQAGQCGNQIGAKFWEvISDEHGIDPTGTYHGDSDLQLDRISvYYNEATGGKYVPRAILvDLEPGTMDSvRSGP 
B4 L E N N V 
B3 L E N V 
B1 I GE CA S C T A E Y K V I SR 

B5 
B4 
B3 
B2 
B1 

90 100 110 120 130 140 150 160 
FGQIFRPD•JFvFGQSGAGNNWAKGHYTEGAELvDSVLDVvRKEAESCDcLQGFQLTHSLGGGTGSGMGTLLISKIREEYP 

A F 

I 
L VL Q S H N IEN R S IV , MN 

170 180 190 200 210 220 230 240 
B5 DRI~4NTFSvvPSPKVSDTVvEPYNATLSVHQLvENTDETYCIDNEALYDIcFRTLKLTTPTYGDLNHLvSATMSGvTTCL 
B4 
B3 
B2 M S 
B1 L S M V A I ACF L I S 

250 260 270 280 290 300 310 320 
B5 RF~GQLNADLRKLAvNMVPFPRLHFFMPGFA~LTSRGSQQYRALTVPELTQQvFDAKN~1MAAcDPRHGRYLTvAAvFRGR 
B4 M 
B3 H 
B2 M S I 
BI AQ S G M R I R CI K 

330 340 350 360 370 380 390 400 
B5 MSMKEvDEQMLNvQNKNSSYFvEWIPNNVKTAVcD~P~RGLKI~AVTFIGNSTAIQELFKRISEQFTAMFRRKAFLHWYTG 
B4 S S A 
B3 SA 
B2 SA 
B1 T Q L SI TR NC V N A L N T V H S R V S 

410 420 430 440 
B5 E~DEMEFTEAESNMNDLVSEYQQYQDATAEEEEDFGEE*AEEEA 
B4 * GEE AE V 
B3 GEE * VA 
B2 D QGE E EG D 
B1 IS G DIH F VR GL DSEEDAEEA VEAEDKDH 
Figure 2. Amino acid sequences of five distinct 13-tubulin isotypes. Amino acid sequences of MI35, M~4, Mfl3, MI32, and MI31, are derived 
from the data shown in Fig. 1. Spaces denote sequence identity with respect to MI]5. Asterisks have been introduced in the carboxy-terminal 
regions to indicate single amino acid gaps introduced so as to maintain maximum homology in this region. Probable residues involved 
in GTP binding (19) are underlined. 
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Figure 3. Expression of MI]3 
and MI~I in adult mouse tis- 
sues. Total RNA was prepared 
from brain (br), heart (he), 
kidney (ki), liver (li), lung 
(lu), muscle (mu), spleen 
(sp), stomach (st), and testis 
(te) of adult mice. 20-lag ali- 
quots of each sample were re- 
solved on denaturing 1% aga- 
rose gels. After transfer to 
nitrocellulose (26), the blots 
were hybridized either with 
a subcloned 3' untranslated 
region probe 32p-labeled by 
nick translation (23) derived 
from MI33 (top), or with a 
synthetic antisense oligonu- 
cleotide (24-mer) correspond- 
ing to a heterologous portion 
of the coding region of MI31 
32P-labeled with polynucleo- 
tide kinase (bottom) (see Fig. 
1). After hybridization in 50% 
formamide, 5× SSC at 42°C 
for the nick-translated frag- 
ment and in 20% formamide, 
5x SSC at 42°C for the oligo- 
nucleotide, the blots were 
washed to a final stringency of 
60°C, 2x SSC. The blot 
shown in the top panel was ex- 
posed to film for 20 h; that in 
the lower panel was exposed 
for 6 d. Arrows indicate the 
positions of 28S and 18S 
ribosomal RNA. 

examined in these and other developing tissues. The data 
(Fig. 4) show that there is indeed weak but detectable expres- 
sion of MI31 in the spleen of mice of all ages, as well as in 
the liver and developing lung of young mice. No expression 
of M[~I was observed in any of the other developing tissues 
examined. 

Discussion 

In this paper we describe the structure and expression of two 
novel mouse 13-tubulin isotypes, MI]I and MI33. The amino 
acid sequences of these isotypes are compared to the ex- 
tended amino acid sequences of three previously isolated 
13-tubulins (17) in Fig. 2, and the widely differing expression 

patterns of all five 13-tubulin isotypes are summarized in 
Table I. Together with our work on mouse and human 
ct-tubulin isotypes (summarized in reference 31), these data 
give a general (though not necessarily complete) picture of 
mammalian tubulin gene expression. 

Genes encoding four of the five [3-tubulin isotypes de- 
scribed here have been isolated from human genomic li- 
braries (see Table I); three corresponding isotypes from rat 
have also been described (6). However, the patterns of ex- 
pression of these human genes are to a large extent unknown 
because of the difficulty involved in studying human tissue, 
and because of the problem of sorting out functional genes 
from the large number of pseudogenes present in mam- 
malian genomes (5, 13). A comparison of the sequences of 
the four human genes with those of the corresponding mouse 
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Figure 4. Developmental expression of MI]3 and MIll. Total RNA from brain (br), heart (he), kidney (ki), liver (li), lung (lu), spleen 
(sp), stomach (st), and thymus (th) was prepared from mice of ages 3, 6, 10, 15, 22, and 32 d (left to right). RNA was also prepared from 
muscle (mu) and testis (te) of mice aged 10, 15, 22, and 32 d (left to right). Samples (10 I.tg) were resolved on denaturing agarose gels 
and transferred to nitrocellulose (26). Duplicate sets of blots were probed with 32p-labeled subcloned probes spanning the 3' untranslated 
regions of either MI33 or MIll. After hybridization, the blots were washed and exposed as described in the legend to Fig. 3. 

cDNAs shows that the amino acid sequence of each isotype 
is absolutely identical between the two species. (At a small 
number of residues in the human genes 5[3 (14) [at amino 
acids 269, 283, 365] and M40 (13) [at amino acid 288] there 
were apparent interspecies amino acid differences; however, 
upon reexamination, these apparent differences proved to be 
the result of  sequencing errors.) In view of this very surpris- 
ing observation, namely, the absolute interspecies conserva- 

tion of distinct tubulin amino acid sequences over a period 
of 100 My (i.e., since the mammalian radiation), it seems 
likely that each of the four isotypes, MI32, MI]3, MI~4, and 
MI55, has evolved to fulfill a specialized functional role. This 
conclusion implies that the expression pattern of each iso- 
type is identical in all mammalian species. Such data as are 
available for the expression of human genes (13, 16) and rat 
cDNAs (6) encoding isotypes corresponding to M133, MI34, 
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Table L Summary of Mammalian [3-Tubulin lsotypes and Their Expression in Mouse* 

br he ki li lu mu sp st te th Corresponding human gene~ Corresponding rat cDNA§ 

MI31 ( " ' )  ( ~ )  
MI3211 + + +  . + + + +  ,-~ ,,~ + 0o + H139 RI3T. 1 

MI33 + + + + + + + + + + + +  + H132 
MI3411 + + +  H513 RI3T.2 
MI3511 + + +  + + + + +  + + +  + + + + +  H M 4 0  RI3T.3 

* Tissue abbreviations are the same as those in Figs. 3 and 4. 
* Data from references 13, 14, and 16; and for HI~9, Gu, W., and N. J. Cowan, unpublished observation. 
§ Data from reference 6. 
I[ Data from reference 17. 

and MI35 support this hypothesis. Indeed, data on the expres- 
sion of several chicken 13-tubulin isotypes (10) suggests that 
this correspondence may also extend to lower vertebrate 
species. 

The simplest explanation for the absolute interspecies con- 
servation of the amino acid differences that distinguish the 
four most homologous 13-tubulin isotypes is that these differ- 
ences have functional significance. As noted previously (9, 
17, 28) many isotype-specific amino acids are clustered at the 
carboxy terminus (see Fig. 2), a portion of the tubulin pro- 
tein which is thought to be exposed when the tubulin is poly- 
merized into microtubules (32), and which probably inter- 
acts with microtubule-associated proteins (25). On the other 
hand, transfection of a chimeric chicken/yeast 13-tubulin 
gene into mouse NIH 3T3 cells results in the incorporation 
of a bizarre chimeric 13-tubulin isotype into an array of 
microtubule structures in the host cells with no apparent 
effect on growth rate or cell morphology (3). This result 
could be explained in terms of functional distinctions be- 
tween different microtubules being dependent on the relative 
abundance (rather than an absolute segregation) of het- 
erodimers containing particular tubulin isotypes. Alterna- 
tively, the incorporation of chimeric tubulin into diverse 
microtubules may reflect the functional interchangeability of 
most, if not all, 13-tubulin isotypes. In that event, the absolute 
interspecies conservation of isotypes noted here would re- 
quire some explanation that is not based on the selection of 
functional differences. For example, the tubulin molecule, 
because of its many functional interactions, may be under 
such severe constraints that any single amino acid change 
would be likely to be deleterious, and thus several indepen- 
dent and compensating amino acid changes might be re- 
quired in order to generate a new functional molecule. Since 
multiple mutation events are very rare, tubulin isotype amino 
acid differences, once generated, would tend to be retained. 
However, while such a scenario could account for the con- 
servation of tubulin isotypes in the absence of selection for 
functional differences, it does not explain their widely differ- 
ent but nonetheless conserved patterns of expression. 

Whether the unusually divergent 13-tubulin isotype repre- 
sented by MI31 is as rigidly conserved between mammalian 
species as the other four 13-tubulin isotypes described here 
is an open question. Murphy and co-workers (21, 22) have 
purified and studied a unique and divergent 13-tubulin protein 
that is specific to chicken erythrocytes and thrombocytes. 
Because MI31 is specific to hematopoeitic tissue (Figs. 3 and 
4), we feel it is likely to be the mammalian equivalent of 
this unique chicken isotype. However, comparison of the se- 
quence of MI31 with limited protein sequence data for the 

chicken erythroid 13-tubulin (D. B. Murphy, personal com- 
munication) reveals many differences between these two pro- 
teins. This may not be surprising, in view of the differences 
between hematopoeisis in mammals and lower vertebrates. 
In" lower vertebrates marginal bands composed of microtu- 
bules are found in the nucleated erythrocytes and thrombo- 
cytes of the blood, whereas in mammals marginal bands are 
found only in nucleated primitive erythrocytes (8), erythro- 
blasts of the definitive erythroid line (30), and in the anucle- 
ate platelets. The mammalian tissue distribution of marginal 
bands correlates with our data on the expression of MI31. 
However, to address the question of whether the 13-tubulin 
isotype encoded by MI31 indeed participates in mammalian 
marginal band formation, it will be necessary to raise a 
specific antiserum to a cloned fusion protein. 

The amino acid differences between M[31 and the other 
four 13-tubulin isotypes are scattered throughout the polypep- 
tide chain, with a concentration of differences in an extended 
and divergent carboxy terminus (Fig. 2). About half of these 
differences are nonconservative. However, those residues 
thought to be involved in GTP binding (19) are completely 
conserved in all five isotypes (see Fig. 2) and all five have 
a highly acidic carboxy terminus. The divergent nature of 
M[31 could reflect the absence of severe selective constraints 
on a [3-tubulin molecule whose only function is to form the 
marginal band. In this regard, it is noteworthy that calf brain 
microtubules are capable of forming marginal bands in de- 
tergent-extracted cytoskeletons prepared from chicken eryth- 
rocytes (29). However, the absence of a similarly divergent 
ct-tubulin isotype (31) and the unique biochemical properties 
of the chicken erythroid [3-tubulin (21, 22) are consistent 
with the existence of a specialized erythropoietic 13-tubulin. 

Although microtubules form part of a large variety of 
unique organelles in testis (such as the flagellum and man- 
chette of spermatids, and the meiotic and mitotic spin- 
dles), there is almost certainly no 13-tubulin isotype specific 
to testis. This conclusion is based on the fact that as a result 
of exhaustive analysis of 2 × l05 cDNA clones from the 
testis cDNA library, no sequences encoding 13-tubulin iso- 
types other than M133, M[~2, and M135 were isolated. M133 
is by far the most abundant [3-tubulin in this organ, and there- 
fore must contribute to many of its unique structures. There 
exists, however, an ct-tubulin isotype that is unique to testis 
(31) and, in addition, posttranslational modifications may 
form functionally distinct pools of tubulin (18). 

The five 13-tubulin cDNAs described here, together with 
the six ct-tubulin cDNAs we characterized previously (31) 
encode a total of 10 mouse tubulin isotypes. In addition, we 
have isolated and sequenced functional human tubulin genes 
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encoding most of these isotypes (13, 14, 16, 31, Gu, W., and 
N. J. Cowan, unpublished observation). Based on our analy- 
sis of about 20 human genes and pseudogenes and our thor- 
ough examination of mouse eDNA libraries from bone mar- 
row, brain, testis, and embryo, we conclude that these eleven 
cDNAs represent most of the expressed tubulin genes in 
mammals. From these data, certain patterns emerge. For ex- 
ample, although tubulin is a heterodimer of ¢t- and 13-sub- 
units, many a- and I~-tubulin genes do not appear to be ex- 
pressed in pairs. Whereas pairs of widely occurring tubulin 
isotypes (MI~5 and Mtz2, MI32 and Mal) (17) are expressed 
in a parallel fashion, the tissue-specific tubulins encoded by 
Mfll (Fig. 4), MI34 (17), and Met3 and Ma7 (31) have no 
coordinately expressed subunit counterparts. Therefore the 
incorporation into a given microtubule of either specialized 
¢t- or 13-subunits may well be sufficient to confer functional 
specificity on that microtubule. The existence of these spe- 
cialized tubulins and the absolute interspecies conservation 
of mammalian tubulin isotypes strengthens our previous con- 
clusion (17, 31) that the encoded heterogeneity in a- and I~-tu- 
bulins is likely to contribute to the diversity of microtubule 
function. 
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